Lipopolysaccharide molecules represent a unique family of glycolipids based on a highly conserved lipid moiety known as lipid A. These molecules are produced by most gram-negative bacteria, in which they play important roles in the integrity of the outer-membrane permeability barrier and participate extensively in host–pathogen interplay. Few bacteria contain lipopolysaccharide molecules composed only of lipid A. In most forms, lipid A is glycosylated by addition of the core oligosaccharide that, in some bacteria, provides an attachment site for a long-chain O-antigenic polysaccharide. The complexity of lipopolysaccharide structures is reflected in the processes used for their biosynthesis and export. Rapid growth and cell division depend on the bacterial cell's capacity to synthesize and export lipopolysaccharide efficiently and in large amounts. We review recent advances in those processes, emphasizing the reactions that are essential for viability.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Sutcliffe IC.1.  2010. A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol. 18:464–70 [Google Scholar]
  2. Galloway SM, Raetz CR. 2.  1990. A mutant of Escherichia coli defective in the first step of endotoxin biosynthesis. J. Biol. Chem. 265:6394–402 [Google Scholar]
  3. Nikaido H.3.  1996. Outer membrane. In Escherichia coli and Salmonella. Cellular and Molecular Biology FC Niedhardt 29–47 Washington, DC: Am. Soc. Microbiol. [Google Scholar]
  4. Wang X, Ribeiro AA, Guan Z, McGrath SC, Cotter RJ, Raetz CR. 4.  2006. Structure and biosynthesis of free lipid A molecules that replace lipopolysaccharide in Francisella tularensis subsp. novicida. Biochemistry 45:14427–40 [Google Scholar]
  5. Joiner KA.5.  1988. Complement evasion by bacteria and parasites. Annu. Rev. Microbiol. 42:201–30 [Google Scholar]
  6. Stenutz R, Weintraub A, Widmalm G. 6.  2006. The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol. Rev. 30:382–403 [Google Scholar]
  7. Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN. 7.  et al. 2013. Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiol. Rev. 3856–89 [Google Scholar]
  8. Lima S, Guo MS, Chaba R, Gross CA, Sauer RT. 8.  2013. Dual molecular signals mediate the bacterial response to outer-membrane stress. Science 340:837–41 [Google Scholar]
  9. Foster J, Ganatra M, Kamal I, Ware J, Makarova K. 9.  et al. 2005. The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol. 3:e121 [Google Scholar]
  10. Takayama K, Rothenberg RJ, Barbour AG. 10.  1987. Absence of lipopolysaccharide in the Lyme disease spirochete, Borrelia burgdorferi. Infect. Immun. 55:2311–13 [Google Scholar]
  11. Kawasaki S, Moriguchi R, Sekiya K, Nakai T, Ono E. 11.  et al. 1994. The cell envelope structure of the lipopolysaccharide-lacking gram-negative bacterium Sphingomonas paucimobilis. J. Bacteriol. 176:284–90 [Google Scholar]
  12. Anderson MS, Bulawa CE, Raetz CR. 12.  1985. The biosynthesis of gram-negative endotoxin. Formation of lipid A precursors from UDP-GlcNAc in extracts of Escherichia coli. J. Biol. Chem. 260:15536–41 [Google Scholar]
  13. Anderson MS, Raetz CR. 13.  1987. Biosynthesis of lipid A precursors in Escherichia coli. A cytoplasmic acyltransferase that converts UDP-N-acetylglucosamine to UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine. J. Biol. Chem. 262:5159–69 [Google Scholar]
  14. Williams AH, Raetz CR. 14.  2007. Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase. Proc. Natl. Acad. Sci. USA 104:13543–50 [Google Scholar]
  15. Raetz CR, Roderick SL. 15.  1995. A left-handed parallel β helix in the structure of UDP-N-acetylglucosamine acyltransferase. Science 270:997–1000 [Google Scholar]
  16. Wyckoff TJ, Lin S, Cotter RJ, Dotson GD, Raetz CR. 16.  1998. Hydrocarbon rulers in UDP-N-acetylglucosamine acyltransferases. J. Biol. Chem. 273:32369–72 [Google Scholar]
  17. Dotson GD, Kaltashov IA, Cotter RJ, Raetz CR. 17.  1998. Expression cloning of a Pseudomonas gene encoding a hydroxydecanoyl-acyl carrier protein–dependent UDP-GlcNAc acyltransferase. J. Bacteriol. 180:330–37 [Google Scholar]
  18. Stead CM, Beasley A, Cotter RJ, Trent MS. 18.  2008. Deciphering the unusual acylation pattern of Helicobacter pylori lipid A. J. Bacteriol. 190:7012–21 [Google Scholar]
  19. Moran AP, Zähringer U, Seydel U, Scholz D, Stütz P. 19.  et al. 1991. Structural analysis of the lipid A component of Campylobacter jejuni CCUG 10936 (serotype O:2) lipopolysaccharide. Description of a lipid A containing a hybrid backbone of 2-amino-2-deoxy-D-glucose and 2,3-diamino-2,3-dideoxy-D-glucose. Eur. J. Biochem. 198:459–69 [Google Scholar]
  20. Que-Gewirth NL, Ribeiro AA, Kalb SR, Cotter RJ, Bulach DM. 20.  et al. 2004. A methylated phosphate group and four amide-linked acyl chains in Leptospira interrogans lipid A. The membrane anchor of an unusual lipopolysaccharide that activates TLR2. J. Biol. Chem. 279:25420–29 [Google Scholar]
  21. Sweet CR, Ribeiro AA, Raetz CR. 21.  2004. Oxidation and transamination of the 3′-position of UDP-N-acetylglucosamine by enzymes from Acidithiobacillus ferrooxidans. Role in the formation of lipid A molecules with four amide-linked acyl chains. J. Biol. Chem. 279:25400–10 [Google Scholar]
  22. Robins LI, Williams AH, Raetz CR. 22.  2009. Structural basis for the sugar nucleotide and acyl-chain selectivity of Leptospira interrogans LpxA. Biochemistry 48:6191–201 [Google Scholar]
  23. Sweet CR, Williams AH, Karbarz MJ, Werts C, Kalb SR. 23.  et al. 2004. Enzymatic synthesis of lipid A molecules with four amide-linked acyl chains. LpxA acyltransferases selective for an analog of UDP-N-acetylglucosamine in which an amine replaces the 3′-hydroxyl group. J. Biol. Chem. 279:25411–19 [Google Scholar]
  24. Cullen TW, Trent MS. 24.  2010. A link between the assembly of flagella and lipooligosaccharide of the gram-negative bacterium Campylobacter jejuni. Proc. Natl. Acad. Sci. USA 107:5160–65 [Google Scholar]
