The importance of eukaryotic DNA methylation [5-methylcytosine (5mC)] in transcriptional regulation and development was first suggested almost 40 years ago. However, the molecular mechanism underlying the dynamic nature of this epigenetic mark was not understood until recently, following the discovery that the TET proteins, a family of AlkB-like Fe(II)/α-ketoglutarate-dependent dioxygenases, can oxidize 5mC to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Since then, several mechanisms that are responsible for processing oxidized 5mC derivatives to achieve DNA demethylation have emerged. Our biochemical understanding of the DNA demethylation process has prompted new investigations into the biological functions of DNA demethylation. Characterization of two additional AlkB family proteins, FTO and ALKBH5, showed that they possess demethylase activity toward 6-methyladenosine (m6A) in RNA, indicating that members of this subfamily of dioxygenases have a general function in demethylating nucleic acids. In this review, we discuss recent advances in this emerging field, focusing on the mechanism and function of TET-mediated DNA demethylation.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Goll MG, Bestor TH. 1.  2005. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74:481–514 [Google Scholar]
  2. Jia G, Fu Y, Zhao X, Dai Q, Zheng G. 2.  et al. 2011. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7:885–87 [Google Scholar]
  3. Klose RJ, Bird AP. 3.  2006. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31:89–97 [Google Scholar]
  4. Smith ZD, Meissner A. 4.  2013. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14:204–20 [Google Scholar]
  5. Fu Y, He C. 5.  2012. Nucleic acid modifications with epigenetic significance. Curr. Opin. Chem. Biol. 16:516–24 [Google Scholar]
  6. Baylin SB, Jones PA. 6.  2011. A decade of exploring the cancer epigenome—biological and translational implications. Nat. Rev. Cancer 11:726–34 [Google Scholar]
  7. Walport LJ, Hopkinson RJ, Schofield CJ. 7.  2012. Mechanisms of human histone and nucleic acid demethylases. Curr. Opin. Chem. Biol. 16:525–34 [Google Scholar]
  8. Yi C, He C. 8.  2013. DNA repair by reversal of DNA damage. Cold Spring Harb. Perspect. Biol. 5:a012575 [Google Scholar]
  9. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H. 9.  et al. 2009. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–35 [Google Scholar]
  10. Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. 10.  2010. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–33 [Google Scholar]
  11. Ito S, Shen L, Dai Q, Wu SC, Collins LB. 11.  et al. 2011. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–3 [Google Scholar]
  12. He YF, Li BZ, Li Z, Liu P, Wang Y. 12.  et al. 2011. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–7 [Google Scholar]
  13. Maiti A, Drohat AC. 13.  2011. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J. Biol. Chem. 286:35334–38 [Google Scholar]
  14. Zhang L, Lu X, Lu J, Liang H, Dai Q. 14.  et al. 2012. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat. Chem. Biol. 8:328–30 [Google Scholar]
  15. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM. 15.  et al. 2013. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49:18–29 [Google Scholar]
  16. Pastor WA, Aravind L, Rao A. 16.  2013. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14:341–56 [Google Scholar]
  17. Jia G, Fu Y, He C. 17.  2013. Reversible RNA adenosine methylation in biological regulation. Trends Genet. 29:108–15 [Google Scholar]
  18. Shen L, Zhang Y. 18.  2013. 5-Hydroxymethylcytosine: generation, fate, and genomic distribution. Curr. Opin. Cell Biol. 25:289–96 [Google Scholar]
  19. Koh KP, Rao A. 19.  2013. DNA methylation and methylcytosine oxidation in cell fate decisions. Curr. Opin. Cell Biol. 25:152–61 [Google Scholar]
