1932

Abstract

In eukaryotes, the translation initiation codon is generally identified by the scanning mechanism, wherein every triplet in the messenger RNA leader is inspected for complementarity to the anticodon of methionyl initiator transfer RNA (Met-tRNA). Binding of Met-tRNA to the small (40S) ribosomal subunit, in a ternary complex (TC) with eIF2-GTP, is stimulated by eukaryotic initiation factor 1 (eIF1), eIF1A, eIF3, and eIF5, and the resulting preinitiation complex (PIC) joins the 5′ end of mRNA preactivated by eIF4F and poly(A)-binding protein. RNA helicases remove secondary structures that impede ribosome attachment and subsequent scanning. Hydrolysis of eIF2-bound GTP is stimulated by eIF5 in the scanning PIC, but completion of the reaction is impeded at non-AUG triplets. Although eIF1 and eIF1A promote scanning, eIF1 and possibly the C-terminal tail of eIF1A must be displaced from the P decoding site to permit base-pairing between Met-tRNA and the AUG codon, as well as to allow subsequent phosphate release from eIF2-GDP. A second GTPase, eIF5B, catalyzes the joining of the 60S subunit to produce an 80S initiation complex that is competent for elongation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060713-035802
2014-06-02
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/biochem/83/1/annurev-biochem-060713-035802.html?itemId=/content/journals/10.1146/annurev-biochem-060713-035802&mimeType=html&fmt=ahah

Literature Cited

  1. Hinnebusch AG, Dever TE, Asano K. 1.  2007. Mechanism of translation initiation in the yeast Saccharomyces cerevisiae. Translational Control in Biology and Medicine MB Mathews, N Sonenberg, JWB Hershey 225–68 Cold Spring Harbor, N.Y.: Cold Spring Harb. Lab. [Google Scholar]
  2. Kozak M.2.  1978. How do eucaryotic ribosomes select initiation regions in messenger RNA?. Cell 15:1109–23 [Google Scholar]
  3. Kozak M.3.  1979. Inability of circular mRNA to attach to eukaryotic ribosomes. Nature 280:82–85 [Google Scholar]
  4. Sherman F, Stewart JW. 4.  1982. Mutations altering initiation of translation of yeast iso-1-cytochrome c: contrasts between the eukaryotic and prokaryotic initiation process. The Molecular Biology of the Yeast Saccharomyces Metabolism and Gene Expression JN Strathern, EW Jones, JR Broach 301–34 Cold Spring Harbor, N.Y.: Cold Spring Harb. Lab. [Google Scholar]
  5. Sherman F, Stewart JW, Schweingruber AM. 5.  1980. Mutants of yeast initiating translation of iso-1-cytochrome c within a region spanning 37 nucleotides. Cell 20:215–22 [Google Scholar]
  6. Kozak M.6.  1984. Selection of initiation sites by eucaryotic ribosomes: effect of inserting AUG triplets upstream from the coding sequence for preproinsulin. Nucleic Acids Res. 12:3873–93 [Google Scholar]
  7. Kozak M.7.  1986. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–92 [Google Scholar]
  8. Hinnebusch AG.8.  2011. Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiol. Mol. Biol. Rev. 75:434–67 [Google Scholar]
  9. Pelletier J, Sonenberg N. 9.  1985. Insertion mutagenesis to increase secondary structure within the 5′ noncoding region of a eukaryotic mRNA reduces translational efficiency. Cell 40:515–26 [Google Scholar]
  10. Kozak M.10.  1986. Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA 83:2850–54 [Google Scholar]
  11. Pestova TV, Lorsch JR, Hellen CUT. 11.  2007. The mechanism of translation initiation in eukaryotes. Translational Control in Biology and Medicine MB Mathews, N Sonenberg, JWB Hershey 87–128 Cold Spring Harbor, N.Y.: Cold Spring Harb. Lab. [Google Scholar]
  12. Lorsch JR, Dever TE. 12.  2010. Molecular view of 43S complex formation and start site selection in eukaryotic translation initiation. J. Biol. Chem. 285:21203–7 [Google Scholar]
  13. Sonenberg N, Hinnebusch AG. 13.  2009. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–45 [Google Scholar]
  14. Rajyaguru P, Parker R. 14.  2012. RGG motif proteins: modulators of mRNA functional states. Cell Cycle 11:2594–99 [Google Scholar]
  15. Jackson RJ, Kaminski A, Poyry TAA. 15.  2007. Coupled termination–reinitiation events in mRNA translation. Translational Control in Biology and Medicine MB Mathews, N Sonenberg, JWB Hershey 197–224 Cold Spring Harbor, N.Y.: Cold Spring Harb. Lab. [Google Scholar]
  16. Kozak M.16.  1987. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol. Cell. Biol. 7:3438–45 [Google Scholar]
  17. Hinnebusch AG.17.  2005. Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 59:407–50 [Google Scholar]
  18. Hinnebusch AG.18.  2006. eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem. Sci. 31:553–62 [Google Scholar]
  19. Lawless C, Pearson RD, Selley JN, Smirnova JB, Grant CM. 19.  et al. 2009. Upstream sequence elements direct post-transcriptional regulation of gene expression under stress conditions in yeast. BMC Genomics 10:7–26 [Google Scholar]
  20. Kertesz M, Wan Y, Mazor E, Rinn JL, Nutter RC. 20.  et al. 2010. Genome-wide measurement of RNA secondary structure in yeast. Nature 467:103–7 [Google Scholar]
  21. Doudna JA, Sarnow P. 21.  2007. Translation initiation by viral internal ribosome entry sites. Translational Control in Biology and Medicine MB Mathews, N Sonenberg, JWB Hershey 129–54 Cold Spring Harbor, N.Y.: Cold Spring Harb. Lab. [Google Scholar]
  22. Jackson RJ.22.  2013. The current status of vertebrate cellular mRNA IRESs. Cold Spring Harb. Perspect. Biol. 5:a011569 [Google Scholar]
  23. Erickson FL, Hannig EM. 23.  1996. Ligand interactions with eukaryotic translation initiation factor 2: role of the γ-subunit. EMBO J. 15:6311–20 [Google Scholar]
  24. Kapp LD, Lorsch JR. 24.  2004. GTP-dependent recognition of the methionine moiety on initiator tRNA by translation factor eIF2. J. Mol. Biol. 335:923–36 [Google Scholar]
  25. Wagner T, Gross M, Sigler PB. 25.  1984. Isoleucyl initiator tRNA does not initiate eucaryotic protein synthesis. J. Biol. Chem. 259:4706–9 [Google Scholar]
  26. Farruggio D, Chaudhuri J, Maitra U, RajBhandary UL. 26.  1996. The A1 × U72 base pair conserved in eukaryotic initiator tRNAs is important specifically for binding to the eukaryotic translation initiation factor eIF2. Mol. Cell. Biol. 16:4248–56 [Google Scholar]
  27. Kapp LD, Kolitz SE, Lorsch JR. 27.  2006. Yeast initiator tRNA identity elements cooperate to influence multiple steps of translation initiation. RNA 12:751–64 [Google Scholar]
  28. Astrom SU, von Pawel–Rammingen U, Bystrom AS. 28.  1993. The yeast initiator tRNAMet can act as an elongator tRNAMet in vivo. J. Mol. Biol. 233:43–58 [Google Scholar]
  29. RajBhandary UL, Chow CM. 29.  1995. Initiator tRNAs and initiation of protein synthesis. tRNA Structure, Biosynthesis, and Function D Soll, UL RajBhandary 511–28 Washington, DC: Am. Soc. Microbiol. [Google Scholar]