  25. Young K, Silver LL, Bramhill D, Cameron P, Eveland SS. 25.  et al. 1995. The envA permeability/cell division gene of Escherichia coli encodes the second enzyme of lipid A biosynthesis. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase. J. Biol. Chem. 270:30384–91 [Google Scholar]
  26. Jackman JE, Raetz CR, Fierke CA. 26.  1999. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase of Escherichia coli is a zinc metalloenzyme. Biochemistry 38:1902–11 [Google Scholar]
  27. Gattis SG, Hernick M, Fierke CA. 27.  2010. Active site metal ion in UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) switches between Fe(II) and Zn(II) depending on cellular conditions. J. Biol. Chem. 285:33788–96 [Google Scholar]
  28. Jackman JE, Fierke CA, Tumey LN, Pirrung M, Uchiyama T. 28.  et al. 2000. Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria. Inhibition of diverse UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylases by substrate analogs containing zinc binding motifs. J. Biol. Chem. 275:11002–9 [Google Scholar]
  29. Onishi HR, Pelak BA, Gerckens LS, Silver LL, Kahan FM. 29.  et al. 1996. Antibacterial agents that inhibit lipid A biosynthesis. Science 274:980–82 [Google Scholar]
  30. Bodewits K, Raetz CR, Govan JR, Campopiano DJ. 30.  2010. Antimicrobial activity of CHIR-090, an inhibitor of lipopolysaccharide biosynthesis, against the Burkholderia cepacia complex. Antimicrob. Agents Chemother. 54:3531–33 [Google Scholar]
  31. Barb AW, McClerren AL, Snehelatha K, Reynolds CM, Zhou P, Raetz CR. 31.  2007. Inhibition of lipid A biosynthesis as the primary mechanism of CHIR-090 antibiotic activity in Escherichia coli. Biochemistry 46:3793–802 [Google Scholar]
  32. Barb AW, Zhou P. 32.  2008. Mechanism and inhibition of LpxC: an essential zinc-dependent deacetylase of bacterial lipid A synthesis. Curr. Pharm. Biotechnol. 9:9–15 [Google Scholar]
  33. Barb AW, Jiang L, Raetz CR, Zhou P. 33.  2007. Structure of the deacetylase LpxC bound to the antibiotic CHIR-090: time-dependent inhibition and specificity in ligand binding. Proc. Natl. Acad. Sci. USA 104:18433–38 [Google Scholar]
  34. Liang X, Lee C-J, Zhao J, Toone EJ, Zhou P. 34.  2013. Synthesis, structure, and antibiotic activity of aryl-substituted LpxC inhibitors. J. Med. Chem. 56:6954–66 [Google Scholar]
  35. Barb AW, Leavy TM, Robins LI, Guan Z, Six DA. 35.  et al. 2009. Uridine-based inhibitors as new leads for antibiotics targeting Escherichia coli LpxC. Biochemistry 48:3068–77 [Google Scholar]
  36. Anderson MS, Robertson AD, Macher I, Raetz CR. 36.  1988. Biosynthesis of lipid A in Escherichia coli: identification of UDP-3-O-[(R)-3-hydroxymyristoyl]-α-D-glucosamine as a precursor of UDP-N2,O3-bis[(R)-3-hydroxymyristoyl]-α-D-glucosamine. Biochemistry 27:1908–17 [Google Scholar]
  37. Ogura T, Inoue K, Tatsuta T, Suzaki T, Karata K. 37.  et al. 1999. Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol. Microbiol. 31:833–44 [Google Scholar]
  38. Ogura T, Tomoyasu T, Yuki T, Morimura S, Begg KJ. 38.  et al. 1991. Structure and function of the ftsH gene in Escherichia coli. Res. Microbiol. 142:279–82 [Google Scholar]
  39. Langklotz S, Schäkermann M, Narberhaus F. 39.  2011. Control of lipopolysaccharide biosynthesis by FtsH-mediated proteolysis of LpxC is conserved in Enterobacteria but not in all gram-negative bacteria. J. Bacteriol. 193:1090–97 [Google Scholar]
  40. Kelly TM, Stachula SA, Raetz CR, Anderson MS. 40.  1993. The firA gene of Escherichia coli encodes UDP-3-O-(R-3-hydroxymyristoyl)-glucosamine N-acyltransferase. The third step of endotoxin biosynthesis. J. Biol. Chem. 268:19866–74 [Google Scholar]
  41. Bartling CM, Raetz CR. 41.  2009. Crystal structure and acyl chain selectivity of Escherichia coli LpxD, the N-acyltransferase of lipid A biosynthesis. Biochemistry 48:8672–83 [Google Scholar]
  42. Badger J, Chie-Leon B, Logan C, Sridhar V, Sankaran B. 42.  et al. 2011. The structure of LpxD from Pseudomonas aeruginosa at 1.3Å resolution. Acta Crystallogr. F 67:749–52 [Google Scholar]
  43. Buetow L, Smith TK, Dawson A, Fyffe S, Hunter WN. 43.  2007. Structure and reactivity of LpxD, the N-acyltransferase of lipid A biosynthesis. Proc. Natl. Acad. Sci. USA 104:4321–26 [Google Scholar]
  44. Bartling CM, Raetz CR. 44.  2008. Steady-state kinetics and mechanism of LpxD, the N-acyltransferase of lipid A biosynthesis. Biochemistry 47:5290–302 [Google Scholar]
  45. Jenkins RJ, Dotson GD. 45.  2012. Dual targeting antibacterial peptide inhibitor of early lipid A biosynthesis. ACS Chem. Biol. 7:1170–77 [Google Scholar]
  46. Benson RE, Gottlin EB, Christensen DJ, Hamilton PT. 46.  2003. Intracellular expression of eptide fusions for demonstration of protein essentiality in bacteria. Antimicrob. Agents Chemother. 47:2875–81 [Google Scholar]
  47. Williams AH, Immormino RM, Gewirth DT, Raetz CR. 47.  2006. Structure of UDP-N-acetylglucosamine acyltransferase with a bound antibacterial pentadecapeptide. Proc. Natl. Acad. Sci. USA 103:10877–82 [Google Scholar]
  48. Babinski KJ, Ribeiro AA, Raetz CR. 48.  2002. The Escherichia coli gene encoding the UDP-2,3-diacylglucosamine pyrophosphatase of lipid A biosynthesis. J. Biol. Chem. 277:25937–46 [Google Scholar]
  49. Babinski KJ, Kanjilal SJ, Raetz CR. 49.  2002. Accumulation of the lipid A precursor UDP-2,3-diacylglucosamine in an Escherichia coli mutant lacking the lpxH gene. J. Biol. Chem. 277:25947–56 [Google Scholar]
  50. Metzger LE, Raetz CR. 50.  2010. An alternative route for UDP-diacylglucosamine hydrolysis in bacterial lipid A biosynthesis. Biochemistry 49:6715–26 [Google Scholar]
  51. Metzger LE, Lee JK, Finer-Moore JS, Raetz CR, Stroud RM. 51.  2012. LpxI structures reveal how a lipid A precursor is synthesized. Nat. Struct. Mol. Biol. 19:1132–38 [Google Scholar]
  52. Crowell DN, Anderson MS, Raetz CR. 52.  1986. Molecular cloning of the genes for lipid A disaccharide synthase and UDP-N-acetylglucosamine acyltransferase in Escherichia coli. J. Bacteriol. 168:152–59 [Google Scholar]
