Mitochondrial ribosomes (mitoribosomes) perform protein synthesis inside mitochondria, the organelles responsible for energy conversion and adenosine triphosphate production in eukaryotic cells. Throughout evolution, mitoribosomes have become functionally specialized for synthesizing mitochondrial membrane proteins, and this has been accompanied by large changes to their structure and composition. We review recent high-resolution structural data that have provided unprecedented insight into the structure and function of mitoribosomes in mammals and fungi.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Schmeing TM, Ramakrishnan V. 1.  2009. What recent ribosome structures have revealed about the mechanism of translation. Nature 461:1234–42 [Google Scholar]
  2. Steitz TA. 2.  2008. A structural understanding of the dynamic ribosome machine. Nat. Rev. Mol. Cell Biol. 9:242–53 [Google Scholar]
  3. Ogle JM, Brodersen DE, Clemons WM, Tarry MJ, Carter AP, Ramakrishnan V. 3.  2001. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292:897–902 [Google Scholar]
  4. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA. 4.  2000. The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–30 [Google Scholar]
  5. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. 5.  2000. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–20 [Google Scholar]
  6. Polikanov YS, Steitz TA, Innis CA. 6.  2014. A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. Nat. Struct. Mol. Biol. 21:787–93 [Google Scholar]
  7. Beringer M, Rodnina MV. 7.  2007. The ribosomal peptidyl transferase. Mol. Cell 26:311–21 [Google Scholar]
  8. Jenni S, Ban N. 8.  2003. The chemistry of protein synthesis and voyage through the ribosomal tunnel. Curr. Opin. Struct. Biol. 13:212–19 [Google Scholar]
  9. Kramer G, Boehringer D, Ban N, Bukau B. 9.  2009. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat. Struct. Mol. Biol. 16:589–97 [Google Scholar]
  10. Tait SWG, Green DR. 10.  2010. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11:621–32 [Google Scholar]
  11. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. 11.  2013. The hallmarks of aging. Cell 153:1194–217 [Google Scholar]
  12. Sagan L. 12.  1967. On the origin of mitosing cells. J. Theor. Biol. 14:255–74 [Google Scholar]
  13. Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UC. 13.  et al. 1998. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–40 [Google Scholar]
  14. O'Brien TW. 14.  2002. Evolution of a protein-rich mitochondrial ribosome: implications for human genetic disease. Gene 286:73–79 [Google Scholar]
  15. Sharma MR, Koc EC, Datta PP, Booth TM, Spremulli LL, Agrawal RK. 15.  2003. Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Cell 115:97–108The first cryo-EM reconstruction of a mitoribosome revealed its unique overall morphology. [Google Scholar]
  16. Koc EC, Cimen H, Kumcuoglu B, Abu N, Akpinar G. 16.  et al. 2013. Identification and characterization of CHCHD1, AURKAIP1, and CRIF1 as new members of the mammalian mitochondrial ribosome. Front. Physiol. 4:183 [Google Scholar]
  17. Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM. 17.  et al. 2001. The large subunit of the mammalian mitochondrial ribosome: analysis of the complement of ribosomal proteins present. J. Biol. Chem. 276:43958–69 [Google Scholar]
  18. Koc EC, Burkhart W, Blackburn K, Moseley A, Spremulli LL. 18.  2001. The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present. J. Biol. Chem. 276:19363–74 [Google Scholar]