  30. Benelli D, Londei P. 30.  2011. Translation initiation in Archaea: conserved and domain-specific features. Biochem. Soc. Trans. 39:89–93 [Google Scholar]
  31. Schmitt E, Blanquet S, Mechulam Y. 31.  2002. The large subunit of initiation factor aIF2 is a close structural homologue of elongation factors. EMBO J. 21:1821–32 [Google Scholar]
  32. Roll-Mecak A, Alone P, Cao C, Dever TE, Burley SK. 32.  2004. X-ray structure of translation initiation factor eIF2γ: implications for tRNA and eIF2α binding. J. Biol. Chem. 279:10634–42 [Google Scholar]
  33. Pedullà N, Palermo R, Hasenöhrl D, Bläsi U, Cammarano P, Londei P. 33.  2005. The archaeal eIF2 homologue: functional properties of an ancient translation initiation factor. Nucleic Acids Res. 33:1804–12 [Google Scholar]
  34. Yatime L, Schmitt E, Blanquet S, Mechulam Y. 34.  2004. Functional molecular mapping of archaeal translation initiation factor 2. J. Biol. Chem. 279:15984–93 [Google Scholar]
  35. Yatime L, Mechulam Y, Blanquet S, Schmitt E. 35.  2006. Structural switch of the γ subunit in an archaeal aIF2αγ heterodimer. Structure 14:119–28 [Google Scholar]
  36. Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshetnikova L. 36.  et al. 1995. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270:1464–72 [Google Scholar]
  37. Schmitt E, Panvert M, Lazennec-Schurdevin C, Coureux PD, Perez J. 37.  et al. 2012. Structure of the ternary initiation complex aIF2–GDPNP–methionylated initiator tRNA. Nat. Struct. Mol. Biol. 19:450–54 [Google Scholar]
  38. Sokabe M, Yao M, Sakai N, Toya S, Tanaka I. 38.  2006. Structure of archaeal translational initiation factor 2βγ–GDP reveals significant conformational change of the β-subunit and switch 1 region. Proc. Natl. Acad. Sci. USA 103:13016–21 [Google Scholar]
  39. Yatime L, Mechulam Y, Blanquet S, Schmitt E. 39.  2007. Structure of an archaeal heterotrimeric initiation factor 2 reveals a nucleotide state between the GTP and the GDP states. Proc. Natl. Acad. Sci. USA 104:18445–50 [Google Scholar]
  40. Stolboushkina E, Nikonov S, Nikulin A, Bläsi U, Manstein DJ. 40.  et al. 2008. Crystal structure of the intact archaeal translation initiation factor 2 demonstrates very high conformational flexibility in the α- and β-subunits. J. Mol. Biol. 382:680–91 [Google Scholar]
  41. Schmitt E, Naveau M, Mechulam Y. 41.  2010. Eukaryotic and archaeal translation initiation factor 2: a heterotrimeric tRNA carrier. FEBS Lett. 584:405–12 [Google Scholar]
  42. Nika J, Rippel S, Hannig EM. 42.  2001. Biochemical analysis of the eIF2βγ complex reveals a structural function for eIF2α in catalyzed nucleotide exchange. J. Biol. Chem. 276:1051–56 [Google Scholar]
  43. Shin BS, Kim JR, Walker SE, Dong J, Lorsch JR, Dever TE. 43.  2011. Initiation factor eIF2 promotes eIF2–GTP–Met-tRNAiMet ternary complex binding to the 40S ribosome. Nat. Struct. Mol. Biol. 18:1227–34 [Google Scholar]
  44. Naveau M, Lazennec-Schurdevin C, Panvert M, Dubiez E, Mechulam Y, Schmitt E. 44.  2013. Roles of yeast eIF2α and eIF2β subunits in the binding of the initiator methionyl-tRNA. Nucleic Acids Res. 41:1047–57 [Google Scholar]
  45. Naveau M, Lazennec-Schurdevin C, Panvert M, Mechulam Y, Schmitt E. 45.  2010. tRNA binding properties of eukaryotic translation initiation factor 2 from Encephalitozoon cuniculi. Biochemistry 49:8680–88 [Google Scholar]
  46. Hashem Y, des Georges A, Dhote V, Langlois R, Liao HY. 46.  et al. 2013. Structure of the mammalian ribosomal 43S preinitiation complex bound to the scanning factor DHX29. Cell 153:1108–19 [Google Scholar]
  47. Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. 47.  2011. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334:1524–29 [Google Scholar]
  48. Pisarev AV, Kolupaeva VG, Pisareva VP, Merrick WC, Hellen CU, Pestova TV. 48.  2006. Specific functional interactions of nucleotides at key −3 and +4 positions flanking the initiation codon with components of the mammalian 48S translation initiation complex. Genes Dev. 20:624–36 [Google Scholar]
  49. Erickson FL, Nika J, Rippel S, Hannig EM. 49.  2001. Minimum requirements for the function of eukaryotic translation initiation factor 2. Genetics 158:123–32 [Google Scholar]
  50. Trachsel H, Erni B, Schreier MH, Staehelin T. 50.  1977. Initiation of mammalian protein synthesis: the assembly of the initiation complex with purified initiation factors. J. Mol. Biol. 116:755–67 [Google Scholar]
  51. Benne R, Hershey JWB. 51.  1978. The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J. Biol. Chem. 253:3078–87 [Google Scholar]
  52. Peterson DT, Merrick WC, Safer B. 52.  1979. Binding and release of radiolabeled eukaroytic initiation factors 2 and 3 during 80 S initiation complex formation. J. Biol. Chem. 254:2509–19 [Google Scholar]
  53. Thomas A, Spaan W, van Steeg H, Voorma HO, Benne R. 53.  1980. Mode of action of protein synthesis initiation factor eIF-1 from rabbit reticulocytes. FEBS Lett. 116:67–71 [Google Scholar]
  54. Chaudhuri J, Si K, Maitra U. 54.  1997. Function of eukaryotic translation initiation factor 1A (eIF1A) (formerly called eIF-4C) in initiation of protein synthesis. J. Biol. Chem. 272:7883–91 [Google Scholar]
  55. Chaudhuri J, Chowdhury D, Maitra U. 55.  1999. Distinct functions of eukaryotic translation initiation factors eIF1A and eIF3 in the formation of the 40S ribosomal preinitiation complex. J. Biol. Chem. 274:17975–80 [Google Scholar]
  56. Algire MA, Maag D, Savio P, Acker MG, Tarun SZ Jr. 56.  et al. 2002. Development and characterization of a reconstituted yeast translation initiation system. RNA 8:382–97 [Google Scholar]
  57. Majumdar R, Bandyopadhyay A, Maitra U. 57.  2003. Mammalian translation initiation factor eIF1 functions with eIF1A and eIF3 in the formation of a stable 40S preinitiation complex. J. Biol. Chem. 278:6580–87 [Google Scholar]
  58. Kolupaeva VG, Unbehaun A, Lomakin IB, Hellen CU, Pestova TV. 58.  2005. Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation and anti-association. RNA 11:470–86 [Google Scholar]
  59. Maag D, Fekete CA, Gryczynski Z, Lorsch JR. 59.  2005. A conformational change in the eukaryotic translation preinitiation complex and release of eIF1 signal recognition of the start codon. Mol. Cell 17:265–75 [Google Scholar]
  60. Benne R, Hershey JWB. 60.  1976. Purification and characterization of initiation factor IF-E3 from rabbit reticulocytes. Proc. Natl. Acad. Sci. USA 73:3005–9 [Google Scholar]
  61. Fraser CS, Lee JY, Mayeur GL, Bushell M, Doudna JA, Hershey JWB. 61.  2004. The j-subunit of human translation initiation factor eIF3 is required for the stable binding of eIF3 and its subcomplexes to 40 S ribosomal subunits in vitro. J. Biol. Chem. 279:8946–56 [Google Scholar]
