Mitochondria are essential organelles with numerous functions in cellular metabolism and homeostasis. Most of the >1,000 different mitochondrial proteins are synthesized as precursors in the cytosol and are imported into mitochondria by five transport pathways. The protein import machineries of the mitochondrial membranes and aqueous compartments reveal a remarkable variability of mechanisms for protein recognition, translocation, and sorting. The protein translocases do not operate as separate entities but are connected to each other and to machineries with functions in energetics, membrane organization, and quality control. Here, we discuss the versatility and dynamic organization of the mitochondrial protein import machineries. Elucidating the molecular mechanisms of mitochondrial protein translocation is crucial for understanding the integration of protein translocases into a large network that controls organelle biogenesis, function, and dynamics.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Nunnari J, Suomalainen A. 1.  2012. Mitochondria: in sickness and in health. Cell 148:1145–59 [Google Scholar]
  2. Roise D, Horvath SJ, Tomich JM, Richards JH, Schatz G. 2.  1986. A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO J 5:1327–34 [Google Scholar]
  3. Abe Y, Shodai T, Muto T, Mihara K, Torii H. 3.  et al. 2000. Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100:551–60 [Google Scholar]
  4. Vögtle FN, Wortelkamp S, Zahedi RP, Becker D, Leidhold C. 4.  et al. 2009. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell 139:428–39 [Google Scholar]
  5. Kiebler M, Pfaller R, Söllner T, Griffiths G, Horstmann H. 5.  et al. 1990. Identification of a mitochondrial receptor complex required for recognition and membrane insertion of precursor proteins. Nature 348:610–16 [Google Scholar]
  6. Mokranjac D, Neupert W. 6.  2015. Cell biology: architecture of a protein entry gate. Nature 528:201–2 [Google Scholar]
  7. Chacinska A, Lind M, Frazier AE, Dudek J, Meisinger C. 7.  et al. 2005. Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell 120:817–29 [Google Scholar]
  8. Kang PJ, Ostermann J, Shilling J, Neupert W, Craig EA, Pfanner N. 8.  1990. Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature 348:137–43 [Google Scholar]
  9. Horst M, Oppliger W, Rospert S, Schönfeld HJ, Schatz G, Azem A. 9.  1997. Sequential action of two hsp70 complexes during protein import into mitochondria. EMBO J 16:1842–49 [Google Scholar]
  10. Hawlitschek G, Schneider H, Schmidt B, Tropschug M, Hartl FU, Neupert W. 10.  1988. Mitochondrial protein import: identification of processing peptidase and of PEP, a processing enhancing protein. Cell 53:795–806 [Google Scholar]
  11. Sirrenberg C, Bauer MF, Guiard B, Neupert W, Brunner M. 11.  1996. Import of carrier proteins into the mitochondrial inner membrane mediated by Tim22. Nature 384:582–85 [Google Scholar]
  12. Koehler CM, Jarosch E, Tokatlidis K, Schmid K, Schweyen RJ, Schatz G. 12.  1998. Import of mitochondrial carriers mediated by essential proteins of the intermembrane space. Science 279:369–73 [Google Scholar]
  13. Sirrenberg C, Endres M, Fölsch H, Stuart RA, Neupert W, Brunner M. 13.  1998. Carrier protein import into mitochondria mediated by the intermembrane proteins Tim10/Mrs11 and Tim12/Mrs5. Nature 391:912–15 [Google Scholar]
  14. Wiedemann N, Kozjak V, Chacinska A, Schönfisch B, Rospert S. 14.  et al. 2003. Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature 424:565–71 [Google Scholar]