  19. Suzuki T, Terasaki M, Takemoto-Hori C, Hanada T, Ueda T. 19.  et al. 2001. Structural compensation for the deficit of rRNA with proteins in the mammalian mitochondrial ribosome: systematic analysis of protein components of the large ribosomal subunit from mammalian mitochondria. J. Biol. Chem. 276:21724–36 [Google Scholar]
  20. Suzuki T, Terasaki M, Takemoto-Hori C, Hanada T, Ueda T. 20.  et al. 2001. Proteomic analysis of the mammalian mitochondrial ribosome: identification of protein components in the 28 S small subunit. J. Biol. Chem. 276:33181–95 [Google Scholar]
  21. Desmond E, Brochier-Armanet C, Forterre P, Gribaldo S. 21.  2011. On the last common ancestor and early evolution of eukaryotes: reconstructing the history of mitochondrial ribosomes. Res. Microbiol. 162:53–70 [Google Scholar]
  22. Smits P, Smeitink JAM, van den Heuvel LP, Huynen MA, Ettema TJG. 22.  2007. Reconstructing the evolution of the mitochondrial ribosomal proteome. Nucleic Acids Res. 35:4686–703 [Google Scholar]
  23. Stegeman WJ, Cooper CS, Avers CJ. 23.  1970. Physical characterization of ribosomes from purified mitochondria of yeast. Biochem. Biophys. Res. Commun. 39:69–76 [Google Scholar]
  24. Küntzel H, Noll H. 24.  1967. Mitochondrial and cytoplasmic polysomes from Neurospora crassa. Nature 215:1340–45 [Google Scholar]
  25. van der Sluis EO, Bauerschmitt H, Becker T, Mielke T, Frauenfeld J. 25.  et al. 2015. Parallel structural evolution of mitochondrial ribosomes and OXPHOS complexes. Genome Biol. Evol. 7:1235–51Analyzed the molecular evolution of the mitoribosome and the complexes of the mitochondrial respiratory chain. [Google Scholar]
  26. Attardi G, Ojala D. 26.  1971. Mitochondrial ribosome in HeLa cells. Nat. New Biol. 229:133–36 [Google Scholar]
  27. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR. 27.  et al. 1981. Sequence and organization of the human mitochondrial genome. Nature 290:457–65 [Google Scholar]
  28. Eperon IC, Janssen JW, Hoeijmakers JH, Borst P. 28.  1983. The major transcripts of the kinetoplast DNA of Trypanosoma brucei are very small ribosomal RNAs. Nucleic Acids Res. 11:105–25 [Google Scholar]
  29. Ott M, Herrmann JM. 29.  2010. Co-translational membrane insertion of mitochondrially encoded proteins. Biochim. Biophys. Acta 1803:767–75 [Google Scholar]
  30. Liu M, Spremulli L. 30.  2000. Interaction of mammalian mitochondrial ribosomes with the inner membrane. J. Biol. Chem. 275:29400–6 [Google Scholar]
  31. Ott M, Prestele M, Bauerschmitt H, Funes S, Bonnefoy N, Herrmann JM. 31.  2006. Mba1, a membrane-associated ribosome receptor in mitochondria. EMBO J. 25:1603–10 [Google Scholar]
  32. Pfeffer S, Woellhaf MW, Herrmann JM, Förster F. 32.  2015. Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography. Nat. Commun. 6:6019Presented cryo-EM tomography of the yeast mitoribosome attached to the mitochondrial inner membrane. [Google Scholar]
  33. Jones CN, Wilkinson KA, Hung KT, Weeks KM, Spremulli LL. 33.  2008. Lack of secondary structure characterizes the 5′ ends of mammalian mitochondrial mRNAs. RNA 14:862–71 [Google Scholar]
  34. Montoya J, Ojala D, Attardi G. 34.  1981. Distinctive features of the 5′-terminal sequences of the human mitochondrial mRNAs. Nature 290:465–70 [Google Scholar]
  35. Shine J, Dalgarno L. 35.  1974. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. PNAS 71:1342–46 [Google Scholar]
  36. Herrmann JM, Woellhaf MW, Bonnefoy N. 36.  2013. Control of protein synthesis in yeast mitochondria: the concept of translational activators. Biochim. Biophys. Acta 1833:286–94 [Google Scholar]
  37. Gaur R, Grasso D, Datta PP, Krishna PDV, Das G. 37.  et al. 2008. A single mammalian mitochondrial translation initiation factor functionally replaces two bacterial factors. Mol. Cell 29:180–90 [Google Scholar]