  53. Lairson LL, Henrissat B, Davies GJ, Withers SG. 53.  2008. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77:521–55 [Google Scholar]
  54. Crowell DN, Anderson MS, Raetz CR. 54.  1986. Molecular cloning of the genes for lipid A disaccharide synthase and UDP-N-acetylglucosamine acyltransferase in Escherichia coli. J. Bacteriol. 168:152–59 [Google Scholar]
  55. Albers U, Tiaden A, Spirig T, Al Alam D, Goyert SM. 55.  et al. 2007. Expression of Legionella pneumophila paralogous lipid A biosynthesis genes under different growth conditions. Microbiology 153:3817–29 [Google Scholar]
  56. Albers U, Reus K, Shuman HA, Hilbi H. 56.  2005. The amoebae plate test implicates a paralogue of lpxB in the interaction of Legionella pneumophila with Acanthamoeba castellanii. Microbiology 151:167–82 [Google Scholar]
  57. Garrett TA, Kadrmas JL, Raetz CR. 57.  1997. Identification of the gene encoding the Escherichia coli lipid A 4′-kinase. Facile phosphorylation of endotoxin analogs with recombinant LpxK. J. Biol. Chem. 272:21855–64 [Google Scholar]
  58. Emptage RP, Daughtry KD, Pemble CW, Raetz CR. 58.  2012. Crystal structure of LpxK, the 4′-kinase of lipid A biosynthesis and atypical P-loop kinase functioning at the membrane interface. Proc. Natl. Acad. Sci. USA 109:12956–61 [Google Scholar]
  59. Emptage RP, Pemble CW, York JD, Raetz CR, Zhou P. 59.  2013. Mechanistic characterization of the tetraacyldisaccharide-1-phosphate 4′-kinase LpxK involved in lipid A biosynthesis. Biochemistry 52:2280–90 [Google Scholar]
  60. Garrett TA, Que NL, Raetz CR. 60.  1998. Accumulation of a lipid A precursor lacking the 4′-phosphate following inactivation of the Escherichia coli lpxK gene. J. Biol. Chem. 273:12457–65 [Google Scholar]
  61. Clementz T, Raetz CR. 61.  1991. A gene coding for 3-deoxy-D-manno-octulosonic acid transferase in Escherichia coli. Identification, mapping, cloning, and sequencing. J. Biol. Chem. 266:9687–96 [Google Scholar]
  62. Gattis SG, Chung HS, Trent MS, Raetz CR. 62.  2013. The origin of 8-amino-3,8-dideoxy-D-manno-octulosonic acid (Kdo8N) in the lipopolysaccharide of Shewanella oneidensis. J. Biol. Chem. 288:9216–25 [Google Scholar]
  63. Hankins JV, Trent MS. 63.  2009. Secondary acylation of Vibrio cholerae lipopolysaccharide requires phosphorylation of Kdo. J. Biol. Chem. 284:25804–12 [Google Scholar]
  64. Clementz T, Bednarski JJ, Raetz CR. 64.  1996. Function of the htrB high temperature requirement gene of Escherchia coli in the acylation of lipid A: HtrB catalyzed incorporation of laurate. J. Biol. Chem. 271:12095–102 [Google Scholar]
  65. Clementz T, Zhou Z, Raetz CR. 65.  1997. Function of the Escherichia coli msbB gene, a multicopy suppressor of htrB knockouts, in the acylation of lipid A. Acylation by MsbB follows laurate incorporation by HtrB. J. Biol. Chem. 272:10353–60 [Google Scholar]
  66. Löbau S, Mamat U, Brabetz W, Brade H. 66.  1995. Molecular cloning, sequence analysis, and functional characterization of the lipopolysaccharide biosynthetic gene kdtA encoding 3-deoxy-α-D-manno-octulosonic acid transferase of Chlamydia pneumoniae strain TW-183. Mol. Microbiol. 18:391–99 [Google Scholar]
  67. Belunis CJ, Mdluli KE, Raetz CR, Nano FE. 67.  1992. A novel 3-deoxy-D-manno-octulosonic acid transferase from Chlamydia trachomatis required for expression of the genus-specific epitope. J. Biol. Chem. 267:18702–7 [Google Scholar]
  68. White KA, Kaltashov IA, Cotter RJ, Raetz CR. 68.  1997. A mono-functional 3-deoxy-D-manno-octulosonic acid (Kdo) transferase and a Kdo kinase in extracts of Haemophilus influenzae. J. Biol. Chem. 272:16555–63 [Google Scholar]
  69. Isobe T, White KA, Allen AG, Peacock M, Raetz CR, Maskell DJ. 69.  1999. Bordetella pertussis waaA encodes a monofunctional 2-keto-3-deoxy-D-manno-octulosonic acid transferase that can complement an Escherichia coli waaA mutation. J. Bacteriol. 181:2648–51 [Google Scholar]
  70. Mamat U, Schmidt H, Munoz E, Lindner B, Fukase K. 70.  et al. 2009. WaaA of the hyperthermophilic bacterium Aquifex aeolicus is a monofunctional 3-deoxy-D-manno-oct-2-ulosonic acid transferase involved in lipopolysaccharide biosynthesis. J. Biol. Chem. 284:22248–62 [Google Scholar]
  71. White KA, Lin S, Cotter RJ, Raetz CR. 71.  1999. A Haemophilus influenzae gene that encodes a membrane bound 3-deoxy-D-manno-octulosonic acid (Kdo) kinase. Possible involvement of Kdo phosphorylation in bacterial virulence. J. Biol. Chem. 274:31391–400 [Google Scholar]
  72. Schmidt H, Hansen G, Singh S, Hanuszkiewicz A, Linder B. 72.  et al. 2012. Structural and mechanistic analysis of the membrane-embedded glycosyltransferase WaaA required for lipopolysaccharide synthesis. Proc. Natl. Acad. Sci. USA 109:6253–58 [Google Scholar]
  73. Qasba PK, Ramakrishnan B, Boeggeman E. 73.  2005. Substrate-induced conformational changes in glycosyltransferases. Trends Biochem. Sci. 30:53–62 [Google Scholar]
  74. Six DA, Carty SM, Guan Z, Raetz CR. 74.  2008. Purification and mutagenesis of LpxL, the lauroyltransferase of Escherichia coli lipid A biosynthesis. Biochemistry 47:8623–37 [Google Scholar]
  75. Carty SM, Sreekumar KR, Raetz CR. 75.  1999. Effect of cold shock on lipid A biosynthesis in Escherichia coli. Induction at 12°C of an acyltransferase specific for palmitoleoyl–acyl carrier protein. J. Biol. Chem. 274:9677–85 [Google Scholar]
  76. Vorachek-Warren MK, Carty SM, Lin S, Cotter RJ, Raetz CR. 76.  2002. An Escherichia coli mutant lacking the cold shock-induced palmitoleoyltransferase of lipid A biosynthesis: absence of unsaturated acyl chains and antibiotic hypersensitivity at 12°C. J. Biol. Chem. 277:14186–93 [Google Scholar]
  77. Trent MS, Stead CM, Tran AX, Hankins JV. 77.  2006. Diversity of endotoxin and its impact on pathogenesis. J. Endotoxin Res. 12:205–23 [Google Scholar]
  78. Goldman RC, Doran CC, Kadam SK, Capobianco JO. 78.  1988. Lipid A precursor from Pseudomonas aeruginosa is completely acylated prior to addition of 3-deoxy-D-manno-octulosonate. J. Biol. Chem. 263:5217–23 [Google Scholar]