  20. Loenarz C, Schofield CJ. 20.  2011. Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. Trends Biochem. Sci. 36:7–18 [Google Scholar]
  21. Yi C, Yang CG, He C. 21.  2009. A non-heme iron–mediated chemical demethylation in DNA and RNA. Acc. Chem. Res. 42:519–29 [Google Scholar]
  22. Krebs C, Galonić Fujimori D, Walsh CT, Bollinger JM Jr. 22.  2007. Non-heme Fe(IV)-oxo intermediates. Acc. Chem. Res. 40:484–92 [Google Scholar]
  23. Fromme JC, Verdine GL. 23.  2004. Base excision repair. Adv. Protein Chem. 69:1–41 [Google Scholar]
  24. Ono R, Taki T, Taketani T, Taniwaki M, Kobayashi H, Hayashi Y. 24.  2002. LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res. 62:4075–80 [Google Scholar]
  25. Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR. 25.  2003. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17:637–41 [Google Scholar]
  26. Iyer LM, Abhiman S, Aravind L. 26.  2011. Natural history of eukaryotic DNA methylation systems. Prog. Mol. Biol. Transl. Sci. 101:25–104 [Google Scholar]
  27. Iyer LM, Tahiliani M, Rao A, Aravind L. 27.  2009. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8:1698–710 [Google Scholar]
  28. Hu L, Li Z, Cheng J, Rao Q, Gong W. 28.  et al. 2013. Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell 155:1545–55 [Google Scholar]
  29. Hashimoto H, Pais JE, Zhang X, Saleh L, Fu ZQ. 29.  et al. 2013. Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA. Nature 506391–95
  30. McDonough MA, Loenarz C, Chowdhury R, Clifton IJ, Schofield CJ. 30.  2010. Structural studies on human 2-oxoglutarate dependent oxygenases. Curr. Opin. Struct. Biol. 20:659–72 [Google Scholar]
  31. Upadhyay AK, Horton JR, Zhang X, Cheng X. 31.  2011. Coordinated methyl-lysine erasure: structural and functional linkage of a Jumonji demethylase domain and a reader domain. Curr. Opin. Struct. Biol. 21:750–60 [Google Scholar]
  32. Xu Y, Xu C, Kato A, Tempel W, Abreu JG. 32.  et al. 2012. Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell 151:1200–13 [Google Scholar]
  33. Liu N, Wang M, Deng W, Schmidt CS, Qin W. 33.  et al. 2013. Intrinsic and extrinsic connections of Tet3 dioxygenase with CXXC zinc finger modules. PLoS ONE 8:e6 2755
  34. Ko M, An J, Bandukwala HS, Chavez L, Aijo T. 34.  et al. 2013. Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature 497:122–26 [Google Scholar]
  35. Borst P, Sabatini R. 35.  2008. Base J: discovery, biosynthesis, and possible functions. Annu. Rev. Microbiol. 62:235–51 [Google Scholar]
  36. Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M. 36.  et al. 2010. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468:839–43 [Google Scholar]
  37. Kriaucionis S, Heintz N. 37.  2009. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–30 [Google Scholar]
  38. Wu SC, Zhang Y. 38.  2010. Active DNA demethylation: Many roads lead to Rome. Nat. Rev. Mol. Cell Biol. 11:607–20 [Google Scholar]
  39. Liu CK, Hsu CA, Abbott MT. 39.  1973. Catalysis of three sequential dioxygenase reactions by thymine 7-hydroxylase. Arch. Biochem. Biophys. 159:180–87 [Google Scholar]
  40. Pfaffeneder T, Hackner B, Truß M, Münzel M, Müller M. 40.  et al. 2011. The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew. Chem. Int. Ed. 50:7008–12 [Google Scholar]
  41. Kohli RM, Zhang Y. 41.  2013. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–79 [Google Scholar]
  42. Smiley JA, Kundracik M, Landfried DA, Barnes VR Sr, Axhemi AA. 42.  2005. Genes of the thymidine salvage pathway: thymine-7-hydroxylase from a Rhodotorula glutinis cDNA library and iso-orotate decarboxylase from Neurospora crassa. Biochim. Biophys. Acta 1723:256–64 [Google Scholar]
  43. Schiesser S, Hackner B, Pfaffeneder T, Müller M, Hagemeier C. 43.  et al. 2012. Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing. Angew. Chem. Int. Ed. 51:6516–20 [Google Scholar]
