-linked -acetylglucosamine transferase (OGT) is found in all metazoans and plays an important role in development but at the single-cell level is only essential in dividing mammalian cells. Postmitotic mammalian cells and cells of invertebrates such as and can survive without copies of OGT. Why OGT is required in dividing mammalian cells but not in other cells remains unknown. OGT has multiple biochemical activities. Beyond its well-known role in adding β--GlcNAc to serine and threonine residues of nuclear and cytoplasmic proteins, OGT also acts as a protease in the maturation of the cell cycle regulator host cell factor 1 (HCF-1) and serves as an integral member of several protein complexes, many of them linked to gene expression. In this review, we summarize current understanding of the mechanisms underlying OGT's biochemical activities and address whether known functions of OGT could be related to its essential role in dividing mammalian cells.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Janetzko J, Walker S. 1.  2014. The making of a sweet modification: structure and function of O-GlcNAc transferase. J. Biol. Chem. 289:5034424–32 [Google Scholar]
  2. Kreppel LK, Blomberg MA, Hart GW. 2.  1997. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J. Biol. Chem. 272:149308–15 [Google Scholar]
  3. Haltiwanger RS, Blomberg MA, Hart GW. 3.  1992. Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine:polypeptide β-N-acetylglucosaminyltransferase. J. Biol. Chem. 267:139005–13 [Google Scholar]
  4. Lubas WA, Frank DW, Krause M, Hanover JA. 4.  1997. O-linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J. Biol. Chem. 272:149316–24 [Google Scholar]
  5. Gambetta MC, Müller J. 5.  2015. A critical perspective of the diverse roles of O-GlcNAc transferase in chromatin. Chromosoma 124:4429–42 [Google Scholar]
  6. Hanover JA, Krause MW, Love DC. 6.  2012. Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nat. Rev. Mol. Cell Biol. 13:5312–21 [Google Scholar]
  7. Ozcan S, Andrali SS, Cantrell JE. 7.  2010. Modulation of transcription factor function by O-GlcNAc modification. Biochim. Biophys. Acta 1799:5–6353–64 [Google Scholar]
  8. Yi W, Clark PM, Mason DE, Keenan MC, Hill C. 8.  et al. 2012. PFK1 glycosylation is a key regulator of cancer cell growth and central metabolic pathways. Science 337:6097975–80 [Google Scholar]
  9. Ruan HB, Dietrich MO, Liu ZW, Zimmer MR, Li MD. 9.  et al. 2014. O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat. Cell 159:2306–17 [Google Scholar]
  10. Ruan H-B, Han X, Li M-D, Singh JP, Qian K. 10.  et al. 2012. O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1α stability. Cell Metab. 16:2226–37 [Google Scholar]
  11. Dentin R, Hedrick S, Xie J, Yates J, Montminy M. 11.  2008. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 319:58681402–5 [Google Scholar]
  12. Kazemi Z, Chang H, Haserodt S, McKen C, Zachara NE. 12.  2010. O-linked β-N-acetylglucosamine (O-GlcNAc) regulates stress-induced heat shock protein expression in a GSK-3β-dependent manner. J. Biol. Chem. 285:5039096–107 [Google Scholar]
  13. Zachara NE, Hart GW. 13.  2004. O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim. Biophys. Acta 1673:1–213–28 [Google Scholar]
  14. Yang X, Ongusaha PP, Miles PD, Havstad JC, Zhang F. 14.  et al. 2008. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451:7181964–69 [Google Scholar]
  15. Vaidyanathan K, Wells L. 15.  2014. Multiple tissue-specific roles for the O-GlcNAc post-translational modification in the induction of and complications arising from type II diabetes. J. Biol. Chem. 289:5034466–71 [Google Scholar]
  16. Zhu Y, Liu T-W, Cecioni S, Eskandari R, Zandberg WF, Vocadlo DJ. 16.  2015. O-GlcNAc occurs cotranslationally to stabilize nascent polypeptide chains. Nat. Chem. Biol. 11:5319–25 [Google Scholar]