  79. Mohan S, Raetz CRH. 79.  1994. Endotoxin biosynthesis in Pseudomonas aeruginosa: enzymatic incorporation of laurate before 3-deoxy-D-manno-octulosonate. J. Bacteriol. 176:6944–51 [Google Scholar]
  80. Tzeng YL, Datta A, Kolli VK, Carlson RW, Stephens DS. 80.  2002. Endotoxin of Neisseria meningitidis composed only of intact lipid A: inactivation of the meningococcal 3-deoxy-D-manno-octulosonic acid transferase. J. Bacteriol. 184:2379–88 [Google Scholar]
  81. Qureshi N, Kaltashov I, Walker K, Doroshenko V, Cotter RJ. 81.  et al. 1997. Structure of the monophosphoryl lipid A moiety obtained from the lipopolysaccharide of Chlamydia trachomatis. J. Biol. Chem. 272:10594–600 [Google Scholar]
  82. Moran AP, Lindner B, Walsh EJ. 82.  1997. Structural characterization of the lipid A component of Helicobacter pylori rough- and smooth-form lipopolysaccharides. J. Bacteriol. 179:6453–63 [Google Scholar]
  83. Holst O.83.  2011. Structure of the lipopolysaccharide core region. Bacterial Lipopolysaccharides: Structure, Chemical Synthesis, Biogenesis and Interaction with Host Cells YA Knirel, MA Valvano 21–39 Vienna: Springer [Google Scholar]
  84. Raetz CR, Whitfield C. 84.  2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71:635–700 [Google Scholar]
  85. Katz C, Ron EZ. 85.  2008. Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli. J. Bacteriol. 190:7117–22 [Google Scholar]
  86. Delucia AM, Six DA, Caughlan RE, Gee P, Hunt I. 86.  et al. 2011. Lipopolysaccharide (LPS) inner-core phosphates are required for complete LPS synthesis and transport to the outer membrane in Pseudomonas aeruginosa. MBio 2:e00142 [Google Scholar]
  87. Klein G, Lindner B, Brade H, Raina S. 87.  2011. Molecular basis of lipopolysaccharide heterogeneity in Escherichia coli: envelope stress responsive regulators control the incorporation of glycoforms with a third 3-deoxy-α-D-manno-oct-2-ulosonic acid and rhamnose. J. Biol. Chem. 286:42787–807 [Google Scholar]
  88. Klein G, Müller-Loennies S, Lindner B, Kobylak N, Brade H, Raina S. 88.  2013. Molecular and structural basis of inner core lipopolysaccharide alterations in Escherichia coli: incorporation of glucuronic acid and phosphoethanolamine in the heptose region. J. Biol. Chem. 288:8111–27 [Google Scholar]
  89. Clark SE, Snow J, Li J, Zola TA, Weiser JN. 89.  2012. Phosphorylcholine allows for evasion of bactericidal antibody by Haemophilus influenzae. PLoS Pathog. 8:e1002521 [Google Scholar]
  90. Clark SE, Eichelberger KR, Weiser JN. 90.  2013. Evasion of killing by human antibody and complement through multiple variations in the surface oligosaccharide of Haemophilus influenzae. Mol. Microbiol. 88:603–18 [Google Scholar]
  91. Doerrler WT, Reedy MC, Raetz CR. 91.  2001. An Escherichia coli mutant defective in lipid export. J. Biol. Chem. 276:11461–64 [Google Scholar]
  92. Polissi A, Georgopoulos C. 92.  1996. Mutational analysis and properties of the msbA gene of Escherichia coli, coding for an essential ABC family transporter. Mol. Microbiol. 20:1221–33 [Google Scholar]
  93. Doerrler WT, Gibbons HS, Raetz CR. 93.  2004. MsbA-dependent translocation of lipids across the inner membrane of Escherichia coli. J. Biol. Chem. 279:45102–09 [Google Scholar]
  94. Rees DC, Johnson E, Lewinson O. 94.  2009. ABC transporters: the power to change. Nat. Rev. Mol. Cell Biol. 10:218–27 [Google Scholar]
  95. Jones PM, George AM. 95.  2013. Mechanism of the ABC transporter ATPase domains: catalytic models and the biochemical and biophysical record. Crit. Rev. Biochem. Mol. Biol. 48:39–50 [Google Scholar]
  96. Ward A, Reyes CL, Yu J, Roth CB, Chang G. 96.  2007. Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc. Natl. Acad. Sci. USA 104:19005–10 [Google Scholar]
  97. Doerrler WT, Raetz CR. 97.  2002. ATPase activity of the MsbA lipid flippase of Escherichia coli. J. Biol. Chem. 277:36697–705 [Google Scholar]
  98. Eckford PD, Sharom FJ. 98.  2008. Functional characterization of Escherichia coli MsbA: interaction with nucleotides and substrates. J. Biol. Chem. 283:12840–50 [Google Scholar]
  99. Siarheyeva A, Liu R, Sharom FJ. 99.  2010. Characterization of an asymmetric occluded state of P-glycoprotein with two bound nucleotides: implications for catalysis. J. Biol. Chem. 285:7575–86 [Google Scholar]
  100. Woebking B, Reuter G, Shilling RA, Velamakanni S, Shahi S. 100.  et al. 2005. Drug–lipid A interactions on the Escherichia coli ABC transporter MsbA. J. Bacteriol. 187:6363–69 [Google Scholar]
  101. Tefsen B, Bos MP, Beckers F, Tommassen J, de Cock H. 101.  2005. MsbA is not required for phospholipid transport in Neisseria meningitides. J. Biol. Chem. 280:35961–66 [Google Scholar]
  102. Meredith TC, Aggarwal P, Mamat U, Lindner B, Woodward RW. 102.  2006. Redefining the requisite lipopolysaccharide structure in Escherichia coli. ACS Chem. Biol. 1:33–42 [Google Scholar]
  103. Reynolds CM, Raetz CR. 103.  2009. Replacement of lipopolysaccharide with free lipid A molecules in Escherichia coli mutants lacking all core sugars. Biochemistry 48:9627–40 [Google Scholar]
  104. Mamat U, Meredith TC, Aggarwal P, Kühl A, Kirchhoff P. 104.  et al. 2008. Single amino acid substitutions in either YhjD or MsbA confer viability to 3-deoxy-D-manno-oct-2-ulosonic acid–depleted Escherichia coli. Mol. Microbiol. 67:633–48 [Google Scholar]
  105. Karow M, Georgopoulos C. 105.  1993. The essential Escherichia coli msbA gene, a multicopy suppressor of null mutations in the htrB gene, is related to the universally conserved family of ATP-dependent translocators. Mol. Microbiol. 7:69–79 [Google Scholar]
  106. Fujishima H, Nishimura A, Wachi M, Takagi H, Hirasawa T. 106.  et al. 2002. kdsA mutations affect FtsZ-ring formation in Escherichia coli K-12. Microbiology 148:103–12 [Google Scholar]
  107. Babu M, Díaz-Mejía JJ, Vlasblom J, Gagarinova A, Phanse S. 107.  et al. 2011. Genetic interaction maps in Escherichia coli reveal functional crosstalk among cell envelope biogenesis pathways. PLoS Genet. 7:e1002377 [Google Scholar]
