Research into the molecular mechanisms of eukaryotic circadian clocks has proceeded at an electrifying pace. In this review, we discuss advances in our understanding of the structures of central molecular players in the timing oscillators of fungi, insects, and mammals. A series of clock protein structures demonstrate that the PAS (Per/Arnt/Sim) domain has been used with great variation to formulate the transcriptional activators and repressors of the clock. We discuss how posttranslational modifications and external cues, such as light, affect the conformation and function of core clock components. Recent breakthroughs have also revealed novel interactions among clock proteins and new partners that couple the clock to metabolic and developmental pathways. Overall, a picture of clock function has emerged wherein conserved motifs and structural platforms have been elaborated into a highly dynamic collection of interacting molecules that undergo orchestrated changes in chemical structure, conformational state, and partners.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Allada R, Chung BY. 1.  2010. Circadian organization of behavior and physiology in Drosophila. Annu. Rev. Physiol. 72:605–24 [Google Scholar]
  2. Zheng X, Sehgal A. 2.  2012. Speed control: cogs and gears that drive the circadian clock. Trends Neurosci. 35:574–85 [Google Scholar]
  3. Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW. 3.  1998. Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94:83–95 [Google Scholar]
  4. Kloss B, Price JL, Saez L, Blau J, Rothenfluh A. 4.  et al. 1998. The Drosophila clock gene Double-time encodes a protein closely related to human casein kinase Iε. Cell 94:97–107 [Google Scholar]
  5. Cyran SA, Yiannoulos G, Buchsbaum AM, Saez L, Young MW, Blau J. 5.  2005. The Double-time protein kinase regulates the subcellular localization of the Drosophila clock protein Period. J. Neurosci. 25:5430–37 [Google Scholar]
  6. Ko HW, Jiang J, Edery I. 6.  2002. Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime. Nature 420:673–78 [Google Scholar]
  7. Chiu JC, Vanselow JT, Kramer A, Edery I. 7.  2008. The phospho-occupancy of an atypical SLIMB binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock. Genes Dev. 22:1758–72 [Google Scholar]
  8. Chiu JC, Ko HW, Edery I. 8.  2011. NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed. Cell 145:357–70 [Google Scholar]
  9. Kloss B, Rothenfluh A, Young MW, Saez L. 9.  2001. Phosphorylation of period is influenced by cycling physical associations of Double-time, Period, and Timeless in the Drosophila clock. Neuron 30:699–706 [Google Scholar]
  10. Kivimäe S, Saez L, Young MW. 10.  2008. Activating PER repressor through a DBT-directed phosphorylation switch. PLoS Biol. 6:e183 [Google Scholar]
  11. Muskus MJ, Preuss F, Fan JY, Bjes ES, Price JL. 11.  2007. Drosophila DBT lacking protein kinase activity produces long-period and arrhythmic circadian behavioral and molecular rhythms. Mol. Cell Biol. 27:8049–64 [Google Scholar]
  12. Syed S, Saez L, Young MW. 12.  2011. Kinetics of Doubletime kinase–dependent degradation of the Drosophila Period protein. J. Biol. Chem. 286:27654–62 [Google Scholar]
  13. Lowrey PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD. 13.  et al. 2000. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288:483–92 [Google Scholar]
  14. Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM. 14.  2001. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107:855–67 [Google Scholar]
  15. Takano A, Isojima Y, Nagai K. 15.  2004. Identification of mPer1 phosphorylation sites responsible for the nuclear entry. J. Biol. Chem. 279:32578–85 [Google Scholar]
  16. Eide EJ, Woolf MF, Kang H, Woolf P, Hurst W. 16.  et al. 2005. Control of mammalian circadian rhythm by CKIε-regulated proteasome–mediated PER2 degradation. Mol. Cell Biol. 25:2795–807 [Google Scholar]
  17. Xu Y, Toh KL, Jones CR, Shin JY, Fu YH, Ptáček LJ. 17.  2007. Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 128:59–70 [Google Scholar]
  18. Meng QJ, Maywood ES, Bechtold DA, Lu WQ, Li J. 18.  et al. 2010. Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc. Natl. Acad. Sci. USA 107:15240–45 [Google Scholar]
  19. Lee HM, Chen R, Kim H, Etchegaray JP, Weaver DR, Lee C. 19.  2011. The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc. Natl. Acad. Sci. USA 108:16451–56 [Google Scholar]
  20. Shanware NP, Hutchinson JA, Kim SH, Zhan L, Bowler MJ, Tibbetts RS. 20.  2011. Casein kinase 1–dependent phosphorylation of familial advanced sleep phase syndrome–associated residues controls PERIOD 2 stability. J. Biol. Chem. 286:12766–74 [Google Scholar]
  21. Chen Z, Yoo SH, Park YS, Kim KH, Wei S. 21.  et al. 2012. Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proc. Natl. Acad. Sci. USA 109:101–6 [Google Scholar]
  22. Chong SY, Ptáček LJ, Fu YH. 22.  2012. Genetic insights on sleep schedules: this time, it's PERsonal. Trends Genet. 28:598–605 [Google Scholar]
  23. Vosshall LB, Price JL, Sehgal A, Saez L, Young MW. 23.  1994. Block in nuclear localization of Period protein by a second clock mutation, timeless. Science 263:1606–9 [Google Scholar]
  24. Saez L, Young MW. 24.  1996. Regulation of nuclear entry of the Drosophila clock proteins Period and Timeless. Neuron 17:911–20 [Google Scholar]