  17. Han I, Kudlow JE. 17.  1997. Reduced O glycosylation of Sp1 is associated with increased proteasome susceptibility. Mol. Cell. Biol. 17:52550–58 [Google Scholar]
  18. Zhang F, Su K, Yang X, Bowe DB, Paterson AJ, Kudlow JE. 18.  2003. O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115:6715–25 [Google Scholar]
  19. Guinez C, Lemoine J, Michalski J-C, Lefebvre T. 19.  2004. 70-kDa-heat shock protein presents an adjustable lectinic activity towards O-linked N-acetylglucosamine. Biochem. Biophys. Res. Commun. 319:121–26 [Google Scholar]
  20. Bond MR, Hanover JA. 20.  2015. A little sugar goes a long way: the cell biology of O-GlcNAc. J. Cell Biol. 208:7869–80 [Google Scholar]
  21. Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. 21.  2011. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80:1825–58 [Google Scholar]
  22. Daou S, Mashtalir N, Hammond-Martel I, Pak H, Yu H. 22.  et al. 2011. Crosstalk between O-GlcNAcylation and proteolytic cleavage regulates the host cell factor-1 maturation pathway. PNAS 108:72747–52 [Google Scholar]
  23. Capotosti F, Guernier S, Lammers F, Waridel P, Cai Y. 23.  et al. 2011. O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1. Cell 144:3376–88 [Google Scholar]
  24. Lazarus MB, Jiang J, Kapuria V, Bhuiyan T, Janetzko J. 24.  et al. 2013. HCF-1 is cleaved in the active site of O-GlcNAc transferase. Science 342:61631235–39 [Google Scholar]
  25. Bhuiyan T, Waridel P, Kapuria V, Zoete V, Herr W. 25.  2015. Distinct OGT-binding sites promote HCF-1 cleavage. PLOS ONE 10:8e0136636 [Google Scholar]
  26. Yang X, Zhang F, Kudlow JE. 26.  2002. Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3a: coupling protein O-GlcNAcylation to transcriptional repression. Cell 110:169–80 [Google Scholar]
  27. Dey A, Seshasayee D, Noubade R, French DM, Liu J. 27.  et al. 2012. Loss of the tumor suppressor BAP1 causes myeloid transformation. Science 337:61011541–46 [Google Scholar]
  28. Vella P, Scelfo A, Jammula S, Chiacchiera F, Williams K. 28.  et al. 2013. TET proteins connect the O-linked N-acetylglucosamine transferase OGT to chromatin in embryonic stem cells. Mol. Cell. 49:4645–56 [Google Scholar]
  29. Deplus R, Delatte B, Schwinn MK, Defrance M, Méndez J. 29.  et al. 2013. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and Set1/COMPASS. EMBO J 32:5645–55 [Google Scholar]
  30. Ito R, Katsura S, Shimada H, Tsuchiya H, Hada M. 30.  et al. 2014. TET3-OGT interaction increases the stability and the presence of OGT in chromatin. Genes Cells 19:152–65 [Google Scholar]
  31. Shi FT, Kim H, Lu W, He Q, Liu D. 31.  et al. 2013. Ten-eleven translocation 1 (Tet1) is regulated by O-linked N-acetylglucosamine transferase (Ogt) for target gene repression in mouse embryonic stem cells. J. Biol. Chem. 288:2920776–84 [Google Scholar]
  32. Chen Q, Chen Y, Bian C, Fujiki R, Yu X. 32.  2013. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 493:7433561–64 [Google Scholar]
  33. Zhang Q, Liu X, Gao W, Li P, Hou J. 33.  et al. 2014. Differential regulation of the ten-eleven translocation (TET) family of dioxygenases by O-linked β-N-acetylglucosamine transferase (OGT). J. Biol. Chem. 289:95986–96 [Google Scholar]
  34. Cheung WD, Hart GW. 34.  2008. AMP-activated protein kinase and p38 MAPK activate O-GlcNAcylation of neuronal proteins during glucose deprivation. J. Biol. Chem. 283:1913009–20 [Google Scholar]
  35. Cheung WD, Sakabe K, Housley MP, Dias WB, Hart GW. 35.  2008. O-linked β-N-acetylglucos-aminyltransferase substrate specificity is regulated by myosin phosphatase targeting and other interacting proteins. J. Biol. Chem. 283:4933935–41 [Google Scholar]