  38. Rötig A. 38.  2011. Human diseases with impaired mitochondrial protein synthesis. Biochim. Biophys. Acta 1807:1198–205 [Google Scholar]
  39. Vafai SB, Mootha VK. 39.  2012. Mitochondrial disorders as windows into an ancient organelle. Nature 491:374–83 [Google Scholar]
  40. Pearce S, Nezich CL, Spinazzola A. 40.  2013. Mitochondrial diseases: Translation matters. Mol. Cell. Neurosci. 55:1–12 [Google Scholar]
  41. Carroll CJ, Isohanni P, Pöyhönen R, Euro L, Richter U. 41.  et al. 2013. Whole-exome sequencing identifies a mutation in the mitochondrial ribosome protein MRPL44 to underlie mitochondrial infantile cardiomyopathy. J. Med. Genet. 50:151–59 [Google Scholar]
  42. Smits P, Saada A, Wortmann SB, Heister AJ, Brink M. 42.  et al. 2011. Mutation in mitochondrial ribosomal protein MRPS22 leads to Cornelia de Lange–like phenotype, brain abnormalities and hypertrophic cardiomyopathy. Eur. J. Hum. Genet. 19:394–99 [Google Scholar]
  43. Galmiche L, Serre V, Beinat M, Assouline Z, Lebre A-S. 43.  et al. 2011. Exome sequencing identifies MRPL3 mutation in mitochondrial cardiomyopathy. Hum. Mutat. 32:1225–31 [Google Scholar]
  44. Saada A, Shaag A, Arnon S, Dolfin T, Miller C. 44.  et al. 2007. Antenatal mitochondrial disease caused by mitochondrial ribosomal protein (MRPS22) mutation. J. Med. Genet. 44:784–86 [Google Scholar]
  45. Miller C, Saada A, Shaul N, Shabtai N, Ben-Shalom E. 45.  et al. 2004. Defective mitochondrial translation caused by a ribosomal protein (MRPS16) mutation. Ann. Neurol. 56:734–38 [Google Scholar]
  46. Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, Salem AF, Tsirigos A. 46.  et al. 2012. Mitochondria “fuel” breast cancer metabolism: Fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells. Cell Cycle 11:4390–401 [Google Scholar]
  47. Richter U, Lahtinen T, Marttinen P, Myöhänen M, Greco D. 47.  et al. 2013. A mitochondrial ribosomal and RNA decay pathway blocks cell proliferation. Curr. Biol. 23:535–41 [Google Scholar]
  48. Skrtić M, Sriskanthadevan S, Jhas B, Gebbia M, Wang X. 48.  et al. 2011. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 20:674–88 [Google Scholar]
  49. Xie J, Talaska AE, Schacht J. 49.  2011. New developments in aminoglycoside therapy and ototoxicity. Hear. Res. 281:28–37 [Google Scholar]
  50. Prezant TR, Agapian JV, Bohlman MC, Bu X, Oztas S. 50.  et al. 1993. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat. Genet. 4:289–94 [Google Scholar]
  51. Bitner-Glindzicz M, Pembrey M, Duncan A, Heron J, Ring SM. 51.  et al. 2009. Prevalence of mitochondrial 1555A–G mutation in European children. N. Engl. J. Med. 360:640–42 [Google Scholar]
  52. Ealy M, Lynch KA, Meyer NC, Smith RJH. 52.  2011. The prevalence of mitochondrial mutations associated with aminoglycoside-induced sensorineural hearing loss in an NICU population. Laryngoscope 121:1184–86 [Google Scholar]
  53. Vandebona H, Mitchell P, Manwaring N, Griffiths K, Gopinath B. 53.  et al. 2009. Prevalence of mitochondrial 1555A–G mutation in adults of European descent. N. Engl. J. Med. 360:642–44 [Google Scholar]
  54. Mears JA, Sharma MR, Gutell RR, McCook AS, Richardson PE. 54.  et al. 2006. A structural model for the large subunit of the mammalian mitochondrial ribosome. J. Mol. Biol. 358:193–212 [Google Scholar]
  55. Bai X-C, McMullan G, Scheres SHW. 55.  2015. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 40:49–57 [Google Scholar]
  56. Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F. 56.  et al. 2014. Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature 505:515–19Cryo-EM structure and CX–MS data provided insights into the membrane attachment of the mammalian 39S subunit. [Google Scholar]