  44. Chen CC, Wang KY, Shen CK. 44.  2012. The mammalian de novo DNA methyltransferases DNMT3A and DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases. J. Biol. Chem. 287:33116–21 [Google Scholar]
  45. Liutkevičiutė Z, Lukinavičius G, Masevičius V, Daujotytė D, Klimašauskas S. 45.  2009. Cytosine-5-methyltransferases add aldehydes to DNA. Nat. Chem. Biol. 5:400–2 [Google Scholar]
  46. Hashimoto H, Liu Y, Upadhyay AK, Chang Y, Howerton SB. 46.  et al. 2012. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res. 40:4841–49 [Google Scholar]
  47. Valinluck V, Sowers LC. 47.  2007. Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res. 67:946–50 [Google Scholar]
  48. Guo JU, Su Y, Zhong C, Ming GL, Song H. 48.  2011. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145:423–34 [Google Scholar]
  49. Bransteitter R, Pham P, Scharff MD, Goodman MF. 49.  2003. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. USA 100:4102–7 [Google Scholar]
  50. Nabel CS, Jia H, Ye Y, Shen L, Goldschmidt HL. 50.  et al. 2012. AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation. Nat. Chem. Biol. 8:751–58 [Google Scholar]
  51. Zhu JK.51.  2009. Active DNA demethylation mediated by DNA glycosylases. Annu. Rev. Genet. 43:143–66 [Google Scholar]
  52. Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR. 52.  2008. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and Gadd45. Cell 135:1201–12 [Google Scholar]
  53. Popp C, Dean W, Feng S, Cokus SJ, Andrews S. 53.  et al. 2010. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463:1101–5 [Google Scholar]
  54. Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM. 54.  2010. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463:1042–47 [Google Scholar]
  55. Stivers JT, Jiang YL. 55.  2003. A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem. Rev. 103:2729–59 [Google Scholar]
  56. Bennett MT, Rodgers MT, Hebert AS, Ruslander LE, Eisele L, Drohat AC. 56.  2006. Specificity of human thymine DNA glycosylase depends on N-glycosidic bond stability. J. Am. Chem. Soc. 128:12510–19 [Google Scholar]
  57. Williams RT, Wang Y. 57.  2012. A density functional theory study on the kinetics and thermodynamics of N-glycosidic bond cleavage in 5-substituted 2′-deoxycytidines. Biochemistry 51:6458–62 [Google Scholar]
  58. Shen L, Wu H, Diep D, Yamaguchi S, D'Alessio AC. 58.  et al. 2013. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153:692–706 [Google Scholar]
  59. Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ. 59.  et al. 2013. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153:678–91 [Google Scholar]
  60. Cortellino S, Xu J, Sannai M, Moore R, Caretti E. 60.  et al. 2011. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146:67–79 [Google Scholar]
  61. Cortázar D, Kunz C, Selfridge J, Lettieri T, Saito Y. 61.  et al. 2011. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 470:419–23 [Google Scholar]
  62. Millar CB, Guy J, Sansom OJ, Selfridge J, MacDougall E. 62.  et al. 2002. Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science 297:403–5 [Google Scholar]
  63. Kemmerich K, Dingler FA, Rada C, Neuberger MS. 63.  2012. Germline ablation of SMUG1 DNA glycosylase causes loss of 5-hydroxymethyluracil- and UNG-backup uracil-excision activities and increases cancer predisposition of Ung−/−Msh2−/−mice. Nucleic Acids Res. 40:6016–25 [Google Scholar]
  64. Law JA, Jacobsen SE. 64.  2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11:204–20 [Google Scholar]
  65. Yamaguchi S, Hong K, Liu R, Shen L, Inoue A. 65.  et al. 2012. Tet1 controls meiosis by regulating meiotic gene expression. Nature 492:443–47 [Google Scholar]
  66. Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V. 66.  et al. 2011. 5-Hydroxymeth-ylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2:241 [Google Scholar]