  25. Hara T, Koh K, Combs DJ, Sehgal A. 25.  2011. Post-translational regulation and nuclear entry of TIMELESS and PERIOD are affected in new timeless mutant. J. Neurosci. 31:9982–90 [Google Scholar]
  26. Saez L, Derasmo M, Meyer P, Stieglitz J, Young MW. 26.  2011. A key temporal delay in the circadian cycle of Drosophila is mediated by a nuclear localization signal in the Timeless protein. Genetics 188:591–600 [Google Scholar]
  27. Hunter-Ensor M, Ousley A, Sehgal A. 27.  1996. Regulation of the Drosophila protein Timeless suggests a mechanism for resetting the circadian clock by light. Cell 84:677–85 [Google Scholar]
  28. Myers MP, Wager-Smith K, Rothenfluh-Hilfiker A, Young MW. 28.  1996. Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science 271:1736–40 [Google Scholar]
  29. Lim C, Allada R. 29.  2013. ATAXIN-2 activates PERIOD translation to sustain circadian rhythms in Drosophila. Science 340:875–79 [Google Scholar]
  30. Zhang Y, Ling J, Yuan C, Dubruille R, Emery P. 30.  2013. A role for Drosophila ATAXIN-2 in the activation of PERIOD translation and circadian behavior. Science 340:879–82 [Google Scholar]
  31. Meyer P, Saez L, Young MW. 31.  2006. PER-TIM interactions in living Drosophila cells: an interval timer for the circadian clock. Science 311:226–29 [Google Scholar]
  32. Saez L, Meyer P, Young MW. 32.  2007. A PER/TIM/DBT interval timer for Drosophila's circadian clock. Cold Spring Harb. Symp. Quant. Biol. 72:69–74 [Google Scholar]
  33. Martinek S, Inonog S, Manoukian AS, Young MW. 33.  2001. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 105:769–79 [Google Scholar]
  34. Fang Y, Sathyanarayanan S, Sehgal A. 34.  2007. Post-translational regulation of the Drosophila circadian clock requires protein phosphatase 1 (PP1). Genes Dev. 21:1506–18 [Google Scholar]
  35. Ko HW, Kim EY, Chiu J, Vanselow JT, Kramer A, Edery I. 35.  2010. A hierarchical phosphorylation cascade that regulates the timing of PERIOD nuclear entry reveals novel roles for proline-directed kinases and GSK-3β/SGG in circadian clocks. J. Neurosci. 30:12664–75 [Google Scholar]
  36. Lin JM, Kilman VL, Keegan K, Paddock B, Emery-Le M. 36.  et al. 2002. A role for casein kinase 2α in the Drosophila circadian clock. Nature 420:816–20 [Google Scholar]
  37. Akten B, Jauch E, Genova GK, Kim EY, Edery I. 37.  et al. 2003. A role for CK2 in the Drosophila circadian oscillator. Nat. Neurosci. 6:251–57 [Google Scholar]
  38. Nawathean P, Rosbash M. 38.  2004. The Doubletime and CKII kinases collaborate to potentiate Drosophila PER transcriptional repressor activity. Mol. Cell 13:213–23 [Google Scholar]
  39. Maier B, Wendt S, Vanselow JT, Wallach T, Reischl S. 39.  et al. 2009. A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock. Genes Dev. 23:708–18 [Google Scholar]
  40. Tsuchiya Y, Akashi M, Matsuda M, Goto K, Miyata Y. 40.  et al. 2009. Involvement of the protein kinase CK2 in the regulation of mammalian circadian rhythms. Sci. Signal. 2:ra26 [Google Scholar]
  41. Kim EY, Jeong EH, Park S, Jeong HJ, Edery I, Cho JW. 41.  2012. A role for O-GlcNAcylation in setting circadian clock speed. Genes Dev. 26:490–502 [Google Scholar]
  42. Kaasik K, Kivimäe S, Allen JJ, Chalkley RJ, Huang Y. 42.  et al. 2013. Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab. 17:291–302 [Google Scholar]
  43. Doi M, Hirayama J, Sassone-Corsi P. 43.  2006. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497–508 [Google Scholar]
  44. Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K. 44.  et al. 2007. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450:1086–90 [Google Scholar]
  45. Young MW, Kay SA. 45.  2001. Time zones: a comparative genetics of circadian clocks. Nat. Rev. Genet. 2:702–15 [Google Scholar]
  46. Sathyanarayanan S, Zheng X, Kumar S, Chen CH, Chen D. 46.  et al. 2008. Genes Dev. 221522–33
  47. Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG. 47.  et al. 2009. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326:437–40 [Google Scholar]
  48. Um JH, Yang S, Yamazaki S, Kang H, Viollet B. 48.  et al. 2007. Activation of 5′-AMP-activated kinase with diabetes drug metformin induces casein kinase Iε (CKIε)-dependent degradation of clock protein mPer2. J. Biol. Chem. 282:20794–98 [Google Scholar]
  49. Guarente L.49.  2011. Sirtuins, aging, and metabolism. Cold Spring Harb. Symp. Quant. Biol. 76:81–90 [Google Scholar]
  50. Bellet MM, Orozco-Solis R, Sahar S, Eckel-Mahan K, Sassone-Corsi P. 50.  2011. The time of metabolism: NAD+, SIRT1, and the circadian clock. Cold Spring Harb. Symp. Quant. Biol. 76:31–38 [Google Scholar]
  51. Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C. 51.  et al. 2008. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–28 [Google Scholar]
  52. Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J. 52.  et al. 2008. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–40 [Google Scholar]
  53. Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U. 53.  2010. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142:943–53 [Google Scholar]
  54. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. 54.  2009. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–57 [Google Scholar]
  55. Yang X, Downes M, Yu RT, Bookout AL, He W. 55.  et al. 2006. Nuclear receptor expression links the circadian clock to metabolism. Cell 126:801–10 [Google Scholar]
  56. Fan W, Downes M, Atkins A, Yu R, Evans RM. 56.  2011. Nuclear receptors and AMPK: resetting metabolism. Cold Spring Harb. Symp. Quant. Biol. 76:17–22 [Google Scholar]