  57. Amunts A, Brown A, Bai X-C, Llácer JL, Hussain T. 57.  et al. 2014. Structure of the yeast mitochondrial large ribosomal subunit. Science 343:1485–89Presented the fully refined atomic structure of the yeast 54S mitoribosomal subunit as determined by cryo-EM. [Google Scholar]
  58. Walzthoeni T, Leitner A, Stengel F, Aebersold R. 58.  2013. Mass spectrometry supported determination of protein complex structure. Curr. Opin. Struct. Biol. 23:252–60 [Google Scholar]
  59. Kaushal PS, Sharma MR, Booth TM, Haque EM, Tung CS. 59.  et al. 2014. Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome. PNAS 111:7284–89 [Google Scholar]
  60. Greber BJ, Boehringer D, Leibundgut M, Bieri P, Leitner A. 60.  et al. 2014. The complete structure of the large subunit of the mammalian mitochondrial ribosome. Nature 515:283–86Identified the CP tRNA in the 3.4 Å resolution of the structure of the porcine 39S subunit. [Google Scholar]
  61. Brown A, Amunts A, Bai X-C, Sugimoto Y, Edwards PC. 61.  et al. 2014. Structure of the large ribosomal subunit from human mitochondria. Science 346:718–22Identified the CP tRNA in the 3.4 Å resolution of the structure of the human 39S subunit. [Google Scholar]
  62. Greber BJ, Bieri P, Leibundgut M, Leitner A, Aebersold R. 62.  et al. 2015. The complete structure of the 55S mammalian mitochondrial ribosome. Science 348:303–8Revealed the complete structure of the porcine 55S mitoribosome in complex with mRNA and tRNA. [Google Scholar]
  63. Amunts A, Brown A, Toots J, Scheres SHW, Ramakrishnan V. 63.  2015. The structure of the human mitochondrial ribosome. Science 348:95–98Revealed the structure of the human 55S mitoribosome using cryo-EM. [Google Scholar]
  64. Ban N, Beckmann R, Cate JHD, Dinman JD, Dragon F. 64.  et al. 2014. A new system for naming ribosomal proteins. Curr. Opin. Struct. Biol. 24:165–69 [Google Scholar]
  65. Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN. 65.  et al. 2001. Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883–96 [Google Scholar]
  66. Dunkle JA, Wang L, Feldman MB, Pulk A, Chen VB. 66.  et al. 2011. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332:981–84 [Google Scholar]
  67. Frank J, Agrawal RK. 67.  2000. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406:318–22 [Google Scholar]
  68. Budkevich TV, Giesebrecht J, Behrmann E, Loerke J, Ramrath DJF. 68.  et al. 2014. Regulation of the mammalian elongation cycle by subunit rolling: a eukaryotic-specific ribosome rearrangement. Cell 158:121–31 [Google Scholar]
  69. O'Brien TW. 69.  2003. Properties of human mitochondrial ribosomes. IUBMB Life 55:505–13 [Google Scholar]
  70. Fischmann OT, Hruza A, Niu XD, Fossetta JD, Lunn CA. 70.  et al. 1999. Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nat. Struct. Biol. 6:233–42 [Google Scholar]
  71. Voorhees RM, Weixlbaumer A, Loakes D, Kelley AC, Ramakrishnan V. 71.  2009. Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat. Struct. Mol. Biol. 16:528–33 [Google Scholar]
  72. Klinge S, Voigts-Hoffmann F, Leibundgut M, Arpagaus S, Ban N. 72.  2011. Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science 334:941–48 [Google Scholar]
  73. Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. 73.  2011. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334:1524–29 [Google Scholar]
  74. Smirnov A, Entelis N, Martin RP, Tarassov I. 74.  2011. Biological significance of 5S rRNA import into human mitochondria: role of ribosomal protein MRP-L18. Genes Dev. 25:1289–305 [Google Scholar]