  67. Iqbal K, Jin SG, Pfeifer GP, Szabó PE. 67.  2011. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl. Acad. Sci. USA 108:3642–47 [Google Scholar]
  68. Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C. 68.  et al. 2013. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339:448–52 [Google Scholar]
  69. Yamaguchi S, Hong K, Liu R, Inoue A, Shen L. 69.  et al. 2013. Dynamics of 5-methylcytosine and 5-hydroxy-methylcytosine during germ cell reprogramming. Cell Res. 23:329–39 [Google Scholar]
  70. Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F. 70.  et al. 2011. Dynamic regulation of 5-hydroxy-methylcytosine in mouse ES cells and during differentiation. Nature 473:398–402 [Google Scholar]
  71. Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K. 71.  et al. 2011. Tet1 and Tet2 regulate 5-hydroxy-methylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8:200–13 [Google Scholar]
  72. Song SJ, Ito K, Ala U, Kats L, Webster K. 72.  et al. 2013. The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. Cell Stem Cell 13:87–101 [Google Scholar]
  73. Song SJ, Poliseno L, Song MS, Ala U, Webster K. 73.  et al. 2013. MicroRNA antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell 154:311–24 [Google Scholar]
  74. Shi FT, Kim H, Lu W, He Q, Liu D. 74.  et al. 2013. Ten-eleven translocation 1 (Tet1) is regulated by O-linked N-acetylglucosamine transferase (OGT) for target gene repression in mouse embryonic stem cells. J. Biol. Chem. 288:20776–84 [Google Scholar]
  75. Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA. 75.  et al. 2011. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473:343–48 [Google Scholar]
  76. Deplus R, Delatte B, Schwinn MK, Defrance M, Méndez J. 76.  et al. 2013. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J. 32:645–55 [Google Scholar]
  77. Chen Q, Chen Y, Bian C, Fujiki R, Yu X. 77.  2013. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 493:561–64 [Google Scholar]
  78. Vella P, Scelfo A, Jammula S, Chiacchiera F, Williams K. 78.  et al. 2013. Tet proteins connect the O-linked N-acetylglucosamine transferase OGT to chromatin in embryonic stem cells. Mol. Cell 49:645–56 [Google Scholar]
  79. Yildirim O, Li R, Hung JH, Chen PB, Dong X. 79.  et al. 2011. Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell 147:1498–510 [Google Scholar]
  80. Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PWTC. 80.  et al. 2013. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152:1146–59 [Google Scholar]
  81. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J. 81.  et al. 2010. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–67 [Google Scholar]
  82. Xu W, Yang H, Liu Y, Yang Y, Wang P. 82.  et al. 2011. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30 [Google Scholar]
  83. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD. 83.  et al. 2010. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–34 [Google Scholar]
  84. Dang L, White DW, Gross S, Bennett BD, Bittinger MA. 84.  et al. 2009. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–44 [Google Scholar]
  85. Xiao M, Yang H, Xu W, Ma S, Lin H. 85.  et al. 2012. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26:1326–38 [Google Scholar]
  86. Yin R, Mao S-Q, Zhao B, Chong Z, Yang Y. 86.  et al. 2013. Ascorbic acid enhances Tet-mediated 5-methyl-cytosine oxidation and promotes DNA demethylation in mammals. J. Am. Chem. Soc. 135:10396–403 [Google Scholar]
  87. Minor EA, Court BL, Young JI, Wang G. 87.  2013. Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase–mediated generation of 5-hydroxymethylcytosine. J. Biol. Chem. 288:13669–74 [Google Scholar]
  88. Blaschke K, Ebata KT, Karimi MM, Zepeda-Martínez JA, Goyal P. 88.  et al. 2013. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500:222–26 [Google Scholar]
