1932

Abstract

The high-resolution structure of the eukaryotic ribosome from yeast, determined at 3.0-Å resolution, permitted the unambiguous determination of the protein side chains, eukaryote-specific proteins, protein insertions, and ribosomal RNA expansion segments of the 80 proteins and ∼5,500 RNA bases that constitute the 80S ribosome. A comparison between this first atomic model of the entire 80S eukaryotic ribosome and previously determined structures of bacterial ribosomes confirmed early genetic and structural data indicating that they share an evolutionarily conserved core of ribosomal RNA and proteins. It also confirmed the conserved organization of essential functional sites, such as the peptidyl transferase center and the decoding site. New structural information about eukaryote-specific elements, such as expansion segments and new ribosomal proteins, forms the structural framework for the design and analysis of experiments that will explore the eukaryotic translational apparatus and the evolutionary forces that shaped it. New nomenclature for ribosomal proteins, based on the names of protein families, has been proposed.

Associated Article

There are media items related to this article:
High-Resolution Structure of the Eukaryotic 80S Ribosome: Supplemental Video 1
Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060713-035445
2014-06-02
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/biochem/83/1/annurev-biochem-060713-035445.html?itemId=/content/journals/10.1146/annurev-biochem-060713-035445&mimeType=html&fmt=ahah

Literature Cited

  1. Melnikov S, Ben-Shem A, Garreau de Loubresse N, Jenner L, Yusupova G, Yusupov M. 1.  2012. One core, two shells: bacterial and eukaryotic ribosomes. Nat. Struct. Mol. Biol. 19:560–67 [Google Scholar]
  2. Frank J, Verschoor A, Li Y, Zhu J, Lata RK. 2.  et al. 1995. A model of the translational apparatus based on a three-dimensional reconstruction of the Escherichia coli ribosome. Biochem. Cell Biol. 73:757–65 [Google Scholar]
  3. Stark H, Orlova EV, Rinke-Appel J, Jünke N, Mueller F. 3.  et al. 1997. Arrangement of tRNAs in pre- and posttranslocational ribosomes revealed by electron cryomicroscopy. Cell 88:19–28 [Google Scholar]
  4. Stark H, Rodnina MV, Rinke-Appel J, Brimacombe R, Wintermeyer W, van Heel M. 4.  1997. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature 389:403–6 [Google Scholar]
  5. Agrawal RK, Penczek P, Grassucci RA, Frank J. 5.  1998. Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc. Natl. Acad. Sci. USA 95:6134–18 [Google Scholar]
  6. Cate JH, Yusupov M, Yusupova G, Earnest TN, Noller HF. 6.  1999. X-ray crystal structures of 70S ribosome functional complexes. Science 285:2095–104 [Google Scholar]
  7. Clemons WM Jr, May JL, Wimberly BT, McCutcheon JP, Capel MS, Ramakrishnan V. 7.  1999. Structure of a bacterial 30S ribosomal subunit at 5.5 Å resolution. Nature 400:833–40 [Google Scholar]
  8. Ban N, Freeborn B, Nissen P, Penczek P, Grassucci RA. 8.  et al. 1998. A 9 Å resolution X-ray crystallographic map of the large ribosomal subunit. Cell 93:1105–15 [Google Scholar]
  9. Ban N, Nissen P, Hansen J, Capel M, Moore PB, Steitz TA. 9.  1999. Placement of protein and RNA structures into a 5 Å resolution map of the 50S ribosomal subunit. Nature 400:841–47 [Google Scholar]
  10. Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan-Warren RJ, Carter AP. 10.  et al. 2000. Structure of the 30S ribosomal subunit. Nature 407:327–39 [Google Scholar]
  11. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. 11.  2000. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–20 [Google Scholar]
  12. Yusupov M, Yusupova G, Baucom A, Lieberman K, Earnest TN. 12.  et al. 2001. Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883–96 [Google Scholar]
  13. Yonath A, Müssig J, Wittmann HG. 13.  1982. Parameters for crystal growth of ribosomal subunits. J. Cell. Biochem. 19:145–55 [Google Scholar]
  14. Yonath A, Piefke J, Müssig J, Gewitz HS, Wittmann HG. 14.  1983. A compact three-dimensional crystal form of the large ribosomal subunit from Bacillus stearothermophilus. FEBS Lett. 163:69–72 [Google Scholar]