  62. Maag D, Lorsch JR. 62.  2003. Communication between eukaryotic translation initiation factors 1 and 1A on the yeast small ribosomal subunit. J. Mol. Biol. 330:917–24 [Google Scholar]
  63. Sokabe M, Fraser CS, Hershey JWB. 63.  2012. The human translation initiation multi-factor complex promotes methionyl-tRNAi binding to the 40S ribosomal subunit. Nucleic Acids Res. 40:905–13 [Google Scholar]
  64. Nanda JS, Saini AK, Munoz AM, Hinnebusch AG, Lorsch JR. 64.  2013. Coordinated movements of eukaryotic translation initiation factors eIF1, eIF1A, and eIF5 trigger phosphate release from eIF2 in response to start codon recognition by the ribosomal preinitiation complex. J. Biol. Chem. 288:5316–29 [Google Scholar]
  65. Fletcher CM, Pestova TV, Hellen CUT, Wagner G. 65.  1999. Structure and interactions of the translation initiation factor eIF1. EMBO J. 18:2631–39 [Google Scholar]
  66. Battiste JB, Pestova TV, Hellen CUT, Wagner G. 66.  2000. The eIF1A solution structure reveals a large RNA-binding surface important for scanning function. Mol. Cell 5:109–19 [Google Scholar]
  67. Reibarkh M, Yamamoto Y, Singh CR, del Rio F, Fahmy A. 67.  et al. 2008. Eukaryotic initiation factor (eIF) 1 carries two distinct eIF5-binding faces important for multifactor assembly and AUG selection. J. Biol. Chem. 283:1094–103 [Google Scholar]
  68. Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N. 68.  2011. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331:730–36 [Google Scholar]
  69. Yu Y, Marintchev A, Kolupaeva VG, Unbehaun A, Veryasova T. 69.  et al. 2009. Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing. Nucleic Acids Res. 37:5167–82 [Google Scholar]
  70. Lomakin IB, Steitz TA. 70.  2013. The initiation of mammalian protein synthesis and mRNA scanning mechanism. Nature 500:307–11 [Google Scholar]
  71. Weisser M, Voigts-Hoffmann F, Rabl J, Leibundgut M, Ban N. 71.  2013. The crystal structure of the eukaryotic 40S ribosomal subunit in complex with eIF1 and eIF1A. Nat. Struct. Mol. Biol. 20:1015–17 [Google Scholar]
  72. Lomakin IB, Kolupaeva VG, Marintchev A, Wagner G, Pestova TV. 72.  2003. Position of eukaryotic initiation factor eIF1 on the 40S ribosomal subunit determined by directed hydroxyl radical probing. Genes Dev. 17:2786–97 [Google Scholar]
  73. Cheung YN, Maag D, Mitchell SF, Fekete CA, Algire MA. 73.  et al. 2007. Dissociation of eIF1 from the 40S ribosomal subunit is a key step in start codon selection in vivo. Genes Dev. 21:1217–30 [Google Scholar]
  74. Fekete CA, Applefield DJ, Blakely SA, Shirokikh N, Pestova T. 74.  et al. 2005. The eIF1A C-terminal domain promotes initiation complex assembly, scanning and AUG selection in vivo. EMBO J. 24:3588–601 [Google Scholar]
  75. Fekete CA, Mitchell SF, Cherkasova VA, Applefield D, Algire MA. 75.  et al. 2007. N- and C-terminal residues of eIF1A have opposing effects on the fidelity of start codon selection. EMBO J. 26:1602–14 [Google Scholar]
  76. Saini AK, Nanda JS, Lorsch JR, Hinnebusch AG. 76.  2010. Regulatory elements in eIF1A control the fidelity of start codon selection by modulating tRNAiMet binding to the ribosome. Genes Dev. 24:97–110 [Google Scholar]
  77. Singh CR, He H, Ii M, Yamamoto Y, Asano K. 77.  2004. Efficient incorporation of eukaryotic initiation factor 1 into the multifactor complex is critical for formation of functional ribosomal preinitiation complexes in vivo. J. Biol. Chem. 279:31910–20 [Google Scholar]
  78. Unbehaun A, Borukhov SI, Hellen CU, Pestova TV. 78.  2004. Release of initiation factors from 48S complexes during ribosomal subunit joining and the link between establishment of codon–anticodon base-pairing and hydrolysis of eIF2-bound GTP. Genes Dev. 18:3078–93 [Google Scholar]
  79. Phan L, Zhang X, Asano K, Anderson J, Vornlocher HP. 79.  et al. 1998. Identification of a translation initiation factor 3 (eIF3) core complex, conserved in yeast and mammals, that interacts with eIF5. Mol. Cell. Biol. 18:4935–46 [Google Scholar]
  80. Valášek L, Phan L, Schoenfeld LW, Valásková V, Hinnebusch AG. 80.  2001. Related eIF3 subunits TIF32 and HCR1 interact with an RNA recognition motif in PRT1 required for eIF3 integrity and ribosome binding. EMBO J. 20:891–904 [Google Scholar]
  81. Zhou M, Sandercock AM, Fraser CS, Ridlova G, Stephens E. 81.  et al. 2008. Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3. Proc. Natl. Acad. Sci. USA 105:18139–44 [Google Scholar]
  82. Phan L, Schoenfeld LW, Valášek L, Nielsen KH, Hinnebusch AG. 82.  2001. A subcomplex of three eIF3 subunits binds eIF1 and eIF5 and stimulates ribosome binding of mRNA and tRNAiMet. EMBO J. 20:2954–65 [Google Scholar]
  83. Sun C, Todorovic A, Querol-Audi J, Bai Y, Villa N. 83.  et al. 2011. Functional reconstitution of human eukaryotic translation initiation factor 3 (eIF3). Proc. Natl. Acad. Sci. USA 108:20473–78 [Google Scholar]
  84. Masutani M, Sonenberg N, Yokoyama S, Imataka H. 84.  2007. Reconstitution reveals the functional core of mammalian eIF3. EMBO J. 26:3373–83 [Google Scholar]
  85. Querol-Audi J, Sun C, Vogan JM, Smith MD, Gu Y. 85.  et al. 2013. Architecture of human translation initiation factor 3. Structure 6:920–28 [Google Scholar]
  86. Siridechadilok B, Fraser CS, Hall RJ, Doudna JA, Nogales E. 86.  2005. Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science 310:1513–15 [Google Scholar]
  87. Cuchalová L, Kouba T, Herrmannová A, Dányi I, Chiu WL, Valášek L. 87.  2010. The RNA recognition motif of eukaryotic translation initiation factor 3g (eIF3g) is required for resumption of scanning of posttermination ribosomes for reinitiation on GCN4 and together with eIF3i stimulates linear scanning. Mol. Cell. Biol. 30:4671–86 [Google Scholar]
  88. Elantak L, Wagner S, Herrmannová A, Karásková M, Rutkai E. 88.  et al. 2010. The indispensable N-terminal half of eIF3j/HCR1 cooperates with its structurally conserved binding partner eIF3b/PRT1–RRM and with eIF1A in stringent AUG selection. J. Mol. Biol. 396:1097–116 [Google Scholar]
  89. Herrmannová A, Daujotyte D, Yang JC, Cuchalová L, Gorrec F. 89.  et al. 2012. Structural analysis of an eIF3 subcomplex reveals conserved interactions required for a stable and proper translation pre-initiation complex assembly. Nucleic Acids Res. 40:2294–311 [Google Scholar]
  90. Wei Z, Zhang P, Zhou Z, Cheng Z, Wan M, Gong W. 90.  2004. Crystal structure of human eIF3k, the first structure of eIF3 subunits. J. Biol. Chem. 279:34983–90 [Google Scholar]