  57. Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH. 57.  et al. 2011. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480:552–56 [Google Scholar]
  58. Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U. 58.  2010. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 24:345–57 [Google Scholar]
  59. Grimaldi B, Bellet MM, Katada S, Astarita G, Hirayama J. 59.  et al. 2010. PER2 controls lipid metabolism by direct regulation of PPARγ. Cell Metab. 12:509–20 [Google Scholar]
  60. Costa MJ, So AY, Kaasik K, Krueger KC, Pillsbury ML. 60.  et al. 2011. Circadian rhythm gene period 3 is an inhibitor of the adipocyte cell fate. J. Biol. Chem. 286:9063–70 [Google Scholar]
  61. Kozma-Bognar L, Kaldi K. 61.  2008. Synchronization of the fungal and the plant circadian clock by light. ChemBioChem 9:2565–73 [Google Scholar]
  62. Huang W, Pérez-García P, Pokhilko A, Millar AJ, Antoshechkin I. 62.  et al. 2012. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 336:75–79 [Google Scholar]
  63. Huang ZJ, Edery I, Rosbash M. 63.  1993. PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature 364:259–62 [Google Scholar]
  64. Pellequer JL, Wager-Smith KA, Kay SA, Getzoff ED. 64.  1998. Photoactive yellow protein: a structural prototype for the three-dimensional fold of the PAS domain superfamily. Proc. Natl. Acad. Sci. USA 95:5884–90 [Google Scholar]
  65. Taylor BL, Zhulin IB. 65.  1999. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63:479–506 [Google Scholar]
  66. Claridge-Chang A, Wijnen H, Naef F, Boothroyd C, Rajewsky N, Young MW. 66.  2001. Circadian regulation of gene expression systems in the Drosophila head. Neuron 32:657–71 [Google Scholar]
  67. Gu YZ, Hogenesch JB, Bradfield CA. 67.  2000. The PAS superfamily: sensors of environmental and developmental signals. Annu. Rev. Pharmacol. Toxicol. 40:519–61 [Google Scholar]
  68. Jackson FR, Bargiello TA, Yun SH, Young MW. 68.  1986. Product of per locus of Drosophila shares homology with proteoglycans. Nature 320:185–88 [Google Scholar]
  69. Reddy P, Jacquier AC, Abovich N, Petersen G, Rosbash M. 69.  1986. The period clock locus of D. melanogaster codes for a proteoglycan. Cell 46:53–61 [Google Scholar]
  70. Yildiz O, Doi M, Yujnovsky I, Cardone L, Berndt A. 70.  et al. 2005. Crystal structure and interactions of the PAS repeat region of the Drosophila clock protein PERIOD. Mol. Cell 17:69–82 [Google Scholar]
  71. King HA, Hoelz A, Crane BR, Young MW. 71.  2011. Structure of an enclosed dimer formed by the Drosophila period protein. J. Mol. Biol. 413:561–72 [Google Scholar]
  72. Kucera N, Schmalen I, Hennig S, Öllinger R, Strauss HM. 72.  et al. 2012. Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function. Proc. Natl. Acad. Sci. USA 109:3311–16 [Google Scholar]
  73. Hennig S, Strauss HM, Vanselow K, Yildiz O, Schulze S. 73.  et al. 2009. Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2. PLoS Biol. 7:e94 [Google Scholar]
  74. Huang N, Chelliah Y, Shan Y, Taylor CA, Yoo S-H. 74.  et al. 2012. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science 337:189–94 [Google Scholar]
  75. Gekakis N, Saez L, Delahaye-Brown AM, Myers MP, Sehgal A. 75.  et al. 1995. Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL. Science 270:811–15 [Google Scholar]
  76. Landskron J, Chen KF, Wolf E, Stanewsky R. 76.  2009. A role for the PERIOD:PERIOD homodimer in the Drosophila circadian clock. PLoS Biol. 7:e3 [Google Scholar]
  77. Yoo S-H, Ko CH, Lowrey PL, Buhr ED, Song E-J. 77.  et al. 2005. A noncanonical E-box enhancer drives mouse Period2 circadian oscillations in vivo. Proc. Natl. Acad. Sci. USA 102:2608–13 [Google Scholar]
  78. Nakahata Y, Yoshida M, Takano A, Soma H, Yamamoto T. 78.  et al. 2008. A direct repeat of E-box-like elements is required for cell-autonomous circadian rhythm of clock genes. BMC Mol. Biol. 9:1 [Google Scholar]
  79. Ayers RA, Moffat K. 79.  2008. Changes in quaternary structure in the signaling mechanisms of PAS domains. Biochemistry 47:12078–86 [Google Scholar]
  80. Wang Z, Wu Y, Li L, Su X-D. 80.  2013. Intermolecular recognition revealed by the complex structure of human CLOCK–BMAL1 basic helix-loop-helix domains with E-box DNA. Cell Res. 23:213–24 [Google Scholar]
  81. Ballario P, Macino G. 81.  1997. White collar proteins: PASsing the light signal in Neurospora crassa. Trends Microbiol. 5:458–62 [Google Scholar]
  82. Talora C, Franchi L, Linden H, Ballario P, Macino G. 82.  1999. Role of a white collar-1–white collar-2 complex in blue-light signal transduction. EMBO J. 18:4961–68 [Google Scholar]
  83. Cheng P, Yang Y, Gardner KH, Liu Y. 83.  2002. PAS domain-mediated WC-1/WC-2 interaction is essential for maintaining the steady-state level of WC-1 and the function of both proteins in circadian clock and light responses of Neurospora. Mol. Cell. Biol. 22:517–24 [Google Scholar]
  84. Ballario P, Talora C, Galli D, Linden H, Macino G. 84.  1998. Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins. Mol. Microbiol. 29:719–29 [Google Scholar]
  85. Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G. 85.  1996. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J. 15:1650–57 [Google Scholar]
  86. Bates DL, Chen Y, Kim G, Guo L, Chen L. 86.  2008. Crystal structures of multiple GATA zinc fingers bound to DNA reveal new insights into DNA recognition and self-association by GATA. J. Mol. Biol. 381:1292–306 [Google Scholar]