  15. Harel M, Shoham M, Frolow F, Eisenberg H, Mevarech M. 15.  et al. 1988. Crystallization of halophilic malate dehydrogenase from Halobacterium marismortui. J. Mol. Biol. 200:609–10 [Google Scholar]
  16. Yusupov M, Barinin VV, Borovyagin BD, Garber M, Sedelnikova S. 16.  et al. 1987. Crystallization of the 30S subunits of Thermus thermophilus ribosomes. Dokl. Akad. Nauk SSSR 292:1271–74 [Google Scholar]
  17. Trakhanov SD, Yusupov M, Agalarov S, Garber M, Ryazantzev S. 17.  et al. 1987. Crystallization of 70S ribosomes and 30S ribosomal subunits from Thermus thermophilus. FEBS Lett. 220:319–22 [Google Scholar]
  18. Yusupova G, Yusupov M, Spirin A, Ebel JP, Moras D. 18.  et al. 1991. Formation and crystallization of Thermus thermophilus 70S ribosome/tRNA complexes. FEBS Lett. 290:69–72 [Google Scholar]
  19. Trakhanov S, Yusupov M, Shirokov V, Garber M, Mitschler A. 19.  et al. 1989. Preliminary X-ray investigation of 70 S ribosome crystals from Thermus thermophilus. J. Mol. Biol. 209:327–28 [Google Scholar]
  20. Garber M, Agalarov C, Eliseikina I, Tischenko S, Shirokov V. 20.  et al. 1991. Purfication and crystallization of components of the protein-synthesizing system from Thermus thermophilus. J. Cryst. Growth 110:228–36 [Google Scholar]
  21. Steitz TA.21.  2008. A structural understanding of the dynamic ribosome machine. Nat. Rev. Mol. Cell Biol. 9:242–53 [Google Scholar]
  22. Schmeing TM, Ramakrishnan V. 22.  2009. What recent ribosome structures have revealed about the mechanism of translation. Nature 461:1234–42 [Google Scholar]
  23. Demeshkina N, Jenner L, Yusupova G, Yusupov M. 23.  2010. Interactions of the ribosome with mRNA and tRNA. Curr. Opin. Struct. Biol. 20:325–32 [Google Scholar]
  24. Spahn CM, Beckmann R, Eswar N, Penczek PA, Sali A. 24.  et al. 2001. Structure of the 80S ribosome from Saccharomyces cerevisiae–tRNA–ribosome and subunit–subunit interactions. Cell 107:373–86 [Google Scholar]
  25. Spahn CM, Gomez-Lorenzo MG, Grassucci RA, Jørgensen R, Andersen GR. 25.  et al. 2004. Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J. 23:1008–19 [Google Scholar]
  26. Becker T, Bhushan S, Jarasch A, Armache JP, Funes S. 26.  et al. 2009. Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326:1369–73 [Google Scholar]
  27. Fu J, Munro JB, Blanchard SC, Frank J. 27.  2011. Cryoelectron microscopy structures of the ribosome complex in intermediate states during tRNA translocation. Proc. Natl. Acad. Sci. USA 108:4817–21 [Google Scholar]
  28. Ratje AH, Loerke J, Mikolajka A, Brünner M, Hildebrand PW. 28.  et al. 2010. Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature 468:713–16 [Google Scholar]
  29. Fischer N, Konevega AL, Wintermeyer W, Rodnina MV, Stark H. 29.  2010. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466:329–33 [Google Scholar]
  30. Seidelt B, Innis CA, Wilson DN, Gartmann M, Armache JP. 30.  et al. 2009. Structural insight into nascent polypeptide chain–mediated translational stalling. Science 326:1412–15 [Google Scholar]
  31. Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. 31.  2011. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334:1524–29 [Google Scholar]
  32. Ben-Shem A, Jenner L, Yusupova G, Yusupov M. 32.  2010. Crystal structure of the eukaryotic ribosome. Science 330:1203–9 [Google Scholar]
  33. Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N. 33.  2010. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331:730–36 [Google Scholar]
  34. Klinge S, Voigts-Hoffmann F, Leibundgut M, Arpagaus S, Ban N. 34.  2011. Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science 334:941–48 [Google Scholar]
  35. Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N. 35.  2011. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331:730–36 [Google Scholar]
  36. Klaholz BP, Myasnikov AG, Van Heel M. 36.  2004. Visualization of release factor 3 on the ribosome during termination of protein synthesis. Nature 427:862–65 [Google Scholar]
  37. Gogia ZV, Yusupov M, Spirina TN. 37.  1986. Structure of Thermus thermophilus ribosomes. Method of isolation and purification of the ribosomes. Mol. Biol. 20:519–26 [Google Scholar]
  38. Fechter P, Chevalier C, Yusupova G, Yusupov M, Romby P, Marzi S. 38.  2009. Ribosomal initiation complexes probed by toeprinting and effect of trans-acting translational regulators in bacteria. Methods Mol. Biol. 540:247–63 [Google Scholar]