  89. Coulter JB, O'Driscoll CM, Bressler JP. 89.  2013. Hydroquinone increases 5-hydroxymethylcytosine formation through ten eleven translocation 1 (Tet1) 5-methylcytosine dioxygenase. J. Biol. Chem. 288:28792–800 [Google Scholar]
  90. Song CX, Yi C, He C. 90.  2012. Mapping recently identified nucleotide variants in the genome and transcriptome. Nat. Biotechnol. 30:1107–16 [Google Scholar]
  91. Beck S, Rakyan VK. 91.  2008. The methylome: approaches for global DNA methylation profiling. Trends Genet. 24:231–37 [Google Scholar]
  92. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G. 92.  et al. 2009. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–22 [Google Scholar]
  93. Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A. 93.  2010. The behaviour of 5-hydroxyme-thylcytosine in bisulfite sequencing. PLoS ONE 5:e8888 [Google Scholar]
  94. Jin SG, Kadam S, Pfeifer GP. 94.  2010. Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res. 38:e125 [Google Scholar]
  95. Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F. 95.  et al. 2012. Quantitative sequencing of 5-methylcy-tosine and 5-hydroxymethylcytosine at single-base resolution. Science 336:934–37 [Google Scholar]
  96. Yu M, Hon G, Szulwach KE, Song CX, Zhang L. 96.  et al. 2012. Base-resolution analysis of 5-hydroxy-methylcytosine in the mammalian genome. Cell 149:1368–80 [Google Scholar]
  97. Wu H, D'Alessio AC, Ito S, Wang Z, Cui K. 97.  et al. 2011. Genome-wide analysis of 5-hydroxymeth-ylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev. 25:679–84 [Google Scholar]
  98. Xu Y, Wu F, Tan L, Kong L, Xiong L. 98.  et al. 2011. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol. Cell 42:451–64 [Google Scholar]
  99. Stroud H, Feng S, Morey Kinney S, Pradhan S, Jacobsen S. 99.  2011. 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol. 12:R54 [Google Scholar]
  100. Jin SG, Wu X, Li AX, Pfeifer GP. 100.  2011. Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Res. 39:5015–24 [Google Scholar]
  101. Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R. 101.  et al. 2011. Genome-wide mapping of 5-hydro-xymethylcytosine in embryonic stem cells. Nature 473:394–97 [Google Scholar]
  102. Robertson AB, Dahl JA, Vågbø CB, Tripathi P, Krokan HE, Klungland A. 102.  2011. A novel method for the efficient and selective identification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res. 39:e55 [Google Scholar]
  103. Matarese F, Carrillo–de Santa Pau E, Stunnenberg HG. 103.  2011. 5-Hydroxymethylcytosine: a new kid on the epigenetic block?. Mol. Syst. Biol. 7:562 [Google Scholar]
  104. Terragni J, Bitinaite J, Zheng Y, Pradhan S. 104.  2012. Biochemical characterization of recombinant β-glucosyltransferase and analysis of global 5-hydroxymethylcytosine in unique genomes. Biochemistry 51:1009–19 [Google Scholar]
  105. Song CX, Szulwach KE, Fu Y, Dai Q, Yi C. 105.  et al. 2011. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 29:68–72 [Google Scholar]
  106. Raiber EA, Beraldi D, Ficz G, Burgess H, Branco MR. 106.  et al. 2012. Genome-wide distribution of 5-formylcytosine in ES cells is associated with transcription and depends on thymine DNA glycosylase. Genome Biol. 13:R69 [Google Scholar]
  107. Lu X, Song CX, Szulwach K, Wang Z, Weidenbacher P. 107.  et al. 2013. Chemical modification–assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA. J. Am. Chem. Soc. 135:9315–17 [Google Scholar]
  108. Khare T, Pai S, Koncevicius K, Pal M, Kriukiene E. 108.  et al. 2012. 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon–intron boundary. Nat. Struct. Mol. Biol. 19:1037–43 [Google Scholar]
  109. Gao F, Xia Y, Wang J, Luo H, Gao Z. 109.  et al. 2013. Integrated detection of both 5-mC and 5-hmC by high-throughput tag sequencing technology highlights methylation reprogramming of bivalent genes during cellular differentiation. Epigenetics 8:421–30 [Google Scholar]