  87. Viger RS, Guittot SM, Anttonen M, Wilson DB, Heikinheimo M. 87.  2008. Role of the GATA family of transcription factors in endocrine development, function, and disease. Mol. Endocrinol. 22:781–98 [Google Scholar]
  88. Crosthwaite SK, Dunlap JC, Loros JJ. 88.  1997. Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science 276:763–69 [Google Scholar]
  89. Froehlich AC, Liu Y, Loros JJ, Dunlap JC. 89.  2002. White collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297:815–19 [Google Scholar]
  90. He Q, Cheng P, Yang Y, Wang L, Gardner KH, Liu Y. 90.  2002. White collar-1, a DNA binding transcription factor and a light sensor. Science 297:840–43 [Google Scholar]
  91. Brenna A, Grimaldi B, Filetici P, Ballario P. 91.  2012. Physical association of the WC-1 photoreceptor and the histone acetyltransferase NGF-1 is required for blue light signal transduction in Neurospora crassa. Mol. Biol. Cell 23:3863–72 [Google Scholar]
  92. Dioum EM, Rutter J, Tuckerman JR, Gonzalez G, Gilles-Gonzalez M-A, McKnight SL. 92.  2002. NPAS2: a gas-responsive transcription factor. Science 298:2385–87 [Google Scholar]
  93. Koudo R, Kurokawa H, Sato E, Igarashi J, Uchida T. 93.  et al. 2005. Spectroscopic characterization of the isolated heme-bound PAS-B domain of neuronal PAS domain protein 2 associated with circadian rhythms. FEBS J. 272:4153–62 [Google Scholar]
  94. Mukaiyama Y, Uchida T, Sato E, Sasaki A, Sato Y. 94.  et al. 2006. Spectroscopic and DNA-binding characterization of the isolated heme-bound basic helix–loop–helix–PAS-A domain of neuronal PAS protein 2 (NPAS2), a transcription activator protein associated with circadian rhythms. FEBS J. 273:2528–39 [Google Scholar]
  95. Ishida M, Ueha T, Sagami I. 95.  2008. Effects of mutations in the heme domain on the transcriptional activity and DNA-binding activity of NPAS2. Biochem. Biophys. Res. Commun. 368:292–97 [Google Scholar]
  96. Kitanishi K, Igarashi J, Hayasaka K, Hikage N, Saiful I. 96.  et al. 2008. Heme-binding characteristics of the isolated PAS-A domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms. Biochemistry 47:6157–68 [Google Scholar]
  97. Airola MV, Du J, Dawson JH, Crane BR. 97.  2010. Heme binding to the mammalian circadian clock protein period 2 is nonspecific. Biochemistry 49:4327–38 [Google Scholar]
  98. Crumbley C, Wang Y, Kojetin DJ, Burris TP. 98.  2010. Characterization of the core mammalian clock component, NPAS2, as a REV-ERBα/RORα target gene. J. Biol. Chem. 285:35386–92 [Google Scholar]
  99. Lukat-Rodgers GS, Correia C, Botuyan MV, Mer G, Rodgers KR. 99.  2010. Heme-based sensing by the mammalian circadian protein CLOCK. Inorg. Chem. 49:6349–65 [Google Scholar]
  100. Hayasaka K, Kitanishi K, Igarashi J, Shimizu T. 100.  2011. Heme-binding characteristics of the isolated PAS-B domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms. Biochim. Biophys. Acta 1814:326–33 [Google Scholar]
  101. Raghuram S, Stayrook KR, Huang P, Rogers PM, Nosie AK. 101.  et al. 2007. Identification of heme as the ligand for the orphan nuclear receptors REV-ERBα and REV-ERBβ. Nat. Struct. Mol. Biol. 14:1207–13 [Google Scholar]
  102. Yin L, Wu N, Curtin JC, Qatanani M, Szwergold NR. 102.  et al. 2007. Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways. Science 318:1786–89 [Google Scholar]
  103. Wu N, Yin L, Hanniman EA, Joshi S, Lazar MA. 103.  2009. Negative feedback maintenance of heme homeostasis by its receptor, Rev-erbα. Genes Dev. 23:2201–9 [Google Scholar]
  104. Phelan CA, Gampe RT, Lambert MH, Parks DJ, Montana V. 104.  et al. 2010. Structure of Rev-erbα bound to N-CoR reveals a unique mechanism of nuclear receptor–co-repressor interaction. Nat. Struct. Mol. Biol. 17:808–14 [Google Scholar]
  105. Solt LA, Kojetin DJ, Burris TP. 105.  2011. The REV-ERBs and RORs: molecular links between circadian rhythms and lipid homeostasis. Future Med. Chem. 3:623–38 [Google Scholar]
  106. Yang J, Kim KD, Lucas A, Drahos KE, Santos CS. 106.  et al. 2008. A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2. Mol. Cell. Biol. 28:4697–711 [Google Scholar]
  107. Itoh R, Fujita K-I, Mu A, Kim DHT, Tai TT. 107.  et al. 2013. Imaging of heme/hemeproteins in nucleus of the living cells expressing heme-binding nuclear receptors. FEBS Lett. 587:2131–36 [Google Scholar]
  108. Kim EY, Ko HW, Yu W, Hardin PE, Edery I. 108.  2007. A DOUBLETIME kinase binding domain on the Drosophila PERIOD protein is essential for its hyperphosphorylation, transcriptional repression, and circadian clock function. Mol. Cell. Biol. 27:5014–28 [Google Scholar]
  109. Nawathean P, Stoleru D, Rosbash M. 109.  2007. A small conserved domain of Drosophila PERIOD is important for circadian phosphorylation, nuclear localization, and transcriptional repressor activity. Mol. Cell. Biol. 27:5002–13 [Google Scholar]
  110. Baylies MK, Vosshall LB, Sehgal A, Young MW. 110.  1992. New short period mutations of the Drosophila clock gene per. Neuron 9:575–81 [Google Scholar]
  111. Rutila JE, Edery I, Hall JC, Rosbash M. 111.  1992. The analysis of new short-period circadian rhythm mutants suggests features of D. melanogaster period gene function. J. Neurogenet. 8:101–13 [Google Scholar]