  15. Paschen SA, Waizenegger T, Stan T, Preuss M, Cyrklaff M. 15.  et al. 2003. Evolutionary conservation of biogenesis of β-barrel membrane proteins. Nature 426:862–66 [Google Scholar]
  16. Chacinska A, Pfannschmidt S, Wiedemann N, Kozjak V, Sanjuán Szklarz LK. 16.  et al. 2004. Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins. EMBO J 23:3735–46 [Google Scholar]
  17. Naoé M, Ohwa Y, Ishikawa D, Ohshima C, Nishikawa SI. 17.  et al. 2004. Identification of Tim40 that mediates protein sorting to the mitochondrial intermembrane space. J. Biol. Chem. 279:47815–21 [Google Scholar]
  18. Becker T, Pfannschmidt S, Guiard B, Stojanovski D, Milenkovic D. 18.  et al. 2008. Biogenesis of the mitochondrial TOM complex: Mim1 promotes insertion and assembly of signal-anchored receptors. J. Biol. Chem. 283:120–27 [Google Scholar]
  19. Hulett JM, Lueder F, Chan NC, Perry AJ, Wolynec P. 19.  et al. 2008. The transmembrane segment of Tom20 is recognized by Mim1 for docking to the mitochondrial TOM complex. J. Mol. Biol. 376:694–704 [Google Scholar]
  20. Popov-Čeleketić J, Waizenegger T, Rapaport D. 20.  2008. Mim1 functions in an oligomeric form to facilitate the integration of Tom20 into the mitochondrial outer membrane. J. Mol. Biol. 376:671–80 [Google Scholar]
  21. Hill K, Model K, Ryan MT, Dietmeier K, Martin F. 21.  et al. 1998. Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395:516–21 [Google Scholar]
  22. Shiota T, Imai K, Qiu J, Hewitt VL, Tan K. 22.  et al. 2015. Molecular architecture of the active mitochondrial protein gate. Science 349:1544–48 [Google Scholar]
  23. Yamano K, Yatsukawa YI, Esaki M, Hobbs AEA, Jensen RE, Endo T. 23.  2008. Tom20 and Tom22 share the common signal recognition pathway in mitochondrial protein import. J. Biol. Chem. 283:3799–807 [Google Scholar]
  24. Bayrhuber M, Meins T, Habeck M, Becker S, Giller K. 24.  et al. 2008. Structure of the human voltage-dependent anion channel. PNAS 105:15370–75 [Google Scholar]
  25. Qiu J, Wenz LS, Zerbes RM, Oeljeklaus S, Bohnert M. 25.  et al. 2013. Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. Cell 154:596–608 [Google Scholar]
  26. Lackey SWK, Taylor RD, Go NE, Wong A, Sherman EL, Nargang FE. 26.  2014. Evidence supporting the 19 β-strand model for Tom40 from cysteine scanning and protease site accessibility studies. J. Biol. Chem. 289:21640–50 [Google Scholar]
  27. Esaki M, Kanamori T, Nishikawa SI, Shin I, Schultz PG, Endo T. 27.  2003. Tom40 protein import channel binds to non-native proteins and prevents their aggregation. Nat. Struct. Biol. 10:988–94 [Google Scholar]
  28. Melin J, Schulz C, Wrobel L, Bernhard O, Chacinska A. 28.  et al. 2014. Presequence recognition by the Tom40 channel contributes to precursor translocation into the mitochondrial matrix. Mol. Cell. Biol. 34:3473–85 [Google Scholar]
  29. Bolliger L, Junne T, Schatz G, Lithgow T. 29.  1995. Acidic receptor domains on both sides of the outer membrane mediate translocation of precursor proteins into yeast mitochondria. EMBO J 14:6318–26 [Google Scholar]
  30. Moczko M, Bömer U, Kübrich M, Zufall N, Hönlinger A, Pfanner N. 30.  1997. The intermembrane space domain of mitochondrial Tom22 functions as a trans binding site for preproteins with N-terminal targeting sequences. Mol. Cell. Biol. 17:6574–84 [Google Scholar]