  75. Yoshionari S, Koike T, Yokogawa T, Nishikawa K, Ueda T. 75.  et al. 1994. Existence of nuclear-encoded 5S-rRNA in bovine mitochondria. FEBS Lett. 338:137–42 [Google Scholar]
  76. Magalhães PJ, Andreu AL, Schon EA. 76.  1998. Evidence for the presence of 5S rRNA in mammalian mitochondria. Mol. Biol. Cell 9:2375–82 [Google Scholar]
  77. Montoya J, Gaines GL, Attardi G. 77.  1983. The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units. Cell 34:151–59 [Google Scholar]
  78. Helm M, Brulé H, Friede D, Giegé R, Pütz D, Florentz C. 78.  2000. Search for characteristic structural features of mammalian mitochondrial tRNAs. RNA 6:1356–79 [Google Scholar]
  79. Agrawal RK, Sharma MR. 79.  2012. Structural aspects of mitochondrial translational apparatus. Curr. Opin. Struct. Biol. 22:797–803 [Google Scholar]
  80. Nierhaus KH. 80.  2006. Decoding errors and the involvement of the E-site. Biochimie 88:1013–19 [Google Scholar]
  81. Wilson DN, Nierhaus KH. 81.  2006. The E-site story: the importance of maintaining two tRNAs on the ribosome during protein synthesis. Cell. Mol. Life Sci. 63:2725–37 [Google Scholar]
  82. Koch M, Clementi N, Rusca N, Vögele P, Erlacher M, Polacek N. 82.  2015. The integrity of the G2421-C2395 base pair in the ribosomal E-site is crucial for protein synthesis. RNA Biol. 12:70–81 [Google Scholar]
  83. Kaushal PS, Sharma MR, Agrawal RK. 83.  2015. The 55S mammalian mitochondrial ribosome and its tRNA-exit region. Biochimie 114:119–26 [Google Scholar]
  84. Takyar S, Hickerson RP, Noller HF. 84.  2005. mRNA helicase activity of the ribosome. Cell 120:49–58 [Google Scholar]
  85. Filipovska A, Rackham O. 85.  2013. Pentatricopeptide repeats: modular blocks for building RNA-binding proteins. RNA Biol. 10:1426–32 [Google Scholar]
  86. Yin P, Li Q, Yan C, Liu Y, Liu J. 86.  et al. 2013. Structural basis for the modular recognition of single-stranded RNA by PPR proteins. Nature 504:168–71 [Google Scholar]
  87. Davies SMK, Rackham O, Shearwood A-MJ, Hamilton KL, Narsai R. 87.  et al. 2009. Pentatricopeptide repeat domain protein 3 associates with the mitochondrial small ribosomal subunit and regulates translation. FEBS Lett. 583:1853–58 [Google Scholar]
  88. Koc EC, Spremulli LL. 88.  2003. RNA-binding proteins of mammalian mitochondria. Mitochondrion 2:277–91 [Google Scholar]
  89. Laurberg M, Asahara H, Korostelev A, Zhu J, Trakhanov S, Noller HF. 89.  2008. Structural basis for translation termination on the 70S ribosome. Nature 454:852–57 [Google Scholar]
  90. Weixlbaumer A, Jin H, Neubauer C, Voorhees RM, Petry S. 90.  et al. 2008. Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322:953–56 [Google Scholar]
  91. Temperley R, Richter R, Dennerlein S, Lightowlers RN, Chrzanowska-Lightowlers ZM. 91.  2010. Hungry codons promote frameshifting in human mitochondrial ribosomes. Science 327:301 [Google Scholar]
  92. Richter R, Rorbach J, Pajak A, Smith PM, Wessels HJ. 92.  et al. 2010. A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome. EMBO J. 29:1116–25 [Google Scholar]
  93. Akabane S, Ueda T, Nierhaus KH, Takeuchi N. 93.  2014. Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria. PLOS Genet. 10:e1004616 [Google Scholar]
  94. Takeuchi N, Nierhaus KH. 94.  2015. Response to the Formal Letter of Z. Chrzanowska-Lightowlers and R. N. Lightowlers regarding our article “Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria.”. PLOS Genet. 11:e1005218 [Google Scholar]
  95. Chrzanowska-Lightowlers ZM, Lightowlers RN. 95.  2015. Response to “Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria.”. PLOS Genet. 11:e1005227 [Google Scholar]