  112. Tomita T, Miyazaki K, Onishi Y, Honda S, Ishida N, Oishi K. 112.  2010. Conserved amino acid residues in C-terminus of PERIOD 2 are involved in interaction with CRYPTOCHROME 1. Biochim. Biophys. Acta 1803:492–98 [Google Scholar]
  113. Yan Y, Barlev NA, Haley RH, Berger SL, Marmorstein R. 113.  2000. Crystal structure of yeast Esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases. Mol. Cell 6:1195–205 [Google Scholar]
  114. Andrade MA, Petosa C, O'Donoghue SI, Müller CW, Bork P. 114.  2001. Comparison of ARM and HEAT protein repeats. J. Mol. Biol. 309:1–18 [Google Scholar]
  115. Vodovar N, Clayton JD, Costa R, Odell M, Kyriacou CP. 115.  2002. The Drosophila clock protein Timeless is a member of the Arm/HEAT family. Curr. Biol. 12:R610–11 [Google Scholar]
  116. Kippert F, Gerloff DL. 116.  2004. Timeless and Armadillo: a link too far (comment on Vodovar et al.. Curr. Biol. 2002. 12:R610–11 Curr. Biol. 14:R650–51 [Google Scholar]
  117. Kyriacou CP, Odell M. 117.  2004. No ARM in it? (Reply to Kippert and Gerloff.). Curr. Biol. 14:R652–53 [Google Scholar]
  118. Perry J.118.  2005. Weighing in on a Timeless controversy. Proteins 61:699–703 [Google Scholar]
  119. Dunlap JC, Loros JJ. 119.  2006. How fungi keep time: circadian system in Neurospora and other fungi. Curr. Opin. Microbiol. 9:579–87 [Google Scholar]
  120. Vitalini MW, de Paula RM, Park WD, Bell-Pedersen D. 120.  2006. The rhythms of life: circadian output pathways in Neurospora. J. Biol. Rhythms 21:432–44 [Google Scholar]
  121. Baker CL, Loros JJ, Dunlap JC. 121.  2012. The circadian clock of Neurospora crassa. FEMS Microbiol. Rev. 36:95–110 [Google Scholar]
  122. Cheng P, Yang Y, Heintzen C, Liu Y. 122.  2001. Coiled-coil domain–mediated FRQ–FRQ interaction is essential for its circadian clock function in Neurospora. EMBO J. 20:101–8 [Google Scholar]
  123. Gorl M, Merrow M, Huttner B, Johnson J, Roenneberg T, Brunner M. 123.  2001. A PEST-like element in FREQUENCY determines the length of the circadian period in Neurospora crassa. EMBO J. 20:7074–84 [Google Scholar]
  124. Schafmeier T, Káldi K, Diernfellner A, Mohr C, Brunner M. 124.  2006. Phosphorylation-dependent maturation of Neurospora circadian clock protein from a nuclear repressor toward a cytoplasmic activator. Genes Dev. 20:297–306 [Google Scholar]
  125. Garceau NY, Liu Y, Loros JJ, Dunlap JC. 125.  1997. Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein FREQUENCY. Cell 89:469–76 [Google Scholar]
  126. Colot HV, Loros JJ, Dunlap JC. 126.  2005. Temperature-modulated alternative splicing and promoter use in the circadian clock gene frequency. Mol. Biol. Cell 16:5563–71 [Google Scholar]
  127. Ruoff P, Loros JJ, Dunlap JC. 127.  2005. The relationship between FRQ-protein stability and temperature compensation in the Neurospora circadian clock. Proc. Natl. Acad. Sci. USA 102:17681–86 [Google Scholar]
  128. Diernfellner A, Colot HV, Dintsis O, Loros JJ, Dunlap JC, Brunner M. 128.  2007. Long and short isoforms of Neurospora clock protein FRQ support temperature-compensated circadian rhythms. FEBS Lett. 581:5759–64 [Google Scholar]
  129. Baker CL, Kettenbach AN, Loros JJ, Gerber SA, Dunlap JC. 129.  2009. Quantitative proteomics reveals a dynamic interactome and phase-specific phosphorylation in the Neurospora circadian clock. Mol. Cell 34:354–63 [Google Scholar]
  130. Querfurth C, Diernfellner ACR, Gin E, Malzahn E, Höfer T, Brunner M. 130.  2011. Circadian conformational change of the Neurospora clock protein FREQUENCY triggered by clustered hyperphosphorylation of a basic domain. Mol. Cell 43:713–22 [Google Scholar]
  131. Zhou M, Guo J, Cha J, Chae M, Chen S. 131.  et al. 2013. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 495:111–15 [Google Scholar]
  132. Cheng P, He Q, He Q, Wang L, Liu Y. 132.  2005. Regulation of the Neurospora circadian clock by an RNA helicase. Genes Dev. 19:234–41 [Google Scholar]
  133. Guo J, Cheng P, Liu Y. 133.  2010. Functional significance of FRH in regulating the phosphorylation and stability of Neurospora circadian clock protein FRQ. J. Biol. Chem. 285:11508–15 [Google Scholar]
  134. Shi M, Collett M, Loros JJ, Dunlap JC. 134.  2010. FRQ-interacting RNA helicase mediates negative and positive feedback in the Neurospora circadian clock. Genetics 184:351–61 [Google Scholar]
  135. Jackson RN, Klauer AA, Hintze BJ, Robinson H, van Hoof A, Johnson SJ. 135.  2010. The crystal structure of Mtr4 reveals a novel arch domain required for rRNA processing. EMBO J. 29:2205–16 [Google Scholar]
  136. Weir JR, Bonneau F, Hentschel J, Conti E. 136.  2010. Structural analysis reveals the characteristic features of Mtr4, a DExH helicase involved in nuclear RNA processing and surveillance. Proc. Natl. Acad. Sci. USA 107:12139–44 [Google Scholar]
  137. Guo J, Cheng P, Yuan H, Liu Y. 137.  2009. The exosome regulates circadian gene expression in a posttranscriptional negative feedback loop. Cell 138:1236–46 [Google Scholar]
  138. Belden WJ, Loros JJ, Dunlap JC. 138.  2007. Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH. Mol. Cell 25:587–600 [Google Scholar]
  139. Chen C-H, Dunlap JC, Loros JJ. 139.  2010. Neurospora illuminates fungal photoreception. Fungal Genet. Biol. 47:922–29 [Google Scholar]
  140. Cheng P, He Q, Yang Y, Wang L, Liu Y. 140.  2003. Functional conservation of light, oxygen, or voltage domains in light sensing. Proc. Natl. Acad. Sci. USA 100:5938–43 [Google Scholar]
