1932

Abstract

Genetic code expansion and reprogramming enable the site-specific incorporation of diverse designer amino acids into proteins produced in cells and animals. Recent advances are enhancing the efficiency of unnatural amino acid incorporation by creating and evolving orthogonal ribosomes and manipulating the genome. Increasing the number of distinct amino acids that can be site-specifically encoded has been facilitated by the evolution of orthogonal quadruplet decoding ribosomes and the discovery of mutually orthogonal synthetase/tRNA pairs. Rapid progress in moving genetic code expansion from bacteria to eukaryotic cells and animals ( and ) and the incorporation of useful unnatural amino acids has been aided by the development and application of the pyrrolysyl–transfer RNA (tRNA) synthetase/tRNA pair for unnatural amino acid incorporation. Combining chemoselective reactions with encoded amino acids has facilitated the installation of posttranslational modifications, as well as rapid derivatization with diverse fluorophores for imaging.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060713-035737
2014-06-02
2024-10-12
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-biochem-060713-035737
Loading
/content/journals/10.1146/annurev-biochem-060713-035737
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error