  96. Preuss M, Leonhard K, Hell K, Stuart RA, Neupert W, Herrmann JM. 96.  2001. Mba1, a novel component of the mitochondrial protein export machinery of the yeast Saccharomyces cerevisiae. J. Cell Biol. 153:1085–96 [Google Scholar]
  97. Josyula R, Jin Z, Fu Z, Sha B. 97.  2006. Crystal structure of yeast mitochondrial peripheral membrane protein Tim44p C-terminal domain. J. Mol. Biol. 359:798–804 [Google Scholar]
  98. Weiss C, Oppliger W, Vergères G, Demel R, Jenö P. 98.  et al. 1999. Domain structure and lipid interaction of recombinant yeast Tim44. PNAS 96:8890–94 [Google Scholar]
  99. Bauerschmitt H, Mick DU, Deckers M, Vollmer C, Funes S. 99.  et al. 2010. Ribosome-binding proteins Mdm38 and Mba1 display overlapping functions for regulation of mitochondrial translation. Mol. Biol. Cell 21:1937–44 [Google Scholar]
  100. Wilson DN. 100.  2014. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 12:35–48 [Google Scholar]
  101. Schlünzen F, Zarivach R, Harms J, Bashan A, Tocilj A. 101.  et al. 2001. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413:814–21 [Google Scholar]
  102. Hansen JL, Ippolito JA, Ban N, Nissen P, Moore PB, Steitz TA. 102.  2002. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol. Cell 10:117–28 [Google Scholar]
  103. Denslow ND, O'Brien TW. 103.  1978. Antibiotic susceptibility of the peptidyl transferase locus of bovine mitochondrial ribosomes. Eur. J. Biochem. 91:441–48 [Google Scholar]
  104. Zhang L, Ging NC, Komoda T, Hanada T, Suzuki T, Watanabe K. 104.  2005. Antibiotic susceptibility of mammalian mitochondrial translation. FEBS Lett. 579:6423–27 [Google Scholar]
  105. Tu D, Blaha G, Moore PB, Steitz TA. 105.  2005. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121:257–70 [Google Scholar]
  106. Bidou L, Allamand V, Rousset J-P, Namy O. 106.  2012. Sense from nonsense: therapies for premature stop codon diseases. Trends Mol. Med. 18:679–88 [Google Scholar]
  107. Borovinskaya MA, Pai RD, Zhang W, Schuwirth BS, Holton JM. 107.  et al. 2007. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat. Struct. Mol. Biol. 14:727–32 [Google Scholar]
  108. Moazed D, Noller HF. 108.  1987. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327:389–94 [Google Scholar]
  109. Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. 109.  2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–48 [Google Scholar]
  110. Hobbie SN, Bruell CM, Akshay S, Kalapala SK, Shcherbakov D, Böttger EC. 110.  2008. Mitochondrial deafness alleles confer misreading of the genetic code. PNAS 105:3244–49 [Google Scholar]
  111. Hobbie SN, Akshay S, Kalapala SK, Bruell CM, Shcherbakov D, Böttger EC. 111.  2008. Genetic analysis of interactions with eukaryotic rRNA identify the mitoribosome as target in aminoglycoside ototoxicity. PNAS 105:20888–93 [Google Scholar]
  112. Matt T, Ng CL, Lang K, Sha S-H, Akbergenov R. 112.  et al. 2012. Dissociation of antibacterial activity and aminoglycoside ototoxicity in the 4-monosubstituted 2-deoxystreptamine apramycin. PNAS 109:10984–89 [Google Scholar]
  113. Meyer M, Freihofer P, Scherman M, Teague J, Lenaerts A, Böttger EC. 113.  2014. In vivo efficacy of apramycin in murine infection models. Antimicrob. Agents Chemother. 58:6938–41 [Google Scholar]
  114. Mace PD, Riedl SJ. 114.  2010. Molecular cell death platforms and assemblies. Curr. Opin. Cell Biol. 22:828–36 [Google Scholar]
  115. Kissil JL, Deiss LP, Bayewitch M, Raveh T, Khaspekov G, Kimchi A. 115.  1995. Isolation of DAP3, a novel mediator of interferon-γ-induced cell death. J. Biol. Chem. 270:27932–36 [Google Scholar]