  39. Clemons WM Jr, Brodersen DE, McCutcheon JP, May JL, Carter AP. 39.  et al. 2001. Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: purification, crystallization and structure determination. J. Mol. Biol. 310:827–43 [Google Scholar]
  40. Selmer M, Dunham CM, Murphy FV IV, Weixlbaumer A, Petry S. 40.  et al. 2006. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–42 [Google Scholar]
  41. Ben-Shem A, Frolow F, Nelson N. 41.  2003. Crystal structure of plant photosystem I. Nature 426:630–35 [Google Scholar]
  42. Ashe MP, De Long SK, Sachs AB. 42.  2000. Glucose depletion rapidly inhibits translation initiation in yeast. Mol. Biol. Cell 11:833–48 [Google Scholar]
  43. Jenner L, Demeshkina N, Yusupova G, Yusupov M. 43.  2010. Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat. Struct. Mol. Biol. 17:555–60 [Google Scholar]
  44. Komili S, Farny NG, Roth FP, Silver PA. 44.  2007. Functional specificity among ribosomal proteins regulates gene expression. Cell 131:557–71 [Google Scholar]
  45. Smith TF, Lee JC, Gutell RR, Hartman H. 45.  2008. The origin and evolution of the ribosome. Biol. Direct 3:16 [Google Scholar]
  46. Lecompte O, Ripp R, Thierry JC, Moras D, Poch O. 46.  2002. Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. Nucleic Acids Res. 30:5382–90 [Google Scholar]
  47. Gerbi SA.47.  1986. The evolution of eukaryotic ribosomal DNA. Biosystems 19:247–58 [Google Scholar]
  48. Yusupova G, Yusupov M, Cate JH, Noller HF. 48.  2001. The path of messenger RNA through the ribosome. Cell 106:233–41 [Google Scholar]
  49. Jenner LB, Demeshkina N, Yusupova G, Yusupov M. 49.  2010. Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat. Struct. Mol. Biol. 17:555–60 [Google Scholar]
  50. Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. 50.  2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–48 [Google Scholar]
  51. Demeshkina N, Jenner L, Westhof E, Yusupov M, Yusupova G. 51.  2012. A new understanding of the decoding principle on the ribosome. Nature 484:256–59 [Google Scholar]
  52. Simonovic M, Steitz TA. 52.  2009. A structural view on the mechanism of the ribosome-catalyzed peptide bond formation. Biochim. Biophys. Acta 1789:612–23 [Google Scholar]
  53. Wilson DN, Doudna Cate JH. 53.  2012. The structure and function of the eukaryotic ribosome. Cold Spring Harb. Perspect. Biol. 4:011536 [Google Scholar]
  54. Sonenberg N, Hinnebusch AG. 54.  2009. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–45 [Google Scholar]
  55. Jackson RJ, Hellen CU, Pestova TV. 55.  2010. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11:113–27 [Google Scholar]
  56. Mager WH, Planta RJ, Ballesta JG, Lee JC, Mizuta K. 56.  et al. 1997. A new nomenclature for the cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Nucleic Acids Res. 25:4872–75 [Google Scholar]
  57. Marintchev A, Edmonds KA, Marintcheva B, Hendrickson E, Oberer M. 57.  et al. 2009. Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation. Cell 136:447–60 [Google Scholar]
  58. Pomeranz Krummel DA, Oubridge C, Leung AK, Li J, Nagai K. 58.  2009. Crystal structure of human spliceosomal U1 snRNP at 5.5 Å resolution. Nature 458:475–80 [Google Scholar]
  59. Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A. 59.  et al. 2005. Structures of the bacterial ribosome at 3.5 Å resolution. Science 310:827–34 [Google Scholar]
  60. Spahn CM, Gomez-Lorenzo MG, Grassucci RA, Jørgensen R, Andersen GR. 60.  et al. 2004. Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J. 23:1008–19 [Google Scholar]
  61. Budkevich T, Giesebrecht J, Altman RB, Munro JB, Mielke T. 61.  et al. 2011. Structure and dynamics of the mammalian ribosomal pretranslocation complex. Mol. Cell 44:214–24 [Google Scholar]
  62. Jenner L, Demeshkina N, Yusupova G, Yusupov M. 62.  2010. Structural rearrangements of the ribosome at the tRNA proofreading step. Nat. Struct. Mol. Biol. 17:1072–78 [Google Scholar]
  63. Park HS, Himmelbach A, Browning KS, Hohn T, Ryabova LA. 63.  2001. A plant viral “reinitiation” factor interacts with the host translational machinery. Cell 106:723–33 [Google Scholar]