  141. Chen C-H, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ. 141.  2009. Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J. 28:1029–42 [Google Scholar]
  142. Malzahn E, Ciprianidis S, Káldi K, Schafmeier T, Brunner M. 142.  2010. Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains. Cell 142:762–72 [Google Scholar]
  143. Heintzen C, Loros JJ, Dunlap JC. 143.  2001. The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell 104:453–64 [Google Scholar]
  144. Schwerdtfeger C, Linden H. 144.  2003. VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J. 22:4846–55 [Google Scholar]
  145. Shrode LB, Lewis ZA, White LD, Bell-Pedersen D, Ebbole DJ. 145.  2001. vvd is required for light adaptation of conidiation-specific genes of Neurospora crassa, but not circadian conidiation. Fungal Genet. Biol. 32:169–81 [Google Scholar]
  146. Crosson S, Rajagopal S, Moffat K. 146.  2003. The LOV domain family: photoresponsive signaling modules coupled to diverse output domains. Biochemistry 42:2–10 [Google Scholar]
  147. Briggs WR.147.  2007. Phototropins and their LOV domains: versatile plant blue-light receptors. J. Integr. Plant Biol. 49:4–10 [Google Scholar]
  148. Herrou J, Crosson S. 148.  2011. Function, structure and mechanism of bacterial photosensory LOV proteins. Nat. Rev. Microbiol. 9:713–23 [Google Scholar]
  149. Zoltowski BD, Gardner KH. 149.  2011. Tripping the light fantastic: blue-light photoreceptors as examples of environmentally modulated protein-protein interactions. Biochemistry 50:4–16 [Google Scholar]
  150. Zoltowski BD, Schwerdtfeger C, Widom J, Loros JJ, Bilwes AM. 150.  et al. 2007. Conformational switching in the fungal light sensor Vivid. Science 316:1054–57 [Google Scholar]
  151. Zoltowski BD, Crane BR. 151.  2008. Light activation of the LOV protein vivid generates a rapidly exchanging dimer. Biochemistry 47:7012–19 [Google Scholar]
  152. Zoltowski BD, Vaccaro B, Crane BR. 152.  2009. Mechanism-based tuning of a LOV domain photoreceptor. Nat. Chem. Biol. 5:827–34 [Google Scholar]
  153. Vaidya AT, Chen C-H, Dunlap JC, Loros JJ, Crane BR. 153.  2011. Structure of a light-activated LOV protein dimer that regulates transcription. Sci. Signal. 4:ra50 [Google Scholar]
  154. Lamb JS, Zoltowski BD, Pabit SA, Crane BR, Pollack L. 154.  2008. Time-resolved dimerization of a PAS-LOV protein measured with photocoupled small angle X-ray scattering. J. Am. Chem. Soc. 130:12226–27 [Google Scholar]
  155. Lamb JS, Zoltowski BD, Pabit SA, Li L, Crane BR, Pollack L. 155.  2009. Illuminating solution responses of a LOV domain protein with photocoupled small-angle X-ray scattering. J. Mol. Biol. 393:909–19 [Google Scholar]
  156. Peter E, Dick B, Baeurle SA. 156.  2012. Illuminating the early signaling pathway of a fungal light-oxygen-voltage photoreceptor. Proteins 80:471–81 [Google Scholar]
  157. Hunt SM, Thompson S, Elvin M, Heintzen C. 157.  2010. VIVID interacts with the WHITE COLLAR complex and FREQUENCY-interacting RNA helicase to alter light and clock responses in Neurospora. Proc. Natl. Acad. Sci. USA 107:16709–14 [Google Scholar]
  158. Sancar A.158.  2003. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 103:2203–37 [Google Scholar]
  159. Partch CL, Sancar A. 159.  2005. Photochemistry and photobiology of cryptochrome blue-light photopigments: the search for a photocycle. Photochem. Photobiol. 81:1291–304 [Google Scholar]
  160. Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T. 160.  et al. 2011. The cryptochromes: blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 62:335–64 [Google Scholar]
  161. Gegear RJ, Casselman A, Waddell S, Reppert SM. 161.  2008. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454:1014–18 [Google Scholar]
  162. Tang C-HA, Hinteregger E, Shang Y, Rosbash M. 162.  2010. Light-mediated TIM degradation within Drosophila pacemaker neurons (s-LNvs) is neither necessary nor sufficient for delay zone phase shifts. Neuron 66:378–85 [Google Scholar]
  163. Fogle KJ, Parson KG, Dahm NA, Holmes TC. 163.  2011. CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate. Science 331:1409–13 [Google Scholar]
  164. Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR. 164.  et al. 1999. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98:193–205 [Google Scholar]
  165. Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW. 165.  2003. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299:245–47 [Google Scholar]
  166. Panda S, Provencio I, Tu DC, Pires SS, Rollag MD. 166.  et al. 2003. Melanopsin is required for non-image-forming photic responses in blind mice. Science 301:525–27 [Google Scholar]
  167. Sancar A.167.  2004. Regulation of the mammalian circadian clock by cryptochrome. J. Biol. Chem. 279:34079–82 [Google Scholar]
  168. Carell T, Burgdorf LT, Kundu LM, Cichon M. 168.  2001. The mechanism of action of DNA photolyases. Curr. Opin. Chem. Biol. 5:491–98 [Google Scholar]
  169. Kanai S, Kikuno R, Toh H, Ryo H, Todo T. 169.  1997. Molecular evolution of the photolyase-blue-light photoreceptor family. J. Mol. Evol. 45:535–48 [Google Scholar]
  170. Brudler R, Hitomi K, Daiyasu H, Toh H, Kucho K-I. 170.  et al. 2003. Identification of a new cryptochrome class. Structure, function, and evolution. Mol. Cell 11:59–67 [Google Scholar]
  171. Lin C, Todo T. 171.  2005. The cryptochromes. Genome Biol. 6:220 [Google Scholar]
  172. Froy O, Chang DC, Reppert SM. 172.  2002. Redox potential: differential roles in dCRY and mCRY1 functions. Curr. Biol. 12:147–52 [Google Scholar]