  108. Goldman RC, Kohlbrenner WE, Lartey P, Pernet A. 108.  1987. Antibacterial agents specifically inhibiting lipopolysaccharide synthesis. Nature 329:162–64 [Google Scholar]
  109. Hammond SM, Claesson A, Jansson AM, Larsson L, Pring BG. 109.  et al. 1987. A new class of synthetic antibacterials acting on lipopolysaccharide biosynthesis. Nature 327:730–32 [Google Scholar]
  110. Bryant CE, Spring DR, Gangloff M, Gay NJ. 110.  2010. The molecular basis of the host response to lipopolysaccharide. Nat. Rev. Microbiol. 8:8–14 [Google Scholar]
  111. Needham BD, Trent MS. 111.  2013. Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat. Rev. Microbiol. 11:467–81 [Google Scholar]
  112. Chen HD, Groisman EA. 112.  2013. The biology of the PmrA/PmrB two-component system: the major regulator of lipopolysaccharide modifications. Annu. Rev. Microbiol. 67:83–112 [Google Scholar]
  113. Gunn JS, Ryan SS, Van Velkinburgh JC, Ernst RK, Miller SI. 113.  2000. Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar Typhimurium. Infect. Immun. 68:6139–46 [Google Scholar]
  114. Trent MS, Ribeiro AA, Lin S, Cotter RJ, Raetz CR. 114.  2001. An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A: induction on polymyxin-resistant mutants and role of a novel lipid-linked donor. J. Biol. Chem. 276:43122–31 [Google Scholar]
  115. Trent MS, Ribeiro AA, Doerrler WT, Lin S, Cotter RJ, Raetz CR. 115.  2001. Accumulation of a polyisoprene-linked amino sugar in polymyxin-resistant Salmonella typhimurium and Escherichia coli: structural characterization and transfer to lipid A in the periplasm. J. Biol. Chem. 276:43132–44 [Google Scholar]
  116. Lee H, Hsu FF, Turk J, Groisman EA. 116.  2004. The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. J. Bacteriol. 186:4124–33 [Google Scholar]
  117. Gunn JS, Lim KB, Krueger J, Kim K, Guo L. 117.  et al. 1998. PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol. Microbiol. 27:1171–82 [Google Scholar]
  118. Herrera CM, Hankins JV, Trent MS. 118.  2010. Activation of PmrA inhibits LpxT-dependent phosphorylation of lipid A promoting resistance to antimicrobial peptides. Mol. Microbiol. 76:1444–60 [Google Scholar]
  119. Kanistanon D, Hajjar AM, Pelletier MR, Gallagher LA, Kalhorn T. 119.  et al. 2008. A Francisella mutant in lipid A carbohydrate modification elicits protective immunity. PLoS Pathog. 4:e24 [Google Scholar]
  120. Wang X, Ribeiro AA, Guan Z, Raetz CR. 120.  2009. Identification of undecaprenyl phosphate-β-D-galactosamine in Francisella novicida and its function in lipid A modification. Biochemistry 48:1162–72 [Google Scholar]
  121. Marr N, Tirsoaga A, Blanot D, Fernandez R, Caroff M. 121.  2008. Glucosamine found as a substituent of both phosphate groups in Bordetella lipid A backbones: role of a BvgAS-activated ArnT ortholog. J. Bacteriol. 190:4281–90 [Google Scholar]
  122. Marr N, Hajjar AM, Shah NR, Novikov A, Yam CS. 122.  et al. 2010. Substitution of the Bordetella pertussis lipid A phosphate groups with glucosamine is required for robust NF-κB activation and release of proinflammatory cytokines in cells expressing human but not murine Toll-like receptor 4 MD-2-CD14. Infect. Immun. 78:2060–69 [Google Scholar]
  123. Touzé T, Tran AX, Hankins JV, Mengin-Lecreulx D, Trent MS. 123.  2008. Periplasmic phosphorylation of lipid A is linked to the synthesis of undecaprenyl phosphate. Mol. Microbiol. 67:264–77 [Google Scholar]
  124. Kato A, Chen HD, Latifi T, Groisman EA. 124.  2012. Reciprocal control between a bacterium's regulatory system and the modification status of its lipopolysaccharide. Mol. Cell 47:897–908 [Google Scholar]
  125. Reynolds CM, Kalb SR, Cotter RJ, Raetz CR. 125.  2005. A phosphoethanolamine transferase specific for the outer 3-deoxy-D-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca2+ hypersensitivity of an eptB deletion mutant. J. Biol. Chem. 280:21202–11 [Google Scholar]
  126. Moon K, Gottesman S. 126.  2009. A PhoQ/P-regulated small RNA regulates sensitivity of Escherichia coli to antimicrobial peptides. Mol. Microbiol. 74:1314–30 [Google Scholar]
  127. Moon K, Six DA, Lee HJ, Raetz CR, Gottesman S. 127.  2013. Complex transcriptional and post-transcriptional regulation of an enzyme for lipopolysaccharide modification. Mol. Microbiol. 89:52–64 [Google Scholar]
  128. Tran AX, Whittimore JD, Wyrick PB, McGrath SC, Cotter RJ, Trent MS. 128.  2006. The lipid A 1-phosphatase of Helicobacter pylori is required for resistance to the antimicrobial peptide polymyxin. J. Bacteriol. 188:4531–41 [Google Scholar]
  129. Cox AD, Wright JC, Li J, Hood DW, Moxon ER, Richards JC. 129.  2003. Phosphorylation of the lipid A region of meningococcal lipopolysaccharide: identification of a family of transferases that add phosphoethanolamine to lipopolysaccharide. J. Bacteriol. 185:3270–77 [Google Scholar]
  130. Tzeng YL, Datta AK, Strole CA, Lobritz MA, Carlson LW, Stephens DS. 130.  2005. Translocation and surface expression of lipidated serogroup B capsular polysaccharide in Neisseria meningitidis. Infect. Immun. 73:1491–505 [Google Scholar]
  131. Cullen TW, O'Brien JP, Hendrixson DR, Giles DK. 131.  et al. 2013. EptC of Campylobacter jejuni mediates phenotypes involved in host interactions and virulence. Infect. Immun. 81:430–40 [Google Scholar]
  132. Scott NE, Nothaft H, Edwards AV, Labbate M. 132.  et al. 2012. Modification of the Campylobacter jejuni N-linked glycan by EptC protein–mediated addition of phosphoethanolamine. J. Biol. Chem. 287:29384–96 [Google Scholar]
  133. Trent MS, Pabich W, Raetz CR, Miller SI. 133.  2001. A PhoP/PhoQ-induced lipase (PagL) that catalyzes 3-O-deacylation of lipid A precursors in membranes of Salmonella typhimurium. J. Biol. Chem. 276:9083–92 [Google Scholar]
  134. Reynolds CM, Ribeiro AA, McGrath SC, Cotter RJ, Raetz CR, Trent MS. 134.  2006. An outer membrane enzyme encoded by Salmonella typhimurium lpxR that removes the 3′-acyloxyacyl moiety of lipid A. J. Biol. Chem. 281:21974–87 [Google Scholar]