  91. Nielsen KH, Valášek L, Sykes C, Jivotovskaya A, Hinnebusch AG. 91.  2006. Interaction of the RNP1 motif in PRT1 with HCR1 promotes 40S binding of eukaryotic initiation factor 3 in yeast. Mol. Cell. Biol. 26:2984–98 [Google Scholar]
  92. Elantak L, Tzakos AG, Locker N, Lukavsky PJ. 92.  2007. Structure of eIF3b-RRM and its interaction with eIF3j: structural insights into the recruitment of eIF3b to the 40S ribosomal subunit. J. Biol. Chem. 282:8165–74 [Google Scholar]
  93. Fraser CS, Berry KE, Hershey JWB, Doudna JA. 93.  2007. eIF3j is located in the decoding center of the human 40S ribosomal subunit. Mol. Cell 26:811–19 [Google Scholar]
  94. Pisarev AV, Kolupaeva VG, Yusupov MM, Hellen CU, Pestova TV. 94.  2008. Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes. EMBO J. 27:1609–21 [Google Scholar]
  95. Ben-Shem A, Jenner L, Yusupova G, Yusupov M. 95.  2010. Crystal structure of the eukaryotic ribosome. Science 330:1203–9 [Google Scholar]
  96. Valášek L, Mathew A, Shin BS, Nielsen KH, Szamecz B, Hinnebusch AG. 96.  2003. The yeast eIF3 subunits TIF32/a and NIP1/c and eIF5 make critical connections with the 40S ribosome in vivo. Genes Dev. 17:786–99 [Google Scholar]
  97. Kouba T, Dányi I, Gunisova S, Munzarova V, Vlckova V. 97.  et al. 2012. Small ribosomal protein RPS0 stimulates translation initiation by mediating 40S-binding of eIF3 via its direct contact with the eIF3a/TIF32 subunit. PLoS ONE 7:e40464 [Google Scholar]
  98. Chiu WL, Wagner S, Herrmannová A, Burela L, Zhang F. 98.  et al. 2010. The C-terminal region of eukaryotic translation initiation factor 3a (eIF3a) promotes mRNA recruitment, scanning, and, together with eIF3j and the eIF3b RNA recognition motif, selection of AUG start codons. Mol. Cell. Biol. 30:4415–34 [Google Scholar]
  99. Kouba T, Rutkai E, Karásková M, Valášek L. 99.  2012. The eIF3c/NIP1 PCI domain interacts with RNA and RACK1/ASC1 and promotes assembly of translation preinitiation complexes. Nucleic Acids Res. 40:2683–99 [Google Scholar]
  100. Luna RE, Arthanari H, Hiraishi H, Nanda J, Martin-Marcos P. 100.  et al. 2012. The C-terminal domain of eukaryotic initiation factor 5 promotes start codon recognition by its dynamic interplay with eIF1 and eIF2β. Cell Rep. 1:689–702 [Google Scholar]
  101. Valášek L, Nielsen KH, Hinnebusch AG. 101.  2002. Direct eIF2–eIF3 contact in the multifactor complex is important for translation initiation in vivo. EMBO J. 21:5886–98 [Google Scholar]
  102. Valášek L, Nielsen KH, Zhang F, Fekete CA, Hinnebusch AG. 102.  2004. Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIP1/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection. Mol. Cell. Biol. 24:9437–55 [Google Scholar]
  103. Asano K, Krishnamoorthy T, Phan L, Pavitt GD, Hinnebusch AG. 103.  1999. Conserved bipartite motifs in yeast eIF5 and eIF2Bε, GTPase-activating and GDP–GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2. EMBO J. 18:1673–88 [Google Scholar]
  104. Asano K, Clayton J, Shalev A, Hinnebusch AG. 104.  2000. A multifactor complex of eukaryotic initiation factors eIF1, eIF2, eIF3, eIF5, and initiator tRNAMet is an important translation initiation intermediate in vivo. Genes Dev. 14:2534–46 [Google Scholar]
  105. Singh CR, Yamamoto Y, Asano K. 105.  2004. Physical association of eukaryotic initiation factor (eIF) 5 carboxyl-terminal domain with the lysine-rich eIF2β segment strongly enhances its binding to eIF3. J. Biol. Chem. 279:49644–55 [Google Scholar]
  106. Yamamoto Y, Singh CR, Marintchev A, Hall NS, Hannig EM. 106.  et al. 2005. The eukaryotic initiation factor (eIF) 5 HEAT domain mediates multifactor assembly and scanning with distinct interfaces to eIF1, eIF2, eIF3, and eIF4G. Proc. Natl. Acad. Sci. USA 102:16164–69 [Google Scholar]
  107. Karásková M, Gunisova S, Herrmannová A, Wagner S, Munzarova V, Valášek L. 107.  2012. Functional characterization of the role of the N-terminal domain of the c/Nip1 subunit of eukaryotic initiation factor 3 (eIF3) in AUG recognition. J. Biol. Chem. 287:28420–34 [Google Scholar]
  108. Das S, Maiti T, Das K, Maitra U. 108.  1997. Specific interaction of eukaryotic translation initiation factor 5 (eIF5) with the β-subunit of eIF2. J. Biol. Chem. 272:31712–18 [Google Scholar]
  109. Singh CR, Curtis C, Yamamoto Y, Hall NS, Kruse DS. 109.  et al. 2005. Eukaryotic translation initiation factor 5 is critical for integrity of the scanning preinitiation complex and accurate control of GCN4 translation. Mol. Cell. Biol. 25:5480–91 [Google Scholar]
  110. Jivotovskaya AV, Valášek L, Hinnebusch AG, Nielsen KH. 110.  2006. Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast. Mol. Cell. Biol. 26:1355–72 [Google Scholar]
  111. Das S, Maitra U. 111.  2000. Mutational analysis of mammalian translation initiation factor 5 (eIF5): role of interaction between the β subunit of eIF2 and eIF5 in eIF5 function in vitro and in vivo. Mol. Cell. Biol. 20:3942–50 [Google Scholar]
  112. Bieniossek C, Schütz P, Bumann M, Limacher A, Uson I, Baumann U. 112.  2006. The crystal structure of the carboxy-terminal domain of human translation initiation factor eIF5. J. Mol. Biol. 360:457–65 [Google Scholar]
  113. Dominguez D, Altmann M, Benz J, Baumann U, Trachsel H. 113.  1999. Interaction of translation initiation factor eIF4G with eIF4A in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 274:26720–26 [Google Scholar]
  114. Dominguez D, Kislig E, Altmann M, Trachsel H. 114.  2001. Structural and functional similarities between the central eukaryotic initiation factor (eIF)4A-binding domain of mammalian eIF4G and the eIF4A-binding domain of yeast eIF4G. Biochem. J. 355:223–30 [Google Scholar]
  115. Imataka H, Sonenberg N. 115.  1997. Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Mol. Cell. Biol. 17:6940–47 [Google Scholar]
  116. Neff CL, Sachs AB. 116.  1999. Eukaryotic translation initiation factors eIF4G and eIF4A from Saccharomyces cerevisiae physically and functionally interact. Mol. Cell. Biol. 19:5557–64 [Google Scholar]
  117. Pause A, Méthot N, Svitkin Y, Merrick WC, Sonenberg N. 117.  1994. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J. 13:1205–15 [Google Scholar]
  118. Rogers GW Jr, Komar AA, Merrick WC. 118.  2002. eIF4A: the godfather of the DEAD box helicases. Prog. Nucleic Acid Res. Mol. Biol. 72:307–31 [Google Scholar]
  119. Schütz P, Bumann M, Oberholzer AE, Bieniossek C, Trachsel H. 119.  et al. 2008. Crystal structure of the yeast eIF4A–eIF4G complex: an RNA-helicase controlled by protein–protein interactions. Proc. Natl. Acad. Sci. USA 105:9564–69 [Google Scholar]
  120. Caruthers JM, Johnson ER, McKay DB. 120.  2000. Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. Proc. Natl. Acad. Sci. USA 97:13080–85 [Google Scholar]