  110. Szulwach KE, Li X, Li Y, Song CX, Han JW. 110.  et al. 2011. Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet. 7:e1002154 [Google Scholar]
  111. Szulwach KE, Li X, Li Y, Song CX, Wu H. 111.  et al. 2011. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat. Neurosci. 14:1607–16 [Google Scholar]
  112. Mellén M, Ayata P, Dewell S, Kriaucionis S, Heintz N. 112.  2012. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151:1417–30 [Google Scholar]
  113. Hahn MA, Qiu R, Wu X, Li AX, Zhang H. 113.  et al. 2013. Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis. Cell Rep. 3:291–300 [Google Scholar]
  114. Korlach J, Turner SW. 114.  2012. Going beyond five bases in DNA sequencing. Curr. Opin. Struct. Biol. 22:251–61 [Google Scholar]
  115. Song CX, Clark TA, Lu XY, Kislyuk A, Dai Q. 115.  et al. 2012. Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nat. Methods 9:75–77 [Google Scholar]
  116. Clark TA, Lu X, Luong K, Dai Q, Boitano M. 116.  et al. 2013. Enhanced 5-methylcytosine detection in single-molecule, real-time sequencing via Tet1 oxidation. BMC Biol. 11:4 [Google Scholar]
  117. Wanunu M, Cohen-Karni D, Johnson RR, Fields L, Benner J. 117.  et al. 2010. Discrimination of methylcytosine from hydroxymethylcytosine in DNA molecules. J. Am. Chem. Soc. 133:486–92 [Google Scholar]
  118. Wallace EV, Stoddart D, Heron AJ, Mikhailova E, Maglia G. 118.  et al. 2010. Identification of epigenetic DNA modifications with a protein nanopore. Chem. Commun. 46:8195–97 [Google Scholar]
  119. Li WW, Gong L, Bayley H. 119.  2013. Single-molecule detection of 5-hydroxymethylcytosine in DNA through chemical modification and nanopore analysis. Angew. Chem. Int. Ed. 52:4350–55 [Google Scholar]
  120. Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA. 120.  et al. 2013. Global epigenomic reconfiguration during mammalian brain development. Science 341:6146 [Google Scholar]
  121. Sun Z, Terragni J, Borgaro JG, Liu Y, Yu L. 121.  et al. 2013. High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells. Cell Rep. 3:567–76 [Google Scholar]
  122. Seisenberger S, Peat JR, Reik W. 122.  2013. Conceptual links between DNA methylation reprogramming in the early embryo and primordial germ cells. Curr. Opin. Cell Biol. 25:281–88 [Google Scholar]
  123. Monk M, Boubelik M, Lehnert S. 123.  1987. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99:371–82 [Google Scholar]
  124. Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. 124.  2000. Demethylation of the zygotic paternal genome. Nature 403:501–2 [Google Scholar]
  125. Oswald J, Engemann S, Lane N, Mayer W, Olek A. 125.  et al. 2000. Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10:475–78 [Google Scholar]
  126. Nakamura T, Arai Y, Umehara H, Masuhara M, Kimura T. 126.  et al. 2007. PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat. Cell Biol. 9:64–71 [Google Scholar]
  127. Gu TP, Guo F, Yang H, Wu HP, Xu GF. 127.  et al. 2011. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477:606–10 [Google Scholar]
  128. Inoue A, Zhang Y. 128.  2011. Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334:194 [Google Scholar]
  129. Inoue A, Shen L, Dai Q, He C, Zhang Y. 129.  2011. Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res. 21:1670–76 [Google Scholar]
  130. Nakamura T, Liu YJ, Nakashima H, Umehara H, Inoue K. 130.  et al. 2012. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486:415–19 [Google Scholar]
  131. Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A. 131.  et al. 2012. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484:339–44 [Google Scholar]
  132. Saitou M, Kagiwada S, Kurimoto K. 132.  2012. Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development 139:15–31 [Google Scholar]