  135. Bishop RE, Gibbons HS, Guina T, Trent MS, Miller SI, Raetz CR. 135.  2000. Transfer of palmitate from phospholipids to lipid A in outer membranes of gram-negative bacteria. EMBO J. 19:5071–80 [Google Scholar]
  136. Hwang PM, Choy WY, Lo EI, Chen L, Forman-Kay JD. 136.  et al. 2002. Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc. Natl. Acad. Sci. USA 99:13560–65 [Google Scholar]
  137. Rutten L, Geurtsen J, Lambert W, Smolenaers JJ, Bonvin AM. 137.  et al. 2006. Crystal structure and catalytic mechanism of the LPS 3-O-deacylase PagL from Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 103:7071–76 [Google Scholar]
  138. Rutten L, Mannie JP, Stead CM, Raetz CR. 138.  et al. 2009. Active-site architecture and catalytic mechanism of the lipid A deacylase LpxR of Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 106:1960–64 [Google Scholar]
  139. Guo L, Lim KB, Poduje CM, Daniel M, Reynolds CM. 139.  et al. 1998. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95:189–98 [Google Scholar]
  140. Needham BD, Carroll SM, Giles DK, Georgiou G, Whiteley M, Trent MS. 140.  2013. Modulating the innate immune response by combinatorial engineering of endotoxin. Proc. Natl. Acad. Sci. USA 110:1464–69 [Google Scholar]
  141. Kawasaki K, China K, Nishijima M. 141.  2007. Release of the lipopolysaccharide deacylase PagL from latency compensates for a lack of lipopolysaccharide aminoarabinose modification–dependent resistance to the antimicrobial peptide polymyxin B in Salmonella enterica. J. Bacteriol. 189:4911–19 [Google Scholar]
  142. Reinés M, Llobet E, Dahlström KM, Pérez-Gutiérrez C, Llompart CM. 142.  et al. 2012. Deciphering the acylation pattern of Yersinia enterocolitica lipid A. PLoS Pathog. 8:e1002978 [Google Scholar]
  143. Gibbons HS, Lin S, Cotter RJ, Raetz CR. 143.  2000. Oxygen requirement for the biosynthesis of the S-2-hydroxymyristate moiety in Salmonella typhimurium lipid A. Function of LpxO, a new Fe2+/α-ketoglutarate-dependent dioxygenase homologue. J. Biol. Chem. 275:32940–49 [Google Scholar]
  144. Gibbons HS, Reynolds CM, Guan Z, Raetz CR. 144.  2008. An inner membrane dioxygenase that generates the 2-hydroxymyristate moiety of Salmonella lipid A. Biochemistry 47:2814–25 [Google Scholar]
  145. Hankins JV, Madsen JA, Giles DK, Childers BM, Klose KE. 145.  et al. 2011. Elucidation of a novel Vibrio cholerae lipid A secondary hydroxy-acyltransferase and its role in innate immune recognition. Mol. Microbiol. 81:1313–29 [Google Scholar]
  146. Hankins JV, Madsen JA, Giles DK, Brodbelt JS, Trent MS. 146.  2012. Amino acid addition to Vibrio cholerae LPS establishes a link between surface remodeling in gram-positive and gram-negative bacteria. Proc. Natl. Acad. Sci. USA 109:8722–27 [Google Scholar]
  147. Neuhaus FC, Baddiley J. 147.  2003. A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67:686–723 [Google Scholar]
  148. Rubin EJ, Trent MS. 148.  2013. Colonize, evade, flourish: how glyco-conjugates promote virulence of Helicobacter pylori. Gut Microbes 4:439–-53 [Google Scholar]
  149. Cullen TW, Giles DK, Wolf LN, Ecobichon C, Boneca IG, Trent MS. 149.  2011. Helicobacter pylori versus the host: remodeling of the bacterial outer membrane is required for survival in the gastric mucosa. PLoS Pathog. 7:e1002454 [Google Scholar]
  150. Tran AX, Karbarz MJ, Wang X, Raetz CR, McGrath SC. 150.  et al. 2004. Periplasmic cleavage and modification of the 1-phosphate group of Helicobacter pylori lipid A. J. Biol. Chem. 279:55780–91 [Google Scholar]
  151. Stead CM, Zhao J, Raetz CR, Trent MS. 151.  2010. Removal of the outer Kdo from Helicobacter pylori lipopolysaccharide and its impact on the bacterial surface. Mol. Microbiol. 78:837–52 [Google Scholar]
  152. Stead C, Tran A, Ferguson DJ, McGrath S, Cotter RJ, Trent MS. 152.  2005. A novel 3-deoxy-D-manno-octulosonic acid (Kdo) hydrolase that removes the outer Kdo sugar of Helicobacter pylori lipopolysaccharide. J. Bacteriol. 187:3374–83 [Google Scholar]
  153. Chalabaev S, Kim TH, Ross R, Derian A, Kasper DL. 153.  2010. 3-Deoxy-D-manno-octulosonic acid (Kdo) hydrolase identified in Francisella tularensis, Helicobacter pylori, and Legionella pneumophila. J. Biol. Chem. 285:34330–36 [Google Scholar]
  154. Zhao J, Raetz CR. 154.  2010. A two-component Kdo hydrolase in the inner membrane of Francisella novicida. Mol. Microbiol. 78:820–36 [Google Scholar]
  155. Wang X, Karbarz MJ, McGrath SC, Cotter RJ, Raetz CR. 155.  2004. MsbA transporter–dependent lipid A1-dephosphorylation on the periplasmic surface of the inner membrane: topography of Francisella novicida LpxE expressed in Escherichia coli. J. Biol. Chem. 279:49470–78 [Google Scholar]
  156. Wang X, McGrath SC, Cotter RJ, Raetz CR. 156.  2006. Expression cloning and periplasmic orientation of the Francisella novicida lipid A 4′-phosphatase LpxF. J. Biol. Chem. 281:9321–30 [Google Scholar]
  157. Coats SR, Berezow AB, To TT, Jain S, Bainbridge BW. 157.  et al. 2011. The lipid A phosphate position determines differential host Toll-like receptor 4 responses to phylogenetically related symbiotic and pathogenic bacteria. Infect. Immun. 79:203–10 [Google Scholar]
  158. Coats SR, Jones JW, Do CT, Braham PH, Bainbridge BW. 158.  et al. 2009. Human Toll-like receptor 4 responses to P. gingivalis are regulated by lipid A 1- and 4′-phosphatase activities. Cell Microbiol. 11:1587–99 [Google Scholar]
  159. Wang X, Ribeiro AA, Guan Z, Abraham SN, Raetz CR. 159.  2007. Attenuated virulence of a Francisella mutant lacking the lipid A 4′-phosphatase. Proc. Natl. Acad. Sci. USA 104:4136–41 [Google Scholar]
  160. Whitfield C.160.  2006. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu. Rev. Biochem. 75:39–68 [Google Scholar]
  161. Cuthbertson L, Kos V, Whitfield C. 161.  2010. ABC transporters involved in export of cell surface glycoconjugates. Microbiol. Mol. Biol. Rev. 74:341–62 [Google Scholar]