  173. Oztürk N, Song SH, Ozgür S, Selby CP, Morrison L. 173.  et al. 2007. Structure and function of animal cryptochromes. Cold Spring Harb. Symp. Quant. Biol. 72:119–31 [Google Scholar]
  174. Yuan Q, Metterville D, Briscoe AD, Reppert SM. 174.  2007. Insect cryptochromes: Gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24:948–55 [Google Scholar]
  175. Oztürk N, Song SH, Selby CP, Sancar A. 175.  2008. Animal type 1 cryptochromes. Analysis of the redox state of the flavin cofactor by site-directed mutagenesis. J. Biol. Chem. 283:3256–63 [Google Scholar]
  176. Oztürk N, Selby CP, Song SH, Ye R, Tan C. 176.  et al. 2009. Comparative photochemistry of animal type 1 and type 4 cryptochromes. Biochemistry 48:8585–93 [Google Scholar]
  177. Naidoo N, Song W, Hunter-Ensor M, Sehgal A. 177.  1999. A role for the proteasome in the light response of the timeless clock protein. Science 285:1737–41 [Google Scholar]
  178. Koh K, Zheng X, Sehgal A. 178.  2006. JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS. Science 312:1809–12 [Google Scholar]
  179. Peschel N, Chen KF, Szabo G, Stanewsky R. 179.  2009. Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless. Curr. Biol. 19:241–47 [Google Scholar]
  180. Busza A, Emery-Le M, Rosbash M, Emery P. 180.  2004. Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception. Science 304:1503–6 [Google Scholar]
  181. Oztürk N, VanVickle–Chavez SJ, Akileswaran L, Van Gelder RN, Sancar A. 181.  2013. Ramshackle (Brwd3) promotes light-induced ubiquitylation of Drosophila cryptochrome by DDB1–CUL4–ROC1 E3 ligase complex. Proc. Natl. Acad. Sci. USA 110:4980–85 [Google Scholar]
  182. Ceriani MF, Darlington TK, Staknis D, Más P, Petti AA. 182.  et al. 1999. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285:553–56 [Google Scholar]
  183. Ishikawa T, Hirayama J, Kobayashi Y, Todo T. 183.  2002. Zebrafish CRY represses transcription mediated by CLOCK–BMAL heterodimer without inhibiting its binding to DNA. Genes Cells 7:1073–86 [Google Scholar]
  184. Hirayama J, Nakamura H, Ishikawa T, Kobayashi Y, Todo T. 184.  2003. Functional and structural analyses of cryptochrome. Vertebrate CRY regions responsible for interaction with the CLOCK:BMAL1 heterodimer and its nuclear localization. J. Biol. Chem. 278:35620–28 [Google Scholar]
  185. Czarna A, Breitkreuz H, Mahrenholz CC, Arens J, Strauss HM, Wolf E. 185.  2011. Quantitative analyses of cryptochrome–mBMAL1 interactions: mechanistic insights into the transcriptional regulation of the mammalian circadian clock. J. Biol. Chem. 286:22414–25 [Google Scholar]
  186. Busino L, Bassermann F, Maiolica A, Lee C, Nolan PM. 186.  et al. 2007. SCFFBXL3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316:900–4 [Google Scholar]
  187. Siepka SM, Yoo S-H, Park J, Song W, Kumar V. 187.  et al. 2007. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129:1011–23 [Google Scholar]
  188. Yoo S-H, Mohawk JA, Siepka SM, Shan Y, Huh SK. 188.  et al. 2013. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 152:1091–105 [Google Scholar]
  189. Zoltowski BD, Vaidya AT, Top D, Widom J, Young MW, Crane BR. 189.  2011. Structure of full-length Drosophila cryptochrome. Nature 480:396–99 [Google Scholar]
  190. Czarna A, Berndt A, Singh HR, Grudziecki A, Ladurner AG. 190.  et al. 2013. Structures of Drosophila cryptochrome and mouse cryptochrome 1 provide insight into circadian function. Cell 153:1394–405 [Google Scholar]
  191. Levy C, Zoltowski BD, Jones AR, Vaidya AT, Top D. 191.  et al. 2013. Updated structure of Drosophila cryptochrome. Nature 495:E3–4 [Google Scholar]
  192. Berndt A, Kottke T, Breitkreuz H, Dvorsky R, Hennig S. 192.  et al. 2007. A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. J. Biol. Chem. 282:13011–21 [Google Scholar]
  193. Selby CP, Sancar A. 193.  2012. The second chromophore in Drosophila photolyase/cryptochrome family photoreceptors. Biochemistry 51:167–71 [Google Scholar]
  194. Oztürk N, Selby CP, Annayev Y, Zhong D, Sancar A. 194.  2011. Reaction mechanism of Drosophila cryptochrome. Proc. Natl. Acad. Sci. USA 108:516–21 [Google Scholar]
  195. Xing W, Busino L, Hinds TR, Marionni ST, Saifee NH. 195.  et al. 2013. SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 496:64–68 [Google Scholar]
  196. Vieira J, Jones AR, Danon A, Sakuma M, Hoang N. 196.  et al. 2012. Human cryptochrome-1 confers light independent biological activity in transgenic Drosophila correlated with flavin radical stability. PLoS ONE 7:e31867 [Google Scholar]
  197. Hirota T, Lee JW, St John PC, Sawa M, Iwaisako K. 197.  et al. 2012. Identification of small molecule activators of cryptochrome. Science 337:1094–97 [Google Scholar]
  198. Nangle S, Zing W, Zheng N. 198.  2013. Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase. Cell Res. 23:1417–19 [Google Scholar]
  199. Tamai TK, Young LC, Whitmore D. 199.  2007. Light signaling to the zebrafish circadian clock by cryptochrome 1a. Proc. Natl. Acad. Sci. USA 104:14712–17 [Google Scholar]
  200. Rosato E, Codd V, Mazzotta G, Piccin A, Zordan M. 200.  et al. 2001. Light-dependent interaction between Drosophila CRY and the clock protein PER mediated by the carboxy terminus of CRY. Curr. Biol. 11:909–17 [Google Scholar]
  201. Hoang H, Huang X, Skibo EB. 201.  2008. Synthesis and in vitro evaluation of imidazole-based wakayin analogues. Org. Biomol. Chem. 6:3059–64 [Google Scholar]