  31. Dietmeier K, Hönlinger A, Bömer U, Dekker PJ, Eckerskorn C. 31.  et al. 1997. Tom5 functionally links mitochondrial preprotein receptors to the general import pore. Nature 388:195–200 [Google Scholar]
  32. Kurz M, Martin H, Rassow J, Pfanner N, Ryan MT. 32.  1999. Biogenesis of Tim proteins of the mitochondrial carrier import pathway: differential targeting mechanisms and crossing over with the main import pathway. Mol. Biol. Cell 10:2461–74 [Google Scholar]
  33. Gornicka A, Bragoszewski P, Chroscicki P, Wenz LS, Schulz C. 33.  et al. 2014. A discrete pathway for the transfer of intermembrane space proteins across the outer membrane of mitochondria. Mol. Biol. Cell 25:3999–4009 [Google Scholar]
  34. van der Laan M, Schrempp SG, Pfanner N. 34.  2013. Voltage-coupled conformational dynamics of mitochondrial protein import channel. Nat. Struct. Mol. Biol. 20:915–17 [Google Scholar]
  35. Schulz C, Schendzielorz A, Rehling P. 35.  2015. Unlocking the presequence import pathway. Trends Cell Biol 25:265–75 [Google Scholar]
  36. Rahman B, Kawano S, Yunoki-Esaki K, Anzai T, Endo T. 36.  2014. NMR analyses on the interactions of the yeast Tim50 C-terminal region with the presequence and Tim50 core domain. FEBS Lett 588:678–84 [Google Scholar]
  37. Lytovchenko O, Melin J, Schulz C, Kilisch M, Hutu DP, Rehling P. 37.  2013. Signal recognition initiates reorganization of the presequence translocase during protein import. EMBO J 32:886–98 [Google Scholar]
  38. Truscott KN, Kovermann P, Geissler A, Merlin A, Meijer M. 38.  et al. 2001. A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nat. Struct. Biol. 8:1074–82 [Google Scholar]
  39. Meinecke M, Wagner R, Kovermann P, Guiard B, Mick DU. 39.  et al. 2006. Tim50 maintains the permeability barrier of the mitochondrial inner membrane. Science 312:1523–26 [Google Scholar]
  40. Demishtein-Zohary K, Marom M, Neupert W, Mokranjac D, Azem A. 40.  2015. GxxxG motifs hold the TIM23 complex together. FEBS J 282:2178–86 [Google Scholar]
  41. Martinez-Caballero S, Grigoriev SM, Herrmann JM, Campo ML, Kinnally KW. 41.  2007. Tim17p regulates the twin pore structure and voltage gating of the mitochondrial protein import complex TIM23. J. Biol. Chem. 282:3584–93 [Google Scholar]
  42. Rainbolt TK, Atanassova N, Genereux JC, Wiseman RL. 42.  2013. Stress-regulated translational attenuation adapts mitochondrial protein import through Tim17A degradation. Cell Metab 18:908–19 [Google Scholar]
  43. Ramesh A, Peleh V, Martinez-Caballero S, Wollweber F, Sommer F. 43.  et al. 2016. A disulfide bond in the TIM23 complex is crucial for voltage gating and mitochondrial protein import. J. Cell Biol. 214:417–31 [Google Scholar]
  44. Wrobel L, Sokol AM, Chojnacka M, Chacinska A. 44.  2016. The presence of disulfide bonds reveals an evolutionarily conserved mechanism involved in mitochondrial protein translocase assembly. Sci. Rep. 6:27484 [Google Scholar]
  45. Ieva R, Schrempp SG, Opalinski L, Wollweber F, Höß P. 45.  et al. 2014. Mgr2 functions as lateral gatekeeper for preprotein sorting in the mitochondrial inner membrane. Mol. Cell 56:641–52 [Google Scholar]
  46. Glick BS, Brandt A, Cunningham K, Müller S, Hallberg RL, Schatz G. 46.  1992. Cytochromes c1 and b2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism. Cell 69:809–22 [Google Scholar]
  47. Botelho SC, Österberg M, Reichert AS, Yamano K, Björkholm P. 47.  et al. 2011. TIM23-mediated insertion of transmembrane α-helices into the mitochondrial inner membrane. EMBO J 30:1003–11 [Google Scholar]