  121. Oberer M, Marintchev A, Wagner G. 121.  2005. Structural basis for the enhancement of eIF4A helicase activity by eIF4G. Genes Dev. 19:2212–23 [Google Scholar]
  122. Hilbert M, Kebbel F, Gubaev A, Klostermeier D. 122.  2011. eIF4G stimulates the activity of the DEAD box protein eIF4A by a conformational guidance mechanism. Nucleic Acids Res. 39:2260–70 [Google Scholar]
  123. Feoktistova K, Tuvshintogs E, Do A, Fraser CS. 123.  2013. Human eIF4E promotes mRNA restructuring by stimulating eIF4A helicase activity. Proc. Natl. Acad. Sci. USA 110:13339–44 [Google Scholar]
  124. Blum S, Schmid SR, Pause A, Buser P, Linder P. 124.  et al. 1992. ATP hydrolysis by initiation factor 4A is required for translation initiation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89:7664–68 [Google Scholar]
  125. Svitkin Y, Pause A, Haghighat A, Pyronnet S, Witherell GW. 125.  et al. 2001. The requirement for eukaryotic initiation factor 4A (eIF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA 7:382–94 [Google Scholar]
  126. Pestova TV, Kolupaeva VG. 126.  2002. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev. 16:2906–22 [Google Scholar]
  127. Mitchell SF, Walker SE, Algire MA, Park EH, Hinnebusch AG, Lorsch JR. 127.  2010. the 5′-7-methylguanosine cap on eukaryotic mRNAs serves both to stimulate canonical translation initiation and block an alternative pathway. Mol. Cell 39:950–62 [Google Scholar]
  128. Blum S, Schmid SR, Pause A, Buser P, Linder P. 128.  et al. 1992. ATP hydrolysis by initiation factor 4A is required for translation initiation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89:7664–68 [Google Scholar]
  129. Park EH, Zhang F, Warringer J, Sunnerhagen P, Hinnebusch AG. 129.  2011. Depletion of eIF4G from yeast cells narrows the range of translational efficiencies genome-wide. BMC Genomics 12:1–18 [Google Scholar]
  130. Sengoku T, Nureki O, Nakamura A, Kobayashi S, Yokoyama S. 130.  2006. Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125:287–300 [Google Scholar]
  131. Liu F, Putnam A, Jankowsky E. 131.  2008. ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Proc. Natl. Acad. Sci. USA 105:20209–14 [Google Scholar]
  132. Parsyan A, Svitkin Y, Shahbazian D, Gkogkas C, Lasko P. 132.  et al. 2011. mRNA helicases: the tacticians of translational control. Nat. Rev. Mol. Cell Biol. 12:235–45 [Google Scholar]
  133. Korneeva NL, Lamphear BJ, Hennigan FL, Rhoads RE. 133.  2000. Mutually cooperative binding of eukaryotic translation initiation factor (eIF) 3 and eIF4A to human eIF4G-1. J. Biol. Chem. 275:41369–76 [Google Scholar]
  134. LeFebvre AK, Korneeva NL, Trutschl M, Cvek U, Duzan RD. 134.  et al. 2006. Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e subunit. J. Biol. Chem. 281:22917–32 [Google Scholar]
  135. Marintchev A, Edmonds K, Marintcheva B, Hendrickson E, Oberer M. 135.  et al. 2009. Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation. Cell 136:447–60 [Google Scholar]
  136. Asano K, Shalev A, Phan L, Nielsen K, Clayton J. 136.  et al. 2001. Multiple roles for the carboxyl terminal domain of eIF5 in translation initiation complex assembly and GTPase activation. EMBO J. 20:2326–37 [Google Scholar]
  137. Tarun SZ, Wells SE, Deardorff JA, Sachs AB. 137.  1997. Translation initiation factor eIF4G mediates in vitro poly(A) tail–dependent translation. Proc. Natl. Acad. Sci. USA 94:9046–51 [Google Scholar]
  138. Park E, Walker S, Lee J, Rothenburg S, Lorsch J, Hinnebusch A. 138.  2011. Multiple elements in the eIF4G1 N-terminus promote assembly of eIF4G1 PABP mRNPs in vivo. EMBO J. 30:302–16 [Google Scholar]
  139. Hinton TM, Coldwell MJ, Carpenter GA, Morley SJ, Pain VM. 139.  2007. Functional analysis of individual binding activities of the scaffold protein eIF4G. J. Biol. Chem. 282:1695–708 [Google Scholar]
  140. Kahvejian A, Svitkin YV, Sukarieh R, M'Boutchou MN, Sonenberg N. 140.  2005. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev. 19:104–13 [Google Scholar]
  141. Svitkin YV, Evdokimova VM, Brasey A, Pestova TV, Fantus D. 141.  et al. 2009. General RNA-binding proteins have a function in poly(A)-binding protein–dependent translation. EMBO J. 28:58–68 [Google Scholar]
  142. Yanagiya A, Svitkin YV, Shibata S, Mikami S, Imataka H, Sonenberg N. 142.  2009. Requirement of RNA binding of mammalian eukaryotic translation initiation factor 4GI (eIF4GI) for efficient interaction of eIF4E with the mRNA cap. Mol. Cell. Biol. 29:1661–69 [Google Scholar]
  143. Arava Y, Wang Y, Storey JD, Liu CL, Brown PO, Herschlag D. 143.  2003. Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 100:3889–94 [Google Scholar]
  144. Kaye NM, Emmett KJ, Merrick WC, Jankowsky E. 144.  2009. Intrinsic RNA binding by the eukaryotic initiation factor 4F depends on a minimal RNA length but not on the m7G cap. J. Biol. Chem. 284:17742–50 [Google Scholar]
  145. Berset C, Zurbriggen A, Djafarzadeh S, Altmann M, Trachsel H. 145.  2003. RNA-binding activity of translation initiation factor eIF4G1 from Saccharomyces cerevisiae. RNA 9:871–80 [Google Scholar]
  146. Singh CR, Watanabe R, Chowdhury W, Hiraishi H, Murai MJ. 146.  et al. 2012. Sequential eukaryotic translation initiation factor 5 (eIF5) binding to the charged disordered segments of eIF4G and eIF2β stabilizes the 48S preinitiation complex and promotes its shift to the initiation mode. Mol. Cell. Biol. 32:3978–89 [Google Scholar]
  147. Rajagopal V, Park EH, Hinnebusch AG, Lorsch JR. 147.  2012. Specific domains in yeast eIF4G strongly bias the RNA unwinding activity of the eIF4F complex towards duplexes with 5′-overhangs. J. Biol. Chem. 287:20301–12 [Google Scholar]
  148. Hilliker A, Gao Z, Jankowsky E, Parker R. 148.  2011. The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F–mRNA complex. Mol. Cell 43:962–72 [Google Scholar]
  149. Berthelot K, Muldoon M, Rajkowitsch L, Hughes J, McCarthy JE. 149.  2004. Dynamics and processivity of 40S ribosome scanning on mRNA in yeast. Mol. Microbiol. 51:987–1001 [Google Scholar]
  150. Abaeva IS, Marintchev A, Pisareva VP, Hellen CU, Pestova TV. 150.  2011. Bypassing of stems versus linear base-by-base inspection of mammalian mRNAs during ribosomal scanning. EMBO J. 30:115–29 [Google Scholar]
  151. Rozovsky N, Butterworth AC, Moore MJ. 151.  2008. Interactions between eIF4AI and its accessory factors eIF4B and eIF4H. RNA 14:2136–48 [Google Scholar]
  152. Dmitriev SE, Terenin IM, Dunaevsky YE, Merrick WC, Shatsky IN. 152.  2003. Assembly of 48S translation initiation complexes from purified components with mRNAs that have some base pairing within their 5′ untranslated regions. Mol. Cell. Biol. 23:8925–33 [Google Scholar]