  162. Greenfield LK, Whitfield C. 162.  2012. Synthesis of lipopolysaccharide O-antigens by ABC transporter–dependent pathways. Carbohydr. Res. 356:12–24 [Google Scholar]
  163. Chen MM, Weerapana E, Ciepichal E, Stupak J. 163.  et al. 2007. Polyisoprenol specificity in the Campylobacter jejuni N-linked glycosylation pathway. Biochemistry 46:14342–48 [Google Scholar]
  164. Patel KB, Ciepichal E, Swiezewska E, Valvano MA. 164.  2012. The C-terminal domain of the Salmonella enterica WbaP (UDP-galactose:Und-P galactose-1-phosphate transferase) is sufficient for catalytic activity and specificity for undecaprenyl monophosphate. Glycobiology 22:116–22 [Google Scholar]
  165. Mostafavi AZ, Lujan DK, Erickson KM, Martinez CD, Troutman JM. 165.  2013. Fluorescent probes for investigation of isoprenoid configuration and size discrimination by bactoprenol-utilizing enzymes. Bioorg. Med. Chem. 21:5428–35 [Google Scholar]
  166. Rush JS, Rick PD, Waechter CJ. 166.  1997. Polyisoprenyl phosphate specificity of UDP-GlcNAc:undecaprenyl phosphate N-acetylglucosaminyl 1-P transferase from E. coli. Glycobiology 7:315–22 [Google Scholar]
  167. Patel KB, Furlong SE, Valvano MA. 167.  2010. Functional analysis of the C-terminal domain of the WbaP protein that mediates initiation of O antigen synthesis in Salmonella enterica. Glycobiology 20:1389–401 [Google Scholar]
  168. Lehrer J, Vigeant KA, Tatar LD, Valvano MA. 168.  2007. Functional characterization and membrane topology of Escherichia coli WecA, a sugar-phosphate transferase initiating the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide. J. Bacteriol. 189:2618–28 [Google Scholar]
  169. Furlong SE, Valvano MA. 169.  2012. Characterization of the highly conserved VFMGD motif in a bacterial polyisoprenyl-phosphate N-acetylaminosugar-1-phosphate transferase. Protein Sci. 21:1366–75 [Google Scholar]
  170. McGrath BC, Osborn MJ. 170.  1991. Localization of terminal steps of O-antigen synthesis in Salmonella typhimurium. J. Bacteriol. 173:649–54 [Google Scholar]
  171. Abeyrathne PD, Lam JS. 171.  2007. WaaL of Pseudomonas aeruginosa utilizes ATP in in vitro ligation of O antigen onto lipid A core. Mol. Microbiol. 65:1345–59 [Google Scholar]
  172. Hug I, Couturier MR, Rooker MM, Taylor DE, Stein M, Feldman MF. 172.  2010. Helicobacter pylori lipopolysaccharide is synthesized via a novel pathway with an evolutionary connection to protein N-glycosylation. PLoS Pathog. 6:e1000819 [Google Scholar]
  173. Ruan X, Loyola DE, Marolda CL, Perez-Donoso JM, Valvano MA. 173.  2011. The WaaL O-antigen lipopolysaccharide ligase has features in common with metal ion–independent inverting glycosyltransferases. Glycobiology 22:288–99 [Google Scholar]
  174. Han W, Wu B, Li L, Zhao G, Woodward RW. 174.  et al. 2012. Defining function of lipopolysaccharide O-antigen ligase WaaL using chemoenzymatically synthesized substrates. J. Biol. Chem. 287:5357–65 [Google Scholar]
  175. Ruiz N, Kahne D, Silhavy TJ. 175.  2009. Transport of lipopolysaccharide across the cell envelope: the long road of discovery. Nat. Rev. Microbiol. 7:677–83 [Google Scholar]
  176. Chng SS, Gronenberg LS, Kahne D. 176.  2010. Proteins required for lipopolysaccharide assembly in Escherichia coli form a transenvelope complex. Biochemistry 49:4565–67 [Google Scholar]
  177. Okuda S, Freinkman E, Kahne D. 177.  2012. Cytoplasmic ATP hydrolysis powers transport of lipopolysaccharide across the periplasm in E. coli. Science 338:1214–17 [Google Scholar]
  178. Ma B, Reynolds CM, Raetz CR. 178.  2008. Periplasmic orientation of nascent lipid A in the inner membrane of an Escherichia coli LptA mutant. Proc. Natl. Acad. Sci. USA 105:13823–28 [Google Scholar]
  179. Ruiz N, Gronenberg LS, Kahne D, Silhavy TJ. 179.  2008. Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of Escherichia coli. Proc. Natl. Acad. Sci. USA 105:5537–42 [Google Scholar]
  180. Sperandeo P, Cescutti R, Villa R, Di Benedetto C, Candia D. 180.  et al. 2007. Characterization of lptA and lptB, two essential genes implicated in lipopolysaccharide transport to the outer membrane of Escherichia coli. J. Bacteriol. 189:244–53 [Google Scholar]
  181. Sperandeo P, Lau FK, Carpentieri A, De Castro C, Molinaro A. 181.  et al. 2008. Functional analysis of the protein machinery required for transport of lipopolysaccharide to the outer membrane of Escherichia coli. J. Bacteriol. 190:4460–69 [Google Scholar]
  182. Wu T, McCandlish AC, Gronenberg LS, Chng SS, Silhavy TJ, Kahne D. 182.  2006. Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. Proc. Natl. Acad. Sci. USA 103:11754–59 [Google Scholar]
  183. Nikaido H, Pagès JM. 183.  2012. Broad-specificity efflux pumps and their role in multidrug resistance of gram-negative bacteria. FEMS Microbiol. Rev. 36:340–63 [Google Scholar]
  184. Narita S, Tokuda H. 184.  2009. Biochemical characterization of an ABC transporter LptBFGC complex required for the outer membrane sorting of lipopolysaccharides. FEBS Lett. 583:2160–64 [Google Scholar]
  185. Chng SS, Ruiz N, Chimalakonda G, Silhavy TJ, Kahne D. 185.  2010. Characterization of the two-protein complex in Escherichia coli responsible for lipopolysaccharide assembly at the outer membrane. Proc. Natl. Acad. Sci. USA 107:5363–68 [Google Scholar]
  186. Freinkman E, Okuda S, Ruiz N, Kahne D. 186.  2012. Regulated assembly of the transenvelope protein complex required for lipopolysaccharide export. Biochemistry 51:4800–6 [Google Scholar]
  187. Haarmann R, Ibrahim M, Stevanovic M, Bredemeier R, Schleiff E. 187.  2010. The properties of the outer membrane localized lipid A transporter LptD. J. Phys. Condens. Matter 22:454124 [Google Scholar]
  188. Zeth K, Thein M. 188.  2010. Porins in prokaryotes and eukaryotes: common themes and variations. Biochem. J. 431:13–22 [Google Scholar]
  189. Noinaj N, Guillier M, Barnard TJ, Buchanan SK. 189.  2010. TonB-dependent transporters: regulation, structure, and function. Annu. Rev. Microbiol. 64:43–60 [Google Scholar]