  36. Housley MP, Udeshi ND, Rodgers JT, Shabanowitz J, Puigserver P. 36.  et al. 2009. A PGC-1α-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose. J. Biol. Chem. 284:85148–57 [Google Scholar]
  37. Iyer SPN, Hart GW. 37.  2003. Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity. J. Biol. Chem. 278:2724608–16 [Google Scholar]
  38. Brickley K, Pozo K, Stephenson FA. 38.  2011. N-acetylglucosamine transferase is an integral component of a kinesin-directed mitochondrial trafficking complex. Biochim. Biophys. Acta 1813:1269–81 [Google Scholar]
  39. Slawson C, Lakshmanan T, Knapp S, Hart GW. 39.  2008. A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin. Mol. Biol. Cell 19:104130–40 [Google Scholar]
  40. Shafi R, Iyer SPN, Ellies LG, O'Donnell N, Marek KW. 40.  et al. 2000. The O-GlcNAc transferase gene resides on the x chromosome and is essential for embryonic stem cell viability and mouse ontogeny. PNAS 97:115735–39 [Google Scholar]
  41. O'Donnell N, Zachara NE, Hart GW, Marth JD. 41.  2004. Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol. Cell. Biol. 24:41680–90 [Google Scholar]
  42. Ortiz-Meoz RF, Merbl Y, Kirschner MW, Walker S. 42.  2014. Microarray discovery of new OGT substrates: the medulloblastoma oncogene OTX2 is O-GlcNAcylated. J. Am. Chem. Soc. 136:134845–48 [Google Scholar]
  43. Wang J, Torii M, Liu H, Hart GW, Hu Z-Z. 43.  2011. dbOGAP—an integrated bioinformatics resource for protein O-GlcNAcylation. BMC Bioinform. 12:91 [Google Scholar]
  44. Deng RP, He X, Guo SJ, Liu WF, Tao Y, Tao SC. 44.  2014. Global identification of O-GlcNAc transferase (OGT) interactors by a human proteome microarray and the construction of an OGT interactome. Proteomics 14:91020–30 [Google Scholar]
  45. Ma Z, Vosseller K. 45.  2013. O-GlcNAc in cancer biology. Amino Acids 45:4719–33 [Google Scholar]
  46. Marsh SA, Collins HE, Chatham JC. 46.  2014. Protein O-GlcNAcylation and cardiovascular (patho) physiology. J. Biol. Chem. 289:5034449–56 [Google Scholar]
  47. Yuzwa SA, Vocadlo DJ. 47.  2014. O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer's disease and beyond. Chem. Soc. Rev. 43:196839–58 [Google Scholar]
  48. Pantaleon DM. 48.  2015. The role of hexosamine biosynthesis and signaling in early development. Cell Signaling During Mammalian Early Embryo Development HJ Leese, DR Brison 53–76 New York: Springer [Google Scholar]
  49. Boehmelt G, Wakeham A, Elia A, Sasaki T, Plyte S. 49.  et al. 2000. Decreased UDP-GlcNAc levels abrogate proliferation control in EMeg32-deficient cells. EMBO J. 19:195092–104 [Google Scholar]
  50. Haltiwanger RS, Holt GD, Hart GW. 50.  1990. Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine:peptide β-N-acetylglucosaminyltransferase. J. Biol. Chem. 265:52563–68 [Google Scholar]
  51. Marshall S, Bacote V, Traxinger RR. 51.  1991. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem. 266:84706–12 [Google Scholar]
  52. Weigert C, Klopfer K, Kausch C, Brodbeck K, Stumvoll M. 52.  et al. 2003. Palmitate-induced activation of the hexosamine pathway in human myotubes: increased expression of glutamine:fructose-6-phosphate aminotransferase. Diabetes 52:3650–56 [Google Scholar]
  53. Marshall S, Nadeau O, Yamasaki K. 53.  2004. Dynamic actions of glucose and glucosamine on hexosamine biosynthesis in isolated adipocytes: differential effects on glucosamine 6-phosphate, UDP-N-acetylglucosamine, and ATP levels. J. Biol. Chem. 279:3435313–19 [Google Scholar]
  54. McClain DA. 54.  2002. Hexosamines as mediators of nutrient sensing and regulation in diabetes. J. Diabetes Complicat. 16:172–80 [Google Scholar]
  55. Bosch RR, Pouwels M-JJM, Span PN, Olthaar AJ, Tack CJ. 55.  et al. 2004. Hexosamines are unlikely to function as a nutrient-sensor in 3T3-L1 adipocytes: a comparison of UDP-hexosamine levels after increased glucose flux and glucosamine treatment. Endocrine 23:117–24 [Google Scholar]