  153. Shahbazian D, Parsyan A, Petroulakis E, Topisirovic I, Martineau Y. 153.  et al. 2010. Control of cell survival and proliferation by mammalian eukaryotic initiation factor 4B. Mol. Cell. Biol. 30:1478–85 [Google Scholar]
  154. Bi X, Ren J, Goss DJ. 154.  2000. Wheat germ translation initiation factor eIF4B affects eIF4A and eIFiso4F helicase activity by increasing the ATP binding affinity of eIF4A. Biochemistry 39:5758–65 [Google Scholar]
  155. Nielsen KH, Behrens MA, He Y, Oliveira CL, Jensen LS. 155.  et al. 2011. Synergistic activation of eIF4A by eIF4B and eIF4G. Nucleic Acids Res. 39:2678–89 [Google Scholar]
  156. Ozes AR, Feoktistova K, Avanzino BC, Fraser CS. 156.  2011. Duplex unwinding and ATPase activities of the DEAD-box helicase eIF4A are coupled by eIF4G and eIF4B. J. Mol. Biol. 412:674–87 [Google Scholar]
  157. Altmann M, Wittmer B, Méthot N, Sonenberg N, Trachsel H. 157.  1995. The Saccharomyces cerevisiae translation initiation factor Tif3 and its mammalian homologue, eIF-4B, have RNA annealing activity. EMBO J. 14:3820–27 [Google Scholar]
  158. Altmann M, Müller PP, Wittmer B, Ruchti F, Lanker S, Trachsel H. 158.  1993. A Saccharomyces cerevisiae homologue of mammalian translation initiation factor 4B contributes to RNA helicase activity. EMBO J. 12:3997–4003 [Google Scholar]
  159. Coppolecchia R, Buser P, Stotz A, Linder P. 159.  1993. A new yeast translation initiation factor suppresses a mutation in the eIF-4A RNA helicase. EMBO J. 12:4005–11 [Google Scholar]
  160. Walker SE, Zhou F, Mitchell SF, Larson VS, Valášek L. 160.  et al. 2013. Yeast eIF4B binds to the head of the 40S ribosomal subunit and promotes mRNA recruitment through its N-terminal and internal repeat domains. RNA 19:191–207 [Google Scholar]
  161. Andreou AZ, Klostermeier D. 161.  2014. eIF4B and eIF4G jointly stimulate eIF4A ATPase and unwinding activities by modulation of the eIF4A conformational cycle. J. Mol. Biol. 4261:51–61 [Google Scholar]
  162. Park EH, Walker SE, Zhou F, Lee JM, Rajagopal V. 162.  et al. 2012. Yeast eukaryotic initiation factor (eIF) 4B enhances complex assembly between eIF4A and eIF4G in vivo. J. Biol. Chem. 288:2340–54 [Google Scholar]
  163. Méthot N, Song MS, Sonenberg N. 163.  1996. A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYFG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3. Mol. Cell. Biol. 16:5328–34 [Google Scholar]
  164. Méthot N, Pickett G, Keene JD, Sonenberg N. 164.  1996. In vitro RNA selection identifies RNA ligands that specifically bind to eukaryotic translation initiation factor 4B: the role of the RNA remotif. RNA 2:38–50 [Google Scholar]
  165. Vassilenko KS, Alekhina OM, Dmitriev SE, Shatsky IN, Spirin AS. 165.  2011. Unidirectional constant rate motion of the ribosomal scanning particle during eukaryotic translation initiation. Nucleic Acids Res. 39:5555–67 [Google Scholar]
  166. Matsuda D, Dreher TW. 166.  2006. Close spacing of AUG initiation codons confers dicistronic character on a eukaryotic mRNA. RNA 12:1338–49 [Google Scholar]
  167. Prévôt D, Décimo D, Herbreteau CH, Roux F, Garin J. 167.  et al. 2003. Characterization of a novel RNA-binding region of eIF4GI critical for ribosomal scanning. EMBO J. 22:1909–21 [Google Scholar]
  168. Watanabe R, Murai MJ, Singh CR, Fox S, Ii M, Asano K. 168.  2010. The eukaryotic initiation factor (eIF) 4G HEAT domain promotes translation re-initiation in yeast both dependent on and independent of eIF4A mRNA helicase. J. Biol. Chem. 285:21922–33 [Google Scholar]
  169. Kozak M.169.  1977. Nucleotide sequences of 5′-terminal ribosome–protected initiation regions from two reovirus messages. Nature 269:391–94 [Google Scholar]
  170. Lazarowitz SG, Robertson HD. 170.  1977. Initiator regions from the small size class of reovirus messenger RNA protected by rabbit reticulocyte ribosomes. J. Biol. Chem. 252:7842–49 [Google Scholar]
  171. Spirin AS.171.  2009. How does a scanning ribosomal particle move along the 5′-untranslated region of eukaryotic mRNA? Brownian ratchet model. Biochemistry 48:10688–92 [Google Scholar]
  172. Niederberger N, Trachsel H, Altmann M. 172.  1998. The RNA recognition motif of yeast translation initiation factor Tif3/eIF4B is required but not sufficient for RNA strand-exchange and translational activity. RNA 4:1259–67 [Google Scholar]
  173. Pisareva VP, Pisarev AV, Komar AA, Hellen CU, Pestova TV. 173.  2008. Translation initiation on mammalian mRNAs with structured 5′UTRs requires DExH-box protein DHX29. Cell 135:1237–50 [Google Scholar]
  174. Dhote V, Sweeney TR, Kim N, Hellen CU, Pestova TV. 174.  2012. Roles of individual domains in the function of DHX29, an essential factor required for translation of structured mammalian mRNAs. Proc. Natl. Acad. Sci. USA 109:E3150–59 [Google Scholar]
  175. Parsyan A, Shahbazian D, Martineau Y, Petroulakis E, Alain T. 175.  et al. 2009. The helicase protein DHX29 promotes translation initiation, cell proliferation, and tumorigenesis. Proc. Natl. Acad. Sci. USA 106:22217–22 [Google Scholar]
  176. Chuang RY, Weaver PL, Liu Z, Chang TH. 176.  1997. Requirement of the DEAD-box protein ded1p for messenger RNA translation. Science 275:1468–71 [Google Scholar]
  177. de la Cruz J, Iost I, Kressler D, Linder P. 177.  1997. The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94:5201–6 [Google Scholar]
  178. Jamieson DJ, Beggs JD. 178.  1991. A suppressor of yeast spp81/ded1 mutations encodes a very similar putative ATP-dependent RNA helicase. Mol. Microbiol. 5:805–12 [Google Scholar]
  179. Marsden S, Nardelli M, Linder P, McCarthy JE. 179.  2006. Unwinding single RNA molecules using helicases involved in eukaryotic translation initiation. J. Mol. Biol. 361:327–35 [Google Scholar]
  180. Lai MC, Lee YH, Tarn WY. 180.  2008. The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control. Mol. Biol. Cell 19:3847–58 [Google Scholar]
  181. Soto-Rifo R, Rubilar PS, Limousin T, de Breyne S, Décimo D, Ohlmann T. 181.  2012. DEAD-box protein DDX3 associates with eIF4F to promote translation of selected mRNAs. EMBO J. 31:3745–56 [Google Scholar]
  182. Lee CS, Dias AP, Jedrychowski M, Patel AH, Hsu JL, Reed R. 182.  2008. Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Res. 36:4708–18 [Google Scholar]
  183. Geissler R, Golbik RP, Behrens SE. 183.  2012. The DEAD-box helicase DDX3 supports the assembly of functional 80S ribosomes. Nucleic Acids Res. 40:4998–5011 [Google Scholar]
  184. Cigan AM, Feng L, Donahue TF. 184.  1988. tRNAiMet functions in directing the scanning ribosome to the start site of translation. Science 242:93–97 [Google Scholar]