  133. Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA. 133.  2010. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 329:78–82 [Google Scholar]
  134. Vincent JJ, Huang Y, Chen PY, Feng S, Calvopina JH. 134.  et al. 2013. Stage-specific roles for Tet1 and Tet2 in DNA demethylation in primordial germ cells. Cell Stem Cell 12:470–78 [Google Scholar]
  135. Seki Y, Hayashi K, Itoh K, Mizugaki M, Saitou M, Matsui Y. 135.  2005. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev. Biol. 278:440–58 [Google Scholar]
  136. Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O. 136.  et al. 2002. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 117:15–23 [Google Scholar]
  137. Kagiwada S, Kurimoto K, Hirota T, Yamaji M, Saitou M. 137.  2013. Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. EMBO J. 32:340–53 [Google Scholar]
  138. Seisenberger S, Andrews S, Krueger F, Arand J, Walter J. 138.  et al. 2012. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell 48:849–62 [Google Scholar]
  139. Kurimoto K, Yabuta Y, Ohinata Y, Shigeta M, Yamanaka K, Saitou M. 139.  2008. Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice. Genes Dev. 22:1617–35 [Google Scholar]
  140. Dawlaty MM, Breiling A, Le T, Raddatz G, Barrasa MI. 140.  et al. 2013. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev. Cell 24:310–23 [Google Scholar]
  141. Yamaguchi S, Shen L, Liu Y, Sendler D, Zhang Y. 141.  2013. Role of Tet1 in genomic imprinting erasure. Nature 504:460–64 [Google Scholar]
  142. Wu H, Zhang Y. 142.  2011. Mechanisms and functions of Tet protein–mediated 5-methylcytosine oxidation. Genes Dev. 25:2436–52 [Google Scholar]
  143. Williams K, Christensen J, Helin K. 143.  2012. DNA methylation: TET proteins—guardians of CpG islands?. EMBO Rep. 13:28–35 [Google Scholar]
  144. Wu H, D'Alessio AC, Ito S, Xia K, Wang Z. 144.  et al. 2011. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473:389–93 [Google Scholar]
  145. Leitch HG, McEwen KR, Turp A, Encheva V, Carroll T. 145.  et al. 2013. Naive pluripotency is associated with global DNA hypomethylation. Nat. Struct. Mol. Biol. 20:311–16 [Google Scholar]
  146. Ficz G, Hore TA, Santos F, Lee HJ, Dean W. 146.  et al. 2013. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 13:351–59 [Google Scholar]
  147. Habibi E, Brinkman AB, Arand J, Kroeze LI, Kerstens HH. 147.  et al. 2013. Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell 13:360–69 [Google Scholar]
  148. Doege CA, Inoue K, Yamashita T, Rhee DB, Travis S. 148.  et al. 2012. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 488:652–55 [Google Scholar]
  149. Costa Y, Ding J, Theunissen TW, Faiola F, Hore TA. 149.  et al. 2013. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 495:370–74 [Google Scholar]
  150. Gao Y, Chen J, Li K, Wu T, Huang B. 150.  et al. 2013. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 12:453–69 [Google Scholar]
  151. Piccolo FM, Bagci H, Brown KE, Landeira D, Soza-Ried J. 151.  et al. 2013. Different roles for Tet1 and Tet2 proteins in reprogramming-mediated erasure of imprints induced by EGC fusion. Mol. Cell 49:1023–33 [Google Scholar]
  152. Esteller M.152.  2005. Aberrant DNA methylation as a cancer-inducing mechanism. Annu. Rev. Pharmacol. Toxicol. 45:629–56 [Google Scholar]
  153. Sun M, Song CX, Huang H, Frankenberger CA, Sankarasharma D. 153.  et al. 2013. HMGA2/TET1/HOXA9 signaling pathway regulates breast cancer growth and metastasis. Proc. Natl. Acad. Sci. USA 110:9920–25 [Google Scholar]
  154. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S. 154.  et al. 2009. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360:2289–301 [Google Scholar]
  155. Pronier E, Delhommeau F. 155.  2012. Role of TET2 mutations in myeloproliferative neoplasms. Curr. Hematol. Malig. Rep. 7:57–64 [Google Scholar]