  56. Perez M, Hirschberg CB. 56.  1985. Translocation of UDP-N-acetylglucosamine into vesicles derived from rat liver rough endoplasmic reticulum and Golgi apparatus. J. Biol. Chem. 260:84671–78 [Google Scholar]
  57. Hanover JA, Yu S, Lubas WB, Shin S-H, Ragano-Caracciola M. 57.  et al. 2003. Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Arch. Biochem. Biophys. 409:2287–97 [Google Scholar]
  58. Zeytuni N, Zarivach R. 58.  2012. Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module. Structure 20:3397–405 [Google Scholar]
  59. Blatch GL, Lässle M. 59.  1999. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays 21:11932–39 [Google Scholar]
  60. Allan RK, Ratajczak T. 60.  2010. Versatile TPR domains accommodate different modes of target protein recognition and function. Cell Stress Chaperones 16:4353–67 [Google Scholar]
  61. Jínek M, Rehwinkel J, Lazarus BD, Izaurralde E, Hanover JA, Conti E. 61.  2004. The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin α. Nat. Struct. Mol. Biol. 11:101001–7 [Google Scholar]
  62. Lazarus MB, Nam Y, Jiang J, Sliz P, Walker S. 62.  2011. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469:7331564–67 [Google Scholar]
  63. Wrabl JO, Grishin NV. 63.  2001. Homology between O-linked GlcNAc transferases and proteins of the glycogen phosphorylase superfamily. J. Mol. Biol. 314:3365–74 [Google Scholar]
  64. Ha S, Walker D, Shi Y, Walker S. 64.  2000. The 1.9 a crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Protein Sci 9:1045–52 [Google Scholar]
  65. Rao ST, Rossmann MG. 65.  1973. Comparison of super-secondary structures in proteins. J. Mol. Biol. 76:2241–56 [Google Scholar]
  66. Clarke AJ, Hurtado-Guerrero R, Pathak S, Schüttelkopf AW, Borodkin V. 66.  et al. 2008. Structural insights into mechanism and specificity of O-GlcNAc transferase. EMBO J. 27:202780–88 [Google Scholar]
  67. Martinez-Fleites C, Macauley MS, He Y, Shen DL, Vocadlo DJ, Davies GJ. 67.  2008. Structure of an O-GlcNAc transferase homolog provides insight into intracellular glycosylation. Nat. Struct. Mol. Biol. 15:7764–65 [Google Scholar]
  68. Lairson LL, Henrissat B, Davies GJ, Withers SG. 68.  2008. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77:521–55 [Google Scholar]
  69. Hu Y, Chen L, Ha S, Gross B, Falcone B. 69.  et al. 2003. Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. PNAS 100:3845–49 [Google Scholar]
  70. Lazarus MB, Jiang J, Gloster TM, Zandberg WF, Whitworth GE. 70.  et al. 2012. Structural snapshots of the reaction coordinate for O-GlcNAc transferase. Nat. Chem. Biol. 8:12966–68 [Google Scholar]
  71. Schimpl M, Zheng X, Borodkin VS, Blair DE, Ferenbach AT. 71.  et al. 2012. O-GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis. Nat. Chem. Biol. 8:12969–74 [Google Scholar]
  72. Pathak S, Alonso J, Schimpl M, Rafie K, Blair DE. 72.  et al. 2015. The active site of O-GlcNAc transferase imposes constraints on substrate sequence. Nat. Struct. Mol. Biol. 22:9744–50 [Google Scholar]
  73. Liu X, Li L, Wang Y, Yan H, Ma X. 73.  et al. 2014. A peptide panel investigation reveals the acceptor specificity of O-GlcNAc transferase. FASEB J. 28:83362–72 [Google Scholar]
  74. Leavy TM, Bertozzi CR. 74.  2007. A high-throughput assay for O-GlcNAc transferase detects primary sequence preferences in peptide substrates. Bioorg. Med. Chem. Lett. 17:143851–54 [Google Scholar]
  75. Tvaroška I, Kozmon S, Wimmerová M, Koča J. 75.  2012. Substrate-assisted catalytic mechanism of O-GlcNAc transferase discovered by quantum mechanics/molecular mechanics investigation. J. Am. Chem. Soc. 134:3715563–71 [Google Scholar]