  185. Kolitz SE, Takacs JE, Lorsch JR. 185.  2009. Kinetic and thermodynamic analysis of the role of start codon/anticodon base pairing during eukaryotic translation initiation. RNA 15:138–52 [Google Scholar]
  186. Passmore LA, Schmeing TM, Maag D, Applefield DJ, Acker MG. 186.  et al. 2007. The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol. Cell 26:41–50 [Google Scholar]
  187. Lin CA, Ellis SR, True HL. 187.  2009. The Sua5 protein is essential for normal translational regulation in yeast. Mol. Cell. Biol. 30:354–63 [Google Scholar]
  188. El Yacoubi B, Lyons B, Cruz Y, Reddy R, Nordin B. 188.  et al. 2009. The universal YrdC/Sua5 family is required for the formation of threonylcarbamoyladenosine in tRNA. Nucleic Acids Res. 37:2894–909 [Google Scholar]
  189. Daugeron MC, Lenstra TL, Frizzarin M, El Yacoubi B, Liu X. 189.  et al. 2011. Gcn4 misregulation reveals a direct role for the evolutionary conserved EKC/KEOPS in the t6A modification of tRNAs. Nucleic Acids Res. 39:6148–60 [Google Scholar]
  190. Srinivasan M, Mehta P, Yu Y, Prugar E, Koonin EV. 190.  et al. 2011. The highly conserved KEOPS/EKC complex is essential for a universal tRNA modification, t6A. EMBO J. 30:873–81 [Google Scholar]
  191. El Yacoubi B, Hatin I, Deutsch C, Kahveci T, Rousset JP. 191.  et al. 2011. A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification. EMBO J. 30:882–93 [Google Scholar]
  192. Korostelev A, Trakhanov S, Laurberg M, Noller HF. 192.  2006. Crystal structure of a 70S ribosome–tRNA complex reveals functional interactions and rearrangements. Cell 126:1065–77 [Google Scholar]
  193. Selmer M, Dunham CM, Murphy FV IV, Weixlbaumer A, Petry S. 193.  et al. 2006. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–42 [Google Scholar]
  194. Simonetti A, Marzi S, Myasnikov AG, Fabbretti A, Yusupov M. 194.  et al. 2008. Structure of the 30S translation initiation complex. Nature 455:416–20 [Google Scholar]
  195. Dong J, Nanda JS, Rahman H, Pruitt MR, Shin BS. 195.  et al. 2008. Genetic identification of yeast 18S rRNA residues required for efficient recruitment of initiator tRNAMet and AUG selection. Genes Dev. 22:2242–55 [Google Scholar]
  196. Nemoto N, Singh CR, Udagawa T, Wang S, Thorson E. 196.  et al. 2010. Yeast 18 S rRNA is directly involved in the ribosomal response to stringent AUG selection during translation initiation. J. Biol. Chem. 285:32200–12 [Google Scholar]
  197. Lancaster L, Noller HF. 197.  2005. Involvement of 16S rRNA nucleotides G1338 and A1339 in discrimination of initiator tRNA. Mol. Cell 20:623–32 [Google Scholar]
  198. Abdi NM, Fredrick K. 198.  2005. Contribution of 16S rRNA nucleotides forming the 30S subunit A and P sites to translation in Escherichia coli. RNA 11:1624–32 [Google Scholar]
  199. Qin D, Abdi NM, Fredrick K. 199.  2007. Characterization of 16S rRNA mutations that decrease the fidelity of translation initiation. RNA 13:2348–55 [Google Scholar]
  200. Drabkin HJ, Helk B, RajBhandary UL. 200.  1993. The role of nucleotides conserved in eukaryotic initiator methionine tRNAs in initiation of protein synthesis. J. Biol. Chem. 268:25221–28 [Google Scholar]
  201. Lomakin IB, Shirokikh NE, Yusupov MM, Hellen CU, Pestova TV. 201.  2006. The fidelity of translation initiation: reciprocal activities of eIF1, IF3 and YciH. EMBO J. 25:196–210 [Google Scholar]
  202. von Pawel–Rammingen U, Åström S, Byström AS. 202.  1992. Mutational analysis of conserved positions potentially important for initiator tRNA function in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:1432–42 [Google Scholar]
  203. Battle DJ, Doudna JA. 203.  2002. Specificity of RNA–RNA helix recognition. Proc. Natl. Acad. Sci. USA 99:11676–81 [Google Scholar]
  204. Basavappa R, Sigler PB. 204.  1991. The 3 Å crystal structure of yeast initiator tRNA: functional implications in initiator/elongator discrimination. EMBO J. 10:3105–11 [Google Scholar]
  205. Schmeing TM, Voorhees RM, Kelley AC, Ramakrishnan V. 205.  2011. How mutations in tRNA distant from the anticodon affect the fidelity of decoding. Nat. Struct. Mol. Biol. 18:432–36 [Google Scholar]
  206. Pestova TV, Borukhov SI, Hellen CUT. 206.  1998. Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394:854–59 [Google Scholar]
  207. Yoon HJ, Donahue TF. 207.  1992. The sui1 suppressor locus in Saccharomyces cerevisiae encodes a translation factor that functions during tRNAiMet recognition of the start codon. Mol. Cell. Biol. 12:248–60 [Google Scholar]
  208. Algire MA, Maag D, Lorsch JR. 208.  2005. Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation. Mol. Cell 20:251–62 [Google Scholar]
  209. Nanda JS, Cheung YN, Takacs JE, Martin-Marcos P, Saini AK. 209.  et al. 2009. eIF1 controls multiple steps in start codon recognition during eukaryotic translation initiation. J. Mol. Biol. 394:268–85 [Google Scholar]
  210. Alone PV, Cao C, Dever TE. 210.  2008. Translation initiation factor 2γ mutant alters start codon selection independent of Met-tRNA binding. Mol. Cell. Biol. 28:6877–88 [Google Scholar]
  211. Shin BS, Acker MG, Kim JR, Maher KN, Arefin SM. 211.  et al. 2011. Structural integrity of α-helix H12 in translation initiation factor eIF5B is critical for 80S complex stability. RNA 17:687–96 [Google Scholar]
  212. Maag D, Algire MA, Lorsch JR. 212.  2006. Communication between eukaryotic translation initiation factors 5 and 1A within the ribosomal pre-initiation complex plays a role in start site selection. J. Mol. Biol. 356:724–37 [Google Scholar]
  213. Ivanov IP, Loughran G, Sachs MS, Atkins JF. 213.  2010. Initiation context modulates autoregulation of eukaryotic translation initiation factor 1 (eIF1). Proc. Natl. Acad. Sci. USA 107:18056–60 [Google Scholar]
  214. Martin-Marcos P, Cheung YN, Hinnebusch AG. 214.  2011. Functional elements in initiation factors 1, 1A and 2β discriminate against poor AUG context and non-AUG start codons. Mol. Cell. Biol. 31:4814–31 [Google Scholar]
  215. Loughran G, Sachs MS, Atkins JF, Ivanov IP. 215.  2012. Stringency of start codon selection modulates autoregulation of translation initiation factor eIF5. Nucleic Acids Res. 40:2898–906 [Google Scholar]
  216. Donahue T.216.  2000. Genetic approaches to translation initiation in Saccharomyces cerevisiae. Translational Control of Gene Expression N Sonenberg, JWB Hershey, MB Mathews 487–502 Cold Spring Harbor, N.Y.: Cold Spring Harb. Lab. [Google Scholar]
  217. Dorris DR, Erickson FL, Hannig EM. 217.  1995. Mutations in GCD11, the structural gene for eIF-2γ in yeast, alter translational regulation of GCN4 and the selection of the start site for protein synthesis. EMBO J. 14:2239–49 [Google Scholar]