  156. Langemeijer SM, Kuiper RP, Berends M, Knops R, Aslanyan MG. 156.  et al. 2009. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat. Genet. 41:838–42 [Google Scholar]
  157. Ko M, Bandukwala HS, An J, Lamperti ED, Thompson EC. 157.  et al. 2011. Ten-eleven-translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc. Natl. Acad. Sci. USA 108:14566–71 [Google Scholar]
  158. Quivoron C, Couronne L, Della Valle V, Lopez CK, Plo I. 158.  et al. 2011. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagen-esis. Cancer Cell 20:25–38 [Google Scholar]
  159. Li Z, Cai X, Cai CL, Wang J, Zhang W. 159.  et al. 2011. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118:4509–18 [Google Scholar]
  160. Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D. 160.  et al. 2011. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20:11–24 [Google Scholar]
  161. Lian CG, Xu Y, Ceol C, Wu F, Larson A. 161.  et al. 2012. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150:1135–46 [Google Scholar]
  162. Yang H, Liu Y, Bai F, Zhang JY, Ma SH. 162.  et al. 2013. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 32:663–69 [Google Scholar]
  163. Hsu CH, Peng KL, Kang ML, Chen YR, Yang YC. 163.  et al. 2012. TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases. Cell Rep. 2:568–79 [Google Scholar]
  164. Huang H, Jiang X, Li Z, Li Y, Song CX. 164.  et al. 2013. TET1 plays an essential oncogenic role in MLL-rearranged leukemia. Proc. Natl. Acad. Sci. USA 110:11994–99 [Google Scholar]
  165. Perry RP, Kelley DE, Friderici K, Rottman F. 165.  1975. The methylated constituents of L cell messenger RNA: evidence for an unusual cluster at the 5′ terminus. Cell 4:387–94 [Google Scholar]
  166. Roy TW, Bhagwat AS. 166.  2007. Kinetic studies of Escherichia coli AlkB using a new fluorescence-based assay for DNA demethylation. Nucleic Acids Res. 35:e147 [Google Scholar]
  167. Dina C, Meyre D, Gallina S, Durand E, Körner A. 167.  et al. 2007. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet. 39:724–26 [Google Scholar]
  168. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM. 168.  et al. 2007. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–94 [Google Scholar]
  169. Scuteri A, Sanna S, Chen WM, Uda M, Albai G. 169.  et al. 2007. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 3:e115 [Google Scholar]
  170. Hess ME, Hess S, Meyer KD, Verhagen LAW, Koch L. 170.  et al. 2013. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat. Neurosci. 16:1042–48 [Google Scholar]
  171. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L. 171.  et al. 2012. Topology of the human and mouse m6A RNA methylomes revealed by m6A-Seq. Nature 485:201–6 [Google Scholar]
  172. Fu Y, Jia G, Pang X, Wang RN, Wang X. 172.  et al. 2013. FTO-mediated formation of N6-hydroxymeth-yladenosine and N6-formyladenosine in mammalian RNA. Nat. Commun. 4:1798 [Google Scholar]
  173. He C.173.  2010. Grand challenge commentary: RNA epigenetics?. Nat. Chem. Biol. 6:863–65 [Google Scholar]
  174. Yi C, Pan T. 174.  2011. Cellular dynamics of RNA modification. Acc. Chem. Res. 44:1380–88 [Google Scholar]
  175. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. 175.  2012. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–46 [Google Scholar]
  176. Kangaspeska S, Stride B, Metivier R, Polycarpou-Schwarz M, Ibberson D. 176.  et al. 2008. Transient cyclical methylation of promoter DNA. Nature 452:112–15 [Google Scholar]
  177. Metivier R, Gallais R, Tiffoche C, Le Peron C, Jurkowska RZ. 177.  et al. 2008. Cyclical DNA methylation of a transcriptionally active promoter. Nature 452:45–50 [Google Scholar]
  178. Thillainadesan G, Chitilian JM, Isovic M, Ablack JN, Mymryk JS. 178.  et al. 2012. TGF-β-dependent active demethylation and expression of the p15ink4b tumor suppressor are impaired by the ZNF217/CoREST complex. Mol. Cell 46:636–49 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error