  76. Lira-Navarrete E, Iglesias-Fernández J, Zandberg WF, Compañón I, Kong Y. 76.  et al. 2014. Substrate-guided front-face reaction revealed by combined structural snapshots and metadynamics for the polypeptide N-acetylgalactosaminyltransferase 2. Angew. Chem. Int. Ed. Engl. 53:318206–10 [Google Scholar]
  77. Jancan I, Macnaughtan MA. 77.  2012. Acid dissociation constants of uridine-5′-diphosphate compounds determined by 31phosphorus nuclear magnetic resonance spectroscopy and internal pH referencing. Anal. Chim. Acta 749:63–69 [Google Scholar]
  78. Lee SS, Hong SY, Errey JC, Izumi A, Davies GJ, Davis BG. 78.  2011. Mechanistic evidence for a front-side, SNi-type reaction in a retaining glycosyltransferase. Nat. Chem. Biol. 7:9631–38 [Google Scholar]
  79. Gómez H, Polyak I, Thiel W, Lluch JM, Masgrau L. 79.  2012. Retaining glycosyltransferase mechanism studied by QM/MM methods: Lipopolysaccharyl-α-1,4-galactosyltransferase C transfers α-galactose via an oxocarbenium ion-like transition state. J. Am. Chem. Soc. 134:104743–52 [Google Scholar]
  80. Errey JC, Lee SS, Gibson RP, Martinez Fleites C, Barry CS. 80.  et al. 2010. Mechanistic insight into enzymatic glycosyl transfer with retention of configuration through analysis of glycomimetic inhibitors. Angew. Chem. Int. Ed. Engl. 49:71234–37 [Google Scholar]
  81. Ardèvol A, Rovira C. 81.  2011. The molecular mechanism of enzymatic glycosyl transfer with retention of configuration: evidence for a short-lived oxocarbenium-like species. Angew. Chem. Int. Ed. Engl. 50:4610897–901 [Google Scholar]
  82. Kumari M, Kozmon S, Kulhánek P, Štepán J, Tvaroška I, Koča J. 82.  2015. Exploring reaction pathways for O-GlcNAc transferase catalysis. a string method study. J. Phys. Chem. B 119:124371–81 [Google Scholar]
  83. Lubas WA, Hanover JA. 83.  2000. Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J. Biol. Chem. 275:1510983–88 [Google Scholar]
  84. Shen DL, Gloster TM, Yuzwa SA, Vocadlo DJ. 84.  2012. Insights into O-linked N-acetylglucosamine (O-GlcNAc) processing and dynamics through kinetic analysis of O-GlcNAc transferase and O-GlcNAcase activity on protein substrates. J. Biol. Chem. 287:1915395–408 [Google Scholar]
  85. Kreppel LK, Hart GW. 85.  1999. Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J. Biol. Chem. 274:4532015–22 [Google Scholar]
  86. Taylor RP, Geisler TS, Chambers JH, McClain DA. 86.  2009. Up-regulation of O-GlcNAc transferase with glucose deprivation in HepG2 cells is mediated by decreased hexosamine pathway flux. J. Biol. Chem. 284:63425–32 [Google Scholar]
  87. Kean EL. 87.  1982. Activation by dolichol phosphate-mannose of the biosynthesis of N-acetylglucos-aminylpyrophosphoryl polyprenols by the retina. J. Biol. Chem. 257:147952–54 [Google Scholar]
  88. Ryu I-H, Do S-I. 88.  2011. Denitrosylation of S-nitrosylated OGT is triggered in LPS-stimulated innate immune response. Biochem. Biophys. Res. Commun. 408:152–57 [Google Scholar]
  89. Xu Q, Yang C, Du Y, Chen Y, Liu H. 89.  et al. 2014. AMPK regulates histone H2B O-GlcNAcylation. Nucleic Acids Res 42:95594–604 [Google Scholar]
  90. Kaasik K, Kivimäe S, Allen JJ, Chalkley RJ, Huang Y. 90.  et al. 2013. Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab. 17:2291–302 [Google Scholar]
  91. Bullen JW, Balsbaugh JL, Chanda D, Shabanowitz J, Hunt DF. 91.  et al. 2014. Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). J. Biol. Chem. 289:1510592–606 [Google Scholar]
  92. Alonso J, Schimpl M, van Aalten DMF. 92.  2014. O-GlcNAcase: Promiscuous hexosaminidase or key regulator of O-GlcNAc signaling?. J. Biol. Chem. 289:5034433–39 [Google Scholar]
  93. Chou CF, Smith AJ, Omary MB. 93.  1992. Characterization and dynamics of O-linked glycosylation of human cytokeratin 8 and 18. J. Biol. Chem. 267:63901–6 [Google Scholar]