  190. Freinkman E, Chng SS, Kahne D. 190.  2011. The complex that inserts lipopolysaccharide into the bacterial outer membrane forms a two-protein plug-and-barrel. Proc. Natl. Acad. Sci. USA 108:2486–91 [Google Scholar]
  191. Grabowicz M, Yeh J, Silhavy TJ. 191.  2013. A dominant-negative lptE mutation that supports a role for LptE as a plug in the LptD barrel. J. Bacteriol. 195:1327–34 [Google Scholar]
  192. Chimalakonda G, Ruiz N, Chng SS, Garner RA, Kahne D, Silhavy TJ. 192.  2011. Lipoprotein LptE is required for the assembly of LptD by the β-barrel assembly machine in the outer membrane of Escherichia coli. Proc. Natl. Acad. Sci. USA 108:2492–97 [Google Scholar]
  193. Chng SS, Xue M, Garner RA, Kadokura H, Boyd D. 193.  et al. 2012. Disulfide rearrangement triggered by translocon assembly controls lipopolysaccharide export. Science 337:1665–68 [Google Scholar]
  194. Merten JA, Schultz KM, Klug CS. 194.  2012. Concentration-dependent oligomerization and oligomeric arrangement of LptA. Protein Sci. 21:211–18 [Google Scholar]
  195. Suits MD, Sperandeo P, Deho G, Polissi A, Jia Z. 195.  2008. Novel structure of the conserved gram-negative lipopolysaccharide transport protein A and mutagenesis analysis. J. Mol. Biol. 380:476–88 [Google Scholar]
  196. Tran AX, Dong C, Whitfield C. 196.  2010. Structure and functional analysis of LptC, a conserved membrane protein involved in the lipopolysaccharide export pathway in Escherichia coli. J. Biol. Chem. 285:33529–39 [Google Scholar]
  197. Villa R, Martorana AM, Okuda S, Gourlay LJ, Nardini M. 197.  et al. 2013. The Escherichia coli Lpt transenvelope protein complex for lipopolysaccharide export is assembled via conserved structurally homologous domains. J. Bacteriol. 195:1100–8 [Google Scholar]
  198. Sperandeo P, Villa R, Martorana AM, Samalikova M, Grandori R. 198.  et al. 2011. New insights into the Lpt machinery for lipopolysaccharide transport to the cell surface: LptA–LptC interaction and LptA stability as sensors of a properly assembled transenvelope complex. J. Bacteriol. 193:1042–53 [Google Scholar]
  199. Bowyer A, Baardsnes J, Ajamian E, Zhang L, Cygler M. 199.  2011. Characterization of interactions between LPS transport proteins of the Lpt system. Biochem. Biophys. Res. Commun. 404:1093–98 [Google Scholar]
  200. Matias VR, Al-Amoudi A, Dubochet J, Beveridge TJ. 200.  2003. Cryo–transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J. Bacteriol. 185:6112–18 [Google Scholar]
  201. Marlovits TC, Kubori T, Sukhan A, Thomas DR, Galán JE, Unger VM. 201.  2004. Structural insights into the assembly of the type III secretion needle complex. Science 306:1040–42 [Google Scholar]
  202. Bos MP, Tommassen J. 202.  2011. The LptD chaperone LptE is not directly involved in lipopolysaccharide transport in Neisseria meningitidis. J. Biol. Chem. 286:28688–96 [Google Scholar]
  203. Silander OK, Ackermann M. 203.  2009. The constancy of gene conservation across divergent bacterial orders. BMC Res. Notes 2:2 [Google Scholar]
  204. Tran AX, Trent MS, Whitfield C. 204.  2008. The LptA protein of Escherichia coli is a periplasmic lipid A–binding protein involved in the lipopolysaccharide export pathway. J. Biol. Chem. 283:20342–49 [Google Scholar]
  205. Kim HM, Park BS, Kim JI, Kim SE, Lee J. 205.  et al. 2007. Crystal structure of the TLR4–MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130:906–17 [Google Scholar]
  206. Ohto U, Fukase K, Miyake K, Satow Y. 206.  2007. Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVA. Science 316:1632–34 [Google Scholar]
  207. Tefsen B, Geurtsen J, Beckers F, Tommassen J, de Cock H. 207.  2005. Lipopolysaccharide transport to the bacterial outer membrane in spheroplasts. J. Biol. Chem. 280:4504–9 [Google Scholar]
  208. Hamad MA, Di Lorenzo F, Molinaro A, Valvano MA. 208.  2012. Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in Burkholderia cenocepacia. Mol. Microbiol. 85:962–74 [Google Scholar]
  209. Srinivas N, Jetter P, Ueberbacher BJ, Werneburg M, Zerbe K. 209.  et al. 2010. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science 327:1010–13 [Google Scholar]
  210. Sherman DJ, Okuda S, Denny WA, Kahne D. 210.  2013. Validation of inhibitors of an ABC transporter required to transport lipopolysaccharide to the cell surface in Escherichia coli. Bioorg. Med. Chem. 21:4846–51 [Google Scholar]
  211. Mühlradt PF, Menzel J, Golecki JR, Speth V. 211.  1973. Outer membrane of Salmonella. Sites of export of newly synthesised lipopolysaccharide on the bacterial surface. Eur. J. Biochem. 35:471–81 [Google Scholar]
  212. Ghosh AS, Young KD. 212.  2005. Helical disposition of proteins and lipopolysaccharide in the outer membrane of Escherichia coli. J. Bacteriol. 187:1913–22 [Google Scholar]
  213. Schindler M, Osborn MJ, Koppel DE. 213.  1980. Lateral diffusion of lipopolysaccharide in the outer membrane of Salmonella typhimurium. Nature 285:261–63 [Google Scholar]
  214. Sperandeo P, Pozzi C, Dehò G, Polissi A. 214.  2006. Non-essential KDO biosynthesis and new essential cell envelope biogenesis genes in the Escherichia coli yrbG-yhbG locus. Res. Microbiol. 157:547–58 [Google Scholar]
  215. Braun M, Silhavy TJ. 215.  2002. Imp/OstA is required for cell envelope biogenesis in Escherichia coli. Mol. Microbiol. 45:1289–302 [Google Scholar]
  216. Söding J, Biegert A, Lupas AN. 216.  2005. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33:W244–48 [Google Scholar]
  217. Steeghs L, den Hartog R, den Boer A, Zomer B, Roholl P, van der Ley P. 217.  1998. Meningitis bacterium is viable without endotoxin. Nature 392:449–50 [Google Scholar]
  218. Henry R, Vithanage N, Harrison P, Seemann T, Coutts S. 218.  et al. 2012. Colistin-resistant, lipopolysaccharide-deficient Acinetobacter baumannii responds to lipopolysaccharide loss through increased expression of genes involved in the synthesis and transport of lipoproteins, phospholipids, and poly-β-1,6-N-acetylglucosamine. Antimicrob. Agents Chemother. 56:59–69 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error