  218. Huang H, Yoon H, Hannig EM, Donahue TF. 218.  1997. GTP hydrolysis controls stringent selection of the AUG start codon during translation initiation in Saccharomyces cerevisiae. Genes Dev. 11:2396–413 [Google Scholar]
  219. Donahue TF, Cigan AM, Pabich EK, Castilho-Valavicius B. 219.  1988. Mutations at a Zn(II) finger motif in the yeast eIF-2β gene alter ribosomal start-site selection during the scanning process. Cell 54:621–32 [Google Scholar]
  220. Hashimoto NN, Carnevalli LS, Castilho BA. 220.  2002. Translation initiation at non-AUG codons mediated by weakened association of eukaryotic initiation factor (eIF) 2 subunits. Biochem. J. 367:359–68 [Google Scholar]
  221. Alone PV, Dever TE. 221.  2006. Direct binding of translation initiation factor eIF2γ–G domain to its GTPase-activating and GDP–GTP exchange factors eIF5 and eIF2Bε. J. Biol. Chem. 281:12636–44 [Google Scholar]
  222. Conte MR, Kelly G, Babon J, Sanfelice D, Youell J. 222.  et al. 2006. Structure of the eukaryotic initiation factor (eIF) 5 reveals a fold common to several translation factors. Biochemistry 45:4550–58 [Google Scholar]
  223. Das S, Ghosh R, Maitra U. 223.  2001. Eukaryotic translation initiation factor 5 functions as a GTPase-activating protein. J. Biol. Chem. 276:6720–26 [Google Scholar]
  224. Paulin FE, Campbell LE, O'Brien K, Loughlin J, Proud CG. 224.  2001. Eukaryotic translation initiation factor 5 (eIF5) acts as a classical GTPase-activator protein. Curr. Biol. 11:55–59 [Google Scholar]
  225. Majumdar R, Maitra U. 225.  2005. Regulation of GTP hydrolysis prior to ribosomal AUG selection during eukaryotic translation initiation. EMBO J. 24:3737–46 [Google Scholar]
  226. He H, von der Haar T, Singh CR, Ii M, Li B. 226.  et al. 2003. The yeast eukaryotic initiation factor 4G (eIF4G) HEAT domain interacts with eIF1 and eIF5 and is involved in stringent AUG selection. Mol. Cell. Biol. 23:5431–45 [Google Scholar]
  227. Evans DR, Rasmussen C, Hanic-Joyce PJ, Johnston GC, Singer RA, Barnes CA. 227.  1995. Mutational analysis of the Prt1 protein subunit of yeast translation initiation factor 3. Mol. Cell. Biol. 15:4525–35 [Google Scholar]
  228. Bolger TA, Wente SR. 228.  2011. Gle1 is a multifunctional DEAD-box protein regulator that modulates Ded1 in translation initiation. J. Biol. Chem. 286:39750–59 [Google Scholar]
  229. Singh CR, Lee B, Udagawa T, Mohammad-Qureshi SS, Yamamoto Y. 229.  et al. 2006. An eIF5/eIF2 complex antagonizes guanine nucleotide exchange by eIF2B during translation initiation. EMBO J. 25:4537–46 [Google Scholar]
  230. Singh CR, Udagawa T, Lee B, Wassink S, He H. 230.  et al. 2007. Change in nutritional status modulates the abundance of critical pre-initiation intermediate complexes during translation initiation in vivo. J. Mol. Biol. 370:315–30 [Google Scholar]
  231. Jennings MD, Pavitt GD. 231.  2010. eIF5 has GDI activity necessary for translational control by eIF2 phosphorylation. Nature 465:378–81 [Google Scholar]
  232. Acker MG, Shin BS, Dever TE, Lorsch JR. 232.  2006. Interaction between eukaryotic initiation factors 1A and 5B is required for efficient ribosomal subunit joining. J. Biol. Chem. 281:8469–75 [Google Scholar]
  233. Acker MG, Shin BS, Nanda JS, Saini AK, Dever TE, Lorsch JR. 233.  2009. Kinetic analysis of late steps of eukaryotic translation initiation. J. Mol. Biol. 385:491–506 [Google Scholar]
  234. Roll-Mecak A, Cao C, Dever TE, Burley SK. 234.  2000. X-ray structures of the universal translation initiation factor IF2/eIF5B. Conformational changes on GDP and GTP binding. Cell 103:781–92 [Google Scholar]
  235. Choi SK, Olsen DS, Roll-Mecak A, Martung A, Remo KL. 235.  et al. 2000. Physical and functional interaction between the eukaryotic orthologs of prokaryotic translation initiation factors IF1 and IF2. Mol. Cell. Biol. 20:7183–91 [Google Scholar]
  236. Olsen DS, Savner EM, Mathew A, Zhang F, Krishnamoorthy T. 236.  et al. 2003. Domains of eIF1A that mediate binding to eIF2, eIF3 and eIF5B and promote ternary complex recruitment in vivo. EMBO J. 22:193–204 [Google Scholar]
  237. Marintchev A, Kolupaeva VG, Pestova TV, Wagner G. 237.  2003. Mapping the binding interface between human eukaryotic initiation factors 1A and 5B: a new interaction between old partners. Proc. Natl. Acad. Sci. USA 100:1535–40 [Google Scholar]
  238. Fringer JM, Acker MG, Fekete CA, Lorsch JR, Dever TE. 238.  2007. Coupled release of eukaryotic translation initiation factors 5B and 1A from 80S ribosomes following subunit joining. Mol. Cell. Biol. 27:2384–97 [Google Scholar]
  239. Kainuma M, Hershey JWB. 239.  2001. Depletion and deletion analyses of eucaryotic translation initiation factor 1A Sacchaaromyces cerevisiae. Biochimie 83:505–14 [Google Scholar]
  240. Pestova TV, Lomakin IB, Lee JH, Choi SK, Dever TE, Hellen CUT. 240.  2000. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403:332–35 [Google Scholar]
  241. Lee JH, Pestova TV, Shin BS, Cao C, Choi SK, Dever TE. 241.  2002. Initiation factor eIF5B catalyzes second GTP-dependent step in eukaryotic translation initiation. Proc. Natl. Acad. Sci. USA 99:16689–94 [Google Scholar]
  242. Shin BS, Maag D, Roll-Mecak A, Arefin MS, Burley SK. 242.  et al. 2002. Uncoupling of initiation factor eIF5B/IF2 GTPase and translational activities by mutations that lower ribosome affinity. Cell 111:1015–25 [Google Scholar]
  243. Shin BS, Kim JR, Acker MG, Maher KN, Lorsch JR, Dever TE. 243.  2009. rRNA suppressor of a eukaryotic translation initiation factor 5B/initiation factor 2 mutant reveals a binding site for translational GTPases on the small ribosomal subunit. Mol. Cell. Biol. 29:808–21 [Google Scholar]
  244. Unbehaun A, Marintchev A, Lomakin IB, Didenko T, Wagner G. 244.  et al. 2007. Position of eukaryotic initiation factor eIF5B on the 80S ribosome mapped by directed hydroxyl radical probing. EMBO J. 26:3109–23 [Google Scholar]
  245. Allen GS, Zavialov A, Gursky R, Ehrenberg M, Frank J. 245.  2005. The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell 121:703–12 [Google Scholar]
  246. Guenneugues M, Caserta E, Brandi L, Spurio R, Meunier S. 246.  et al. 2000. Mapping the fMet-tRNAfMet binding site of initiation factor IF2. EMBO J. 19:5233–40 [Google Scholar]
  247. Guillon L, Schmitt E, Blanquet S, Mechulam Y. 247.  2005. Initiator tRNA binding by e/aIF5B, the eukaryotic/archaeal homologue of bacterial initiation factor IF2. Biochemistry 44:15594–601 [Google Scholar]
  248. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS. 248.  2009. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–23 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060713-035802
Loading
/content/journals/10.1146/annurev-biochem-060713-035802
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error