  94. Roquemore EP, Chevrier MR, Cotter RJ, Hart GW. 94.  1996. Dynamic O-GlcNAcylation of the small heat shock protein αB-crystallin. Biochemistry 35:113578–86 [Google Scholar]
  95. Ortiz-Meoz RF, Jiang J, Lazarus MB, Orman M, Janetzko J. 95.  et al. 2015. A small molecule that inhibits OGT activity in cells. ACS Chem. Biol. 10:61392–97 [Google Scholar]
  96. Gloster TM, Zandberg WF, Heinonen JE, Shen DL, Deng L, Vocadlo DJ. 96.  2011. Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells. Nat. Chem. Biol. 7:3174–81 [Google Scholar]
  97. Zhang Z, Tan EP, VandenHull NJ, Peterson KR, Slawson C. 97.  2014. O-GlcNAcase expression is sensitive to changes in O-GlcNAc homeostasis. Front. Endocrinol. 5:206 [Google Scholar]
  98. Sodi VL, Khaku S, Krutilina R, Schwab LP, Vocadlo DJ. 98.  et al. 2015. mTOR/MYC axis regulates O-GlcNAc transferase expression and O-GlcNAcylation in breast cancer. Mol. Cancer Res. 13:5923–33 [Google Scholar]
  99. Park S, Pak J, Jang I, Cho J. 99.  2014. Inhibition of mTOR affects protein stability of OGT. Biochem. Biophys. Res. Commun. 453:2208–12 [Google Scholar]
  100. Kristie TM, Liang Y, Vogel JL. 100.  2010. Control of α-herpesvirus IE gene expression by HCF-1 coupled chromatin modification activities. Biochim. Biophys. Acta 1799:3–4257–65 [Google Scholar]
  101. Zargar ZU, Tyagi S. 101.  2012. Role of host cell factor-1 in cell cycle regulation. Transcription 3:4187–92 [Google Scholar]
  102. Wilson AC, LaMarco K, Peterson MG, Herr W. 102.  1993. The VP16 accessory protein HCF is a family of polypeptides processed from a large precursor protein. Cell 74:1115–25 [Google Scholar]
  103. Kristie TM, Pomerantz JL, Twomey TC, Parent SA, Sharp PA. 103.  1995. The cellular C1 factor of the herpes simplex virus enhancer complex is a family of polypeptides. J. Biol. Chem. 270:94387–94 [Google Scholar]
  104. Wysocka J, Herr W. 104.  2003. The herpes simplex virus VP16-induced complex: the makings of a regulatory switch. Trends Biochem. Sci. 28:6294–304 [Google Scholar]
  105. Julien E, Herr W. 105.  2003. Proteolytic processing is necessary to separate and ensure proper cell growth and cytokinesis functions of HCF-1. EMBO J. 22:102360–69 [Google Scholar]
  106. Conti E, Uy M, Leighton L, Blobel G, Kuriyan J. 106.  1998. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin α. Cell 94:2193–204 [Google Scholar]
  107. Gatto GJ, Geisbrecht BV, Gould SJ, Berg JM. 107.  2000. Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat. Struct. Mol. Biol. 7:121091–95 [Google Scholar]
  108. Iyer SPN, Akimoto Y, Hart GW. 108.  2003. Identification and cloning of a novel family of coiled-coil domain proteins that interact with O-GlcNAc transferase. J. Biol. Chem. 278:75399–409 [Google Scholar]
  109. Pekkurnaz G, Trinidad JC, Wang X, Kong D, Schwarz TL. 109.  2014. Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase. Cell 158:154–68 [Google Scholar]
  110. Hanover JA, Forsythe ME, Hennessey PT, Brodigan TM, Love DC. 110.  et al. 2005. A Caenorhabditis elegans model of insulin resistance: altered macronutrient storage and dauer formation in an OGT-1 knockout. PNAS 102:3211266–71 [Google Scholar]
  111. Ingham PW. 111.  1984. A gene that regulates the bithorax complex differentially in larval and adult cells of Drosophila. Cell 37:3815–23 [Google Scholar]
  112. Gambetta MC, Oktaba K, Müller J. 112.  2009. Essential role of the glycosyltransferase Sxc/Ogt in polycomb repression. Science 325:593693–96 [Google Scholar]
  113. Sinclair DA, Syrzycka M, Macauley MS, Rastgardani T, Komljenovic I. 113.  et al. 2009. Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). PNAS 106:3213427–32 [Google Scholar]