  48. Martin J, Mahlke K, Pfanner N. 48.  1991. Role of an energized inner membrane in mitochondrial protein import: Δψ drives the movement of presequences. J. Biol. Chem. 266:18051–57 [Google Scholar]
  49. Turakhiya U, von der Malsburg K, Gold VAM, Guiard B, Chacinska A. 49.  et al. 2016. Protein import by the mitochondrial presequence translocase in the absence of a membrane potential. J. Mol. Biol. 428:1041–52 [Google Scholar]
  50. Malhotra K, Sathappa M, Landin JS, Johnson AE, Alder NN. 50.  2013. Structural changes in the mitochondrial Tim23 channel are coupled to the proton-motive force. Nat. Struct. Mol. Biol. 20:965–72 [Google Scholar]
  51. van der Laan M, Meinecke M, Dudek J, Hutu DP, Lind M. 51.  et al. 2007. Motor-free mitochondrial presequence translocase drives membrane integration of preproteins. Nat. Cell Biol. 9:1152–59 [Google Scholar]
  52. van der Laan M, Wiedemann N, Mick DU, Guiard B, Rehling P, Pfanner N. 52.  2006. A role for Tim21 in membrane-potential-dependent preprotein sorting in mitochondria. Curr. Biol. 16:2271–76 [Google Scholar]
  53. Wiedemann N, van der Laan M, Hutu DP, Rehling P, Pfanner N. 53.  2007. Sorting switch of mitochondrial presequence translocase involves coupling of motor module to respiratory chain. J. Cell Biol. 179:1115–22 [Google Scholar]
  54. Gebert M, Schrempp SG, Mehnert CS, Heisswolf AK, Oeljeklaus S. 54.  et al. 2012. Mgr2 promotes coupling of the mitochondrial presequence translocase to partner complexes. J. Cell Biol. 197:595–604 [Google Scholar]
  55. Mick DU, Dennerlein S, Wiese H, Reinhold R, Pacheu-Grau D. 55.  et al. 2012. MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation. Cell 151:1528–41 [Google Scholar]
  56. Sinha D, Srivastava S, Krishna L, D'Silva P. 56.  2014. Unraveling the intricate organization of mammalian mitochondrial presequence translocases: existence of multiple translocases for maintenance of mitochondrial function. Mol. Cell. Biol. 34:1757–75 [Google Scholar]
  57. Johnson KA, Bhushan S, Ståhl A, Hallberg BM, Frohn A. 57.  et al. 2006. The closed structure of presequence protease PreP forms a unique 10000 Å3 chamber for proteolysis. EMBO J 25:1977–86 [Google Scholar]
  58. Mossmann D, Vögtle FN, Taskin AA, Teixeira PF, Ring J. 58.  et al. 2014. Amyloid-β peptide induces mitochondrial dysfunction by inhibition of preprotein maturation. Cell Metab 20:662–69 [Google Scholar]
  59. Schulte U, Arretz M, Schneider H, Tropschug M, Wachter E. 59.  et al. 1989. A family of mitochondrial proteins involved in bioenergetics and biogenesis. Nature 339:147–49 [Google Scholar]
  60. Braun HP, Emmermann M, Kruft V, Schmitz UK. 60.  1992. The general mitochondrial processing peptidase from potato is an integral part of cytochrome c reductase of the respiratory chain. EMBO J 11:3219–27 [Google Scholar]
  61. Dessi P, Rudhe C, Glaser E. 61.  2000. Studies on the topology of the protein import channel in relation to the plant mitochondrial processing peptidase integrated into the cytochrome bc1 complex. Plant J 24:637–44 [Google Scholar]
  62. Mossmann D, Meisinger C, Vögtle FN. 62.  2012. Processing of mitochondrial presequences. Biochim. Biophys. Acta 1819:1098–106 [Google Scholar]
  63. Popov-Čeleketić D, Mapa K, Neupert W, Mokranjac D. 63.  2008. Active remodelling of the TIM23 complex during translocation of preproteins into mitochondria. EMBO J 27:1469–80 [Google Scholar]