  116. Ekert PG, Vaux DL. 116.  2005. The mitochondrial death squad: hardened killers or innocent bystanders?. Curr. Opin. Cell Biol. 17:626–30 [Google Scholar]
  117. Kissil JL, Cohen O, Raveh T, Kimchi A. 117.  1999. Structure-function analysis of an evolutionary conserved protein, DAP3, which mediates TNF-α- and Fas-induced cell death. EMBO J. 18:353–62 [Google Scholar]
  118. Miyazaki T, Reed JC. 118.  2001. A GTP-binding adapter protein couples TRAIL receptors to apoptosis-inducing proteins. Nat. Immunol. 2:493–500 [Google Scholar]
  119. Berger T, Brigl M, Herrmann JM, Vielhauer V, Luckow B. 119.  et al. 2000. The apoptosis mediator mDAP-3 is a novel member of a conserved family of mitochondrial proteins. J. Cell Sci. 113:3603–12 [Google Scholar]
  120. Berger T, Kretzler M. 120.  2002. Interaction of DAP3 and FADD only after cellular disruption. Nat. Immunol. 3:3–5 [Google Scholar]
  121. Mukamel Z, Kimchi A. 121.  2004. Death-associated protein 3 localizes to the mitochondria and is involved in the process of mitochondrial fragmentation during cell death. J. Biol. Chem. 279:36732–38 [Google Scholar]
  122. Berger T, Kretzler M. 122.  2002. TRAIL-induced apoptosis is independent of the mitochondrial apoptosis mediator DAP3. Biochem. Biophys. Res. Commun. 297:880–84 [Google Scholar]
  123. Denslow ND, Anders JC, O'Brien TW. 123.  1991. Bovine mitochondrial ribosomes possess a high affinity binding site for guanine nucleotides. J. Biol. Chem. 266:9586–90 [Google Scholar]
  124. Koc EC, Ranasinghe A, Burkhart W, Blackburn K, Koc H. 124.  et al. 2001. A new face on apoptosis: Death-associated protein 3 and PDCD9 are mitochondrial ribosomal proteins. FEBS Lett. 492:166–70 [Google Scholar]
  125. Erzberger JP, Berger JM. 125.  2006. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct. 35:93–114 [Google Scholar]
  126. Walker JE, Saraste M, Runswick MJ, Gay NJ. 126.  1982. Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1:945–51 [Google Scholar]
  127. Hanson PI, Whiteheart SW. 127.  2005. AAA+ proteins: have engine, will work. Nat. Rev. Mol. Cell Biol. 6:519–29 [Google Scholar]
  128. Leipe DD, Koonin EV, Aravind L. 128.  2004. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J. Mol. Biol. 343:1–28 [Google Scholar]
  129. O'Brien TW, Denslow ND, Anders JC, Courtney BC. 129.  1990. The translation system of mammalian mitochondria. Biochim. Biophys. Acta 1050:174–78 [Google Scholar]
  130. Miller JL, Cimen H, Koc H, Koc EC. 130.  2009. Phosphorylated proteins of the mammalian mitochondrial ribosome: implications in protein synthesis. J. Proteome Res. 8:4789–98 [Google Scholar]
  131. Miller JL, Koc H, Koc EC. 131.  2008. Identification of phosphorylation sites in mammalian mitochondrial ribosomal protein DAP3. Protein Sci. 17:251–60 [Google Scholar]
  132. Yoo YA, Kim MJ, Park JK, Chung YM, Lee JH. 132.  et al. 2005. Mitochondrial ribosomal protein L41 suppresses cell growth in association with p53 and p27Kip1. Mol. Cell. Biol. 25:6603–16 [Google Scholar]
  133. Chintharlapalli SR, Jasti M, Malladi S, Parsa KVL, Ballestero RP, González-García M. 133.  2005. BMRP is a Bcl-2 binding protein that induces apoptosis. J. Cell. Biochem. 94:611–26 [Google Scholar]
  134. Conde JA, Claunch CJ, Romo HE, Benito-Martín A, Ballestero RP, González-García M. 134.  2012. Identification of a motif in BMRP required for interaction with Bcl-2 by site-directed mutagenesis studies. J. Cell. Biochem. 113:3498–508 [Google Scholar]
  135. Sun L, Liu Y, Frémont M, Schwarz S, Siegmann M. 135.  et al. 1998. A novel 52 kDa protein induces apoptosis and concurrently activates c-Jun N-terminal kinase 1 (JNK1) in mouse C3H10T1/2 fibroblasts. Gene 208:157–66 [Google Scholar]