  64. Nishimura T, Wada T, Yamamoto KT, Okada K. 64.  2005. The Arabidopsis STV1 protein, responsible for translation reinitiation, is required for auxin-mediated gynoecium patterning. Plant Cell 17:2940–53 [Google Scholar]
  65. Thiebeauld O, Schepetilnikov M, Park HS, Geldreich A, Kobayashi K. 65.  et al. 2009. A new plant protein interacts with eIF3 and 60S to enhance virus-activated translation re-initiation. EMBO J. 28:3171–84 [Google Scholar]
  66. Vázquez-Laslop N, Mankin AS. 66.  2011. Picky nascent peptides do not talk to foreign ribosomes. Proc. Natl. Acad. Sci. USA 108:5931–32 [Google Scholar]
  67. Wilson DN, Beckmann R. 67.  2011. The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Curr. Opin. Struct. Biol. 21:274–82 [Google Scholar]
  68. Cruz-Vera LR, Sachs MS, Squires CL, Yanofsky C. 68.  2011. Nascent polypeptide sequences that influence ribosome function. Curr. Opin. Microbiol. 14:160–66 [Google Scholar]
  69. Tenson T, Ehrenberg M. 69.  2002. Regulatory nascent peptides in the ribosomal tunnel. Cell 108:591–94 [Google Scholar]
  70. Harms J, Schluenzen F, Zarivach R, Bashan A, Gat S. 70.  et al. 2001. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107:679–88 [Google Scholar]
  71. Tu D, Blaha G, Moore PB, Steitz TA. 71.  2005. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121:257–70 [Google Scholar]
  72. Zaman S, Fitzpatrick M, Lindahl L, Zengel J. 72.  2007. Novel mutations in ribosomal proteins L4 and L22 that confer erythromycin resistance in Escherichia coli. Mol. Microbiol. 66:1039–50 [Google Scholar]
  73. Van Dyke N, Baby J, Van Dyke MW. 73.  2006. Stm1p, a ribosome-associated protein, is important for protein synthesis in Saccharomyces cerevisiae under nutritional stress conditions. J. Mol. Biol. 358:1023–31 [Google Scholar]
  74. Balagopal V, Parker R. 74.  2011. Stm1 modulates translation after 80S formation in Saccharomyces cerevisiae. RNA 17:835–42 [Google Scholar]
  75. Ligr M, Velten I, Fröhlich E, Madeo F, Ledig M. 75.  et al. 2001. The proteasomal substrate Stm1 participates in apoptosis-like cell death in yeast. Mol. Biol. Cell 12:2422–32 [Google Scholar]
  76. Frank J, Agrawal RK. 76.  2000. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406:318–22 [Google Scholar]
  77. Horan LH, Noller HF. 77.  2007. Intersubunit movement is required for ribosomal translocation. Proc. Natl. Acad. Sci. USA 104:4881–85 [Google Scholar]
  78. Zhang W, Dunkle JA, Cate JH. 78.  2009. Structures of the ribosome in intermediate states of ratcheting. Science 325:1014–17 [Google Scholar]
  79. Zhou J, Lancaster L, Trakhanov S, Noller HF. 79.  2012. Crystal structure of release factor RF3 trapped in the GTP state on a rotated conformation of the ribosome. RNA 18:230–40 [Google Scholar]
  80. Dunkle JA, Wang L, Feldman MB, Pulk A, Chen VB. 80.  et al. 2011. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332:981–84 [Google Scholar]
  81. Halic M, Becker T, Frank J, Spahn CM, Beckmann R. 81.  2005. Localization and dynamic behavior of ribosomal protein L30e. Nat. Struct. Mol. Biol. 12:467–68 [Google Scholar]
  82. Chandramouli P, Topf M, Menetret JF, Eswar N, Cannone JJ. 82.  et al. 2008. Structure of the mammalian 80S ribosome at 8.7 Å resolution. Structure 16:535–48 [Google Scholar]
  83. Strunk BS, Karbstein K. 83.  2009. Powering through ribosome assembly. RNA 15:2083–104 [Google Scholar]
  84. Wilson DN, Beckmann R. 84.  2011. The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Curr. Opin. Struct. Biol. 21:274–82 [Google Scholar]
  85. Brandt F, Carlson LA, Hartl FU, Baumeister W, Grünewald K. 85.  2010. The three-dimensional organization of polyribosomes in intact human cells. Mol. Cell 39:560–69 [Google Scholar]
  86. Wilson DN, Beckmann R. 86.  2011. The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Curr. Opin. Struct. Biol. 21:274–82 [Google Scholar]
  87. Brandt F, Etchells SA, Ortiz JO, Elcock AH, Hartl FU, Baumeister W. 87.  2009. The native 3D organization of bacterial polysomes. Cell 136:261–71 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060713-035445
Loading
/content/journals/10.1146/annurev-biochem-060713-035445
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error