  64. Ting SY, Schilke BA, Hayashi M, Craig EA. 64.  2014. Architecture of the TIM23 inner mitochondrial translocon and interactions with the matrix import motor. J. Biol. Chem. 289:28689–96 [Google Scholar]
  65. Banerjee R, Gladkova C, Mapa K, Witte G, Mokranjac D. 65.  2015. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein. eLife 4:e11897 [Google Scholar]
  66. De Los Rios P, Ben-Zvi A, Slutsky O, Azam A, Goloubinoff P. 66.  2006. Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. PNAS 103:6166–71 [Google Scholar]
  67. Hutu DP, Guiard B, Chacinska A, Becker D, Pfanner N. 67.  et al. 2008. Mitochondrial protein import motor: differential role of Tim44 in the recruitment of Pam17 and J-complex to the presequence translocase. Mol. Biol. Cell 19:2642–49 [Google Scholar]
  68. Ostermann J, Horwich A, Neupert W, Hartl FU. 68.  1989. Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature 341:125–30 [Google Scholar]
  69. Hell K, Neupert W, Stuart RA. 69.  2001. Oxa1p acts as a general membrane insertion machinery for proteins encoded by mitochondrial DNA. EMBO J 20:1281–88 [Google Scholar]
  70. Pfeffer S, Woellhaf MW, Herrmann JM, Förster F. 70.  2015. Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography. Nat. Commun. 6:6019 [Google Scholar]
  71. Ott M, Herrmann JM. 71.  2010. Co-translational membrane insertion of mitochondrially encoded proteins. Biochim. Biophys. Acta 1803:767–75 [Google Scholar]
  72. Hartl FU, Schmidt B, Wachter E, Weiss H, Neupert W. 72.  1986. Transport into mitochondria and intramitochondrial sorting of the Fe/S protein of ubiquinol-cytochrome c reductase. Cell 47:939–51 [Google Scholar]
  73. Rojo EE, Stuart RA, Neupert W. 73.  1995. Conservative sorting of F0-ATPase subunit 9: export from matrix requires ΔpH across inner membrane and matrix ATP. EMBO J 14:3445–51 [Google Scholar]
  74. Stiller SB, Höpker J, Oeljeklaus S, Schütze C, Schrempp SG. 74.  et al. 2016. Mitochondrial OXA translocase plays a major role in biogenesis of inner-membrane proteins. Cell Metab 23:901–8 [Google Scholar]
  75. Bohnert M, Rehling P, Guiard B, Herrmann JM, Pfanner N, van der Laan M. 75.  2010. Cooperation of stop-transfer and conservative sorting mechanisms in mitochondrial protein transport. Curr. Biol. 20:1227–32 [Google Scholar]
  76. Park K, Botelho SC, Hong J, Österberg M, Kim H. 76.  2013. Dissecting stop transfer versus conservative sorting pathways for mitochondrial inner membrane proteins in vivo. J. Biol. Chem. 288:1521–32 [Google Scholar]
  77. Hildenbeutel M, Theis M, Geier M, Haferkamp I, Neuhaus HE. 77.  et al. 2012. The membrane insertase Oxa1 is required for efficient import of carrier proteins into mitochondria. J. Mol. Biol. 423:590–99 [Google Scholar]
  78. Brix J, Rüdiger S, Bukau B, Schneider-Mergener J, Pfanner N. 78.  1999. Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein. J. Biol. Chem. 274:16522–30 [Google Scholar]
  79. Endres M, Neupert W, Brunner M. 79.  1999. Transport of the ADP/ATP carrier of mitochondria from the TOM complex to the TIM22-54 complex. EMBO J 18:3214–21 [Google Scholar]
  80. Young JC, Hoogenraad NJ, Hartl FU. 80.  2003. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112:41–50 [Google Scholar]
  81. Bhangoo MK, Tzankov S, Fan ACY, Dejgaard K, Thomas DY, Young JC. 81.  2007. Multiple 40-kDa heat-shock protein chaperones function in Tom70-dependent mitochondrial import. Mol. Biol. Cell 18:3414–28 [Google Scholar]