  136. Quigley DA, Fiorito E, Nord S, Van Loo P, Alnæs GG. 136.  et al. 2014. The 5p12 breast cancer susceptibility locus affects MRPS30 expression in estrogen-receptor positive tumors. Mol. Oncol. 8:273–84 [Google Scholar]
  137. Warner JR, McIntosh KB. 137.  2009. How common are extraribosomal functions of ribosomal proteins?. Mol. Cell 34:3–11 [Google Scholar]
  138. Skladal D, Halliday J, Thorburn DR. 138.  2003. Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain 126:1905–12 [Google Scholar]
  139. Boczonadi V, Horvath R. 139.  2014. Mitochondria: impaired mitochondrial translation in human disease. Int. J. Biochem. Cell Biol. 48:77–84 [Google Scholar]
  140. Serre V, Rozanska A, Beinat M, Chretien D, Boddaert N. 140.  et al. 2013. Mutations in mitochondrial ribosomal protein MRPL12 leads to growth retardation, neurological deterioration and mitochondrial translation deficiency. Biochim. Biophys. Acta 1832:1304–12 [Google Scholar]
  141. Menezes MJ, Guo Y, Zhang J, Riley LG, Cooper ST. 141.  et al. 2015. Mutation in mitochondrial ribosomal protein S7 (MRPS7) causes congenital sensorineural deafness, progressive hepatic and renal failure and lactic acidemia. Hum. Mol. Genet. 24:2297–307 [Google Scholar]
  142. Emdadul Haque M, Grasso D, Miller C, Spremulli LL, Saada A. 142.  2008. The effect of mutated mitochondrial ribosomal proteins S16 and S22 on the assembly of the small and large ribosomal subunits in human mitochondria. Mitochondrion 8:254–61 [Google Scholar]
  143. Hanahan D, Weinberg RA. 143.  2011. Hallmarks of cancer: the next generation. Cell 144:646–74 [Google Scholar]
  144. Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK. 144.  et al. 2009. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8:3984–4001 [Google Scholar]
  145. Feron O. 145.  2009. Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother. Oncol. 92:329–33 [Google Scholar]
  146. Lamb R, Ozsvari B, Lisanti CL, Tanowitz HB, Howell A. 146.  et al. 2015. Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease. Oncotarget 6:4569–84 [Google Scholar]
  147. Järås M, Ebert BL. 147.  2011. Power cut: inhibiting mitochondrial translation to target leukemia. Cancer Cell 20:555–56 [Google Scholar]
  148. Giglione C, Boularot A, Meinnel T. 148.  2004. Protein N-terminal methionine excision. Cell. Mol. Life Sci. 61:1455–74 [Google Scholar]
  149. Lee MD, She Y, Soskis MJ, Borella CP, Gardner JR. 149.  et al. 2004. Human mitochondrial peptide deformylase, a new anticancer target of actinonin-based antibiotics. J. Clin. Investig. 114:1107–16 [Google Scholar]
  150. Spirina O, Bykhovskaya Y, Kajava AV, O'Brien TW, Nierlich DP. 150.  et al. 2000. Heart-specific splice-variant of a human mitochondrial ribosomal protein (mRNA processing; tissue specific splicing). Gene 261:229–34 [Google Scholar]
  151. Kohler R, Boehringer D, Greber B, Bingel-Erlenmeyer R, Collinson I. 151.  et al. 2009. YidC and Oxa1 form dimeric insertion pores on the translating ribosome. Mol. Cell 34:344–53 [Google Scholar]
  152. Wickles S, Singharoy A, Andreani J, Seemayer S, Bischoff L. 152.  et al. 2014. A structural model of the active ribosome-bound membrane protein insertase YidC. eLife 3:e03035 [Google Scholar]
  153. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM. 153.  et al. 2004. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25:1605–12 [Google Scholar]
  154. Yusupova G, Yusupov M. 154.  2014. High-resolution structure of the eukaryotic 80S ribosome. Annu. Rev. Biochem. 83:467–86 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error