  114. Radermacher PT, Myachina F, Bosshardt F, Pandey R, Mariappa D. 114.  et al. 2014. O-GlcNAc reports ambient temperature and confers heat resistance on ectotherm development. PNAS 111:155592–97 [Google Scholar]
  115. Rahman MM, Stuchlick O, El-Karim EG, Stuart R, Kipreos ET, Wells L. 115.  2010. Intracellular protein glycosylation modulates insulin mediated lifespan in C. elegans.. Aging 2:10678–90 [Google Scholar]
  116. Love DC, Ghosh S, Mondoux MA, Fukushige T, Wang P. 116.  et al. 2010. Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity. PNAS 107:167413–18 [Google Scholar]
  117. Wang P, Hanover JA. 117.  2013. Nutrient-driven O-GlcNAc cycling influences autophagic flux and neurodegenerative proteotoxicity. Autophagy 9:4604–6 [Google Scholar]
  118. Guo B, Liang Q, Li L, Hu Z, Wu F. 118.  et al. 2014. O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation. Nat. Cell Biol. 16:121215–26 [Google Scholar]
  119. Bond MR, Ghosh SK, Wang P, Hanover JA. 119.  2014. Conserved nutrient sensor O-GlcNAc transferase is integral to C. elegans pathogen-specific immunity. PlOS ONE 9:12e113231 [Google Scholar]
  120. Bainbridge SP, Bownes M. 120.  1981. Staging the metamorphosis of Drosophila melanogaster. Development 66:157–80 [Google Scholar]
  121. Wedeen C, Harding K, Levine M. 121.  1986. Spatial regulation of antennapedia and bithorax gene expression by the Polycomb locus in Drosophila. Cell 44:5739–48 [Google Scholar]
  122. Simon JA, Kingston RE. 122.  2013. Occupying chromatin: polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol. Cell. 49:5808–24 [Google Scholar]
  123. Mariappa D, Zheng X, Schimpl M, Raimi O, Ferenbach AT. 123.  et al. 2015. Dual functionality of O-GlcNAc transferase is required for Drosophila development. Open Biol. 5:12150234 [Google Scholar]
  124. Gambetta MC, Müller J. 124.  2014. O-GlcNAcylation prevents aggregation of the Polycomb group repressor Polyhomeotic. Dev. Cell 31:5629–39 [Google Scholar]
  125. Robinson AK, Leal BZ, Chadwell LV, Wang R, Ilangovan U. 125.  et al. 2012. The growth-suppressive function of the Polycomb group protein Polyhomeotic is mediated by polymerization of its sterile alpha motif (SAM) domain. J. Biol. Chem. 287:128702–13 [Google Scholar]
  126. Isono K, Endo TA, Ku M, Yamada D, Suzuki R. 126.  et al. 2013. SAM domain polymerization links subnuclear clustering of PRC1 to gene silencing. Dev. Cell 26:6565–77 [Google Scholar]
  127. Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC. 127.  1993. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. PNAS 90:188424–28 [Google Scholar]
  128. Popp MW-L, Maquat LE. 128.  2013. Organizing principles of mammalian nonsense-mediated mRNA decay. Annu. Rev. Genet. 47:139–65 [Google Scholar]
  129. Gilbert SF. 129.  2000. Spermatogenesis. Developmental Biology. Sunderland, MA: Sinauer Associates, 6th ed.. [Google Scholar]
  130. O'Gorman S, Dagenais NA, Qian M, Marchuk Y. 130.  1997. Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. PNAS 94:2614602–7 [Google Scholar]
  131. Howerton CL, Morgan CP, Fischer DB, Bale TL. 131.  2013. O-GlcNAc transferase (OGT) as a placental biomarker of maternal stress and reprogramming of CNS gene transcription in development. PNAS 110:135169–74 [Google Scholar]
  132. Howerton CL, Bale TL. 132.  2014. Targeted placental deletion of OGT recapitulates the prenatal stress phenotype including hypothalamic mitochondrial dysfunction. PNAS 111:269639–44 [Google Scholar]
  133. Takagi N, Sasaki M. 133.  1975. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256:5519640–42 [Google Scholar]
  134. Zhang DJ, Wang Q, Wei J, Baimukanova G, Buchholz F. 134.  et al. 2005. Selective expression of the Cre recombinase in late-stage thymocytes using the distal promoter of the Lck gene. J. Immunol. 174:116725–31 [Google Scholar]