  202. Li X, Wang Q, Yu X, Liu H, Yang H. 202.  et al. 2011. Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction. Proc. Natl. Acad. Sci. USA 108:20844–49 [Google Scholar]
  203. Vaidya AT, Top D, Manahan CC, Tokuda JM, Zhang S. 203.  et al. 2013. Flavin reduction acivates Drosophila cryptochrome. Proc. Natl. Acad. Sci. USA 110:20455–60 [Google Scholar]
  204. Ozturk N, Selby CP, Zhong D, Sancar A. 204.  2013. Mechanism of photosignaling by Drosophila cryptochrome: role of the redox status of the flavin cofactor. J. Biol. Chem. 2894634–42
  205. Chaves I, Nijman RM, Biernat MA, Bajek MI, Brand K. 205.  et al. 2011. The Potorous CPD photolyase rescues a cryptochrome-deficient mammalian circadian clock. PLoS ONE 6:e23447 [Google Scholar]
  206. Berson DM.206.  2003. Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci. 26:314–20 [Google Scholar]
  207. Hankins MW, Peirson SN, Foster RG. 207.  2008. Melanopsin: an exciting photopigment. Trends Neurosci. 31:27–36 [Google Scholar]
  208. Schmidt TM, Chen S-K, Hattar S. 208.  2011. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci. 34:572–80 [Google Scholar]
  209. Sexton T, Buhr E, Van Gelder RN. 209.  2012. Melanopsin and mechanisms of non-visual ocular photoreception. J. Biol. Chem. 287:1649–56 [Google Scholar]
  210. Lucas RJ.210.  2013. Mammalian inner retinal photoreception. Curr. Biol. 23:R125–33 [Google Scholar]
  211. Gooley JJ, Lu J, Chou TC, Scammell TE, Saper CB. 211.  2001. Melanopsin in cells of origin of the retinohypothalamic tract. Nat. Neurosci. 4:1165 [Google Scholar]
  212. Berson DM, Dunn FA, Takao M. 212.  2002. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–73 [Google Scholar]
  213. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. 213.  2002. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–70 [Google Scholar]
  214. Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. 214.  1998. Melanopsin: an opsin in melanophores, brain, and eye. Proc. Natl. Acad. Sci. USA 95:340–45 [Google Scholar]
  215. Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. 215.  2000. A novel human opsin in the inner retina. J. Neurosci. 20:600–5 [Google Scholar]
  216. Panda S, Antoch MP, Miller BH, Su AI, Schook AB. 216.  et al. 2002. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–20 [Google Scholar]
  217. Ruby NF, Brennan TJ, Xie X, Cao V, Franken P. 217.  et al. 2002. Role of melanopsin in circadian responses to light. Science 298:2211–13 [Google Scholar]
  218. Bellingham J, Chaurasia SS, Melyan Z, Liu C, Cameron MA. 218.  et al. 2006. Evolution of melanopsin photoreceptors: discovery and characterization of a new melanopsin in nonmammalian vertebrates. PLoS Biol. 4:e254 [Google Scholar]
  219. Kouyama T, Murakami M. 219.  2010. Structural divergence and functional versatility of the rhodopsin superfamily. Photochem. Photobiol. Sci. 9:1458–65 [Google Scholar]
  220. Sekharan S, Wei JN, Batista VS. 220.  2012. The active site of melanopsin: the biological clock photoreceptor. J. Am. Chem. Soc. 134:19536–39 [Google Scholar]
  221. Hermann R, Poppe L, Pilbák S, Boden C, Maurer J. 221.  et al. 2005. Predicted 3D structure of melanopsin, the non-rod, non-cone photopigment of the mammalian circadian clock, from Djungarian hamsters (Phodopus sungorus). Neurosci. Lett. 376:76–80 [Google Scholar]
  222. Kratochwil NA, Gatti-McArthur S, Hoener MC, Lindemann L, Christ AD. 222.  et al. 2011. G protein–coupled receptor transmembrane binding pockets and their applications in GPCR research and drug discovery: a survey. Curr. Topics Med. Chem. 11:1902–24 [Google Scholar]
  223. Murakami M, Kouyama T. 223.  2008. Crystal structure of squid rhodopsin. Nature 453:363–67 [Google Scholar]
  224. Zhou XE, Melcher K, Xu HE. 224.  2012. Structure and activation of rhodopsin. Acta Pharmacol. Sin. 33:291–99 [Google Scholar]
  225. Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N. 225.  et al. 2008. Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497–502 [Google Scholar]
  226. Choe H-W, Kim YJ, Park JH, Morizumi T, Pai EF. 226.  et al. 2011. Crystal structure of metarhodopsin II. Nature 471:651–55 [Google Scholar]
  227. Standfuss J, Edwards PC, D'Antona A, Fransen M, Xie G. 227.  et al. 2011. The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471:656–60 [Google Scholar]
  228. Rasmussen SGF, DeVree BT, Zou Y, Kruse AC, Chung KY. 228.  et al. 2011. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477:549–55 [Google Scholar]
  229. Chung KY, Rasmussen SGF, Liu T, Li S, DeVree BT. 229.  et al. 2011. Conformational changes in the G protein Gs induced by the β2 adrenergic receptor. Nature 477:611–15 [Google Scholar]
  230. Murakami M, Kouyama T. 230.  2011. Crystallographic analysis of the primary photochemical reaction of squid rhodopsin. J. Mol. Biol. 413:615–27 [Google Scholar]
  231. McDonald MJ, Rosbash M. 231.  2001. Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107:567–78 [Google Scholar]
  232. Koike N, Yoo SH, Huang HC, Kumar V, Lee C. 232.  et al. 2012. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338:349–54 [Google Scholar]
  233. Rodriguez J, Tang CH, Khodor YL, Vodala S, Menet JS, Rosbash M. 233.  2013. Nascent-Seq analysis of Drosophila cycling gene expression. Proc. Natl. Acad. Sci. USA 110:E275–284 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error