  135. Watson LJ, Long BW, DeMartino AM, Brittian KR, Readnower RD. 135.  et al. 2014. Cardiomyocyte OGT is essential for postnatal viability. Am. J. Physiol. Heart Circ. Physiol. 306:1H142–53 [Google Scholar]
  136. Agah R, Frenkel PA, French BA, Michael LH, Overbeek PA, Schneider MD. 136.  1997. Gene recombination in postmitotic cells. Targeted expression of Cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo. J. Clin. Invest. 100:1169–79 [Google Scholar]
  137. Watson LJ, Facundo HT, Ngoh GA, Ameen M, Brainard RE. 137.  et al. 2010. O-linked β-N-acetylglucosamine transferase is indispensable in the failing heart. PNAS 107:4117797–802 [Google Scholar]
  138. Alejandro EU, Bozadjieva N, Kumusoglu D, Abdulhamid S, Levine H. 138.  et al. 2015. Disruption of O-linked N-acetylglucosamine signaling induces ER stress and β cell failure. Cell Rep. 13:112527–38 [Google Scholar]
  139. Ferrer CM, Lynch TP, Sodi VL, Falcone JN, Schwab LP. 139.  et al. 2014. O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol. Cell 54:5820–31 [Google Scholar]
  140. Sekine O, Love DC, Rubenstein DS, Hanover JA. 140.  2010. Blocking O-linked GlcNAc cycling in Drosophila insulin-producing cells perturbs glucose-insulin homeostasis. J. Biol. Chem. 285:4938684–91 [Google Scholar]
  141. Vosseller K, Wells L, Lane MD, Hart GW. 141.  2002. Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes. PNAS 99:85313–18 [Google Scholar]
  142. McClain DA, Lubas WA, Cooksey RC, Hazel M, Parker GJ. 142.  et al. 2002. Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia. PNAS 99:1610695–99 [Google Scholar]
  143. Hebert LF, Daniels MC, Zhou J, Crook ED, Turner RL. 143.  et al. 1996. Overexpression of glutamine:fructose-6-phosphate amidotransferase in transgenic mice leads to insulin resistance. J. Clin. Invest. 98:4930–36 [Google Scholar]
  144. Butkinaree C, Park K, Hart GW. 144.  2010. O-linked β-N-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim. Biophys. Acta 1800:296–106 [Google Scholar]
  145. Zachara NE, O'Donnell N, Cheung WD, Mercer JJ, Marth JD, Hart GW. 145.  2004. Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J. Biol. Chem. 279:2930133–42 [Google Scholar]
  146. Wang P, Lazarus BD, Forsythe ME, Love DC, Krause MW, Hanover JA. 146.  2012. O-GlcNAc cycling mutants modulate proteotoxicity in Caenorhabditis elegans models of human neurodegenerative diseases. PNAS 109:4317669–74 [Google Scholar]
  147. Zhu Y, Liu T-W, Madden Z, Yuzwa SA, Murray K. 147.  et al. 2016. Post-translational O-GlcNAcylation is essential for nuclear pore integrity and maintenance of the pore selectivity filter. J. Mol. Cell Biol. 8:12–16 [Google Scholar]
  148. Yang YR, Song M, Lee H, Jeon Y, Choi EJ. 148.  et al. 2012. O-GlcNAcase is essential for embryonic development and maintenance of genomic stability. Aging Cell 11:3439–48 [Google Scholar]
  149. Keembiyehetty C, Love DC, Harwood KR, Gavrilova O, Comly ME, Hanover JA. 149.  2015. Conditional knock-out reveals a requirement for O-linked N-Acetylglucosaminase (O-GlcNAcase) in metabolic homeostasis. J. Biol. Chem. 290:117097–113 [Google Scholar]
  150. Liu Y, Hengartner MO, Herr W. 150.  1999. Selected elements of herpes simplex virus accessory factor HCF are highly conserved in Caenorhabditis elegans. Mol. Cell. Biol. 19:1909–15 [Google Scholar]
  151. LaBoissière S, Walker S, O'Hare P. 151.  1997. Concerted activity of host cell factor subregions in promoting stable VP16 complex assembly and preventing interference by the acidic activation domain. Mol. Cell. Biol. 17:127108–18 [Google Scholar]
  152. Capotosti F, Hsieh JJ-D, Herr W. 152.  2007. Species selectivity of mixed-lineage leukemia/trithorax and HCF proteolytic maturation pathways. Mol. Cell. Biol. 27:207063–72 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error