  82. Wu Y, Sha B. 82.  2006. Crystal structure of yeast mitochondrial outer membrane translocon member Tom70p. Nat. Struct. Mol. Biol. 13:589–93 [Google Scholar]
  83. Wiedemann N, Pfanner N, Ryan MT. 83.  2001. The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO J 20:951–60 [Google Scholar]
  84. Curran SP, Leuenberger D, Schmidt E, Koehler CM. 84.  2002. The role of the Tim8p-Tim13p complex in a conserved import pathway for mitochondrial polytopic inner membrane proteins. J. Cell Biol. 158:1017–27 [Google Scholar]
  85. Webb CT, Gorman MA, Lazarou M, Ryan MT, Gulbis JM. 85.  2006. Crystal structure of the mitochondrial chaperone TIM9•10 reveals a six-bladed α-propeller. Mol. Cell 21:123–33 [Google Scholar]
  86. Beverly KN, Sawaya MR, Schmid E, Koehler CM. 86.  2008. The Tim8-Tim13 complex has multiple substrate binding sites and binds cooperatively to Tim23. J. Mol. Biol. 382:1144–56 [Google Scholar]
  87. Gebert N, Chacinska A, Wagner K, Guiard B, Koehler CM. 87.  et al. 2008. Assembly of the three small Tim proteins precedes docking to the mitochondrial carrier translocase. EMBO Rep 9:548–54 [Google Scholar]
  88. Lionaki E, de Marcos Lousa C, Baud C, Vougioukalaki M, Panayotou G, Tokatlidis K. 88.  2008. The essential function of Tim12 in vivo is ensured by the assembly interactions of its C-terminal domain. J. Biol. Chem. 283:15747–53 [Google Scholar]
  89. Wagner K, Gebert N, Guiard B, Brandner K, Truscott KN. 89.  et al. 2008. The assembly pathway of the mitochondrial carrier translocase involves four preprotein translocases. Mol. Cell. Biol. 28:4251–60 [Google Scholar]
  90. Rehling P, Model K, Brandner K, Kovermann P, Sickmann A. 90.  et al. 2003. Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science 299:1747–51 [Google Scholar]
  91. Gebert N, Gebert M, Oeljeklaus S, von der Malsburg K, Stroud DA. 91.  et al. 2011. Dual function of Sdh3 in the respiratory chain and TIM22 protein translocase of the mitochondrial inner membrane. Mol. Cell 44:811–18 [Google Scholar]
  92. Kulawiak B, Höpker J, Gebert M, Guiard B, Wiedemann N, Gebert N. 92.  2013. The mitochondrial protein import machinery has multiple connections to the respiratory chain. Biochim. Biophys. Acta 1827:612–26 [Google Scholar]
  93. Fischer M, Riemer J. 93.  2013. The mitochondrial disulfide relay system: roles in oxidative protein folding and beyond. Int. J. Cell Biol 2013:742923 [Google Scholar]
  94. Chatzi A, Manganas P, Tokatlidis K. 94.  2016. Oxidative folding in the mitochondrial intermembrane space: a regulated process important for cell physiology and disease. Biochim. Biophys. Acta 1863:1298–306 [Google Scholar]
  95. Mesecke N, Terziyska N, Kozany C, Baumann F, Neupert W. 95.  et al. 2005. A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 121:1059–69 [Google Scholar]
  96. Rissler M, Wiedemann N, Pfannschmidt S, Gabriel K, Guiard B. 96.  et al. 2005. The essential mitochondrial protein Erv1 cooperates with Mia40 in biogenesis of intermembrane space proteins. J. Mol. Biol. 353:485–92 [Google Scholar]
  97. Bihlmaier K, Mesecke N, Terziyska N, Bien M, Hell K, Herrmann JM. 97.  2007. The disulfide relay system of mitochondria is connected to the respiratory chain. J. Cell Biol. 179:389–95 [Google Scholar]
  98. Dabir DV, Leverich EP, Kim S-K, Tsai FD, Hirasawa M. 98.  et al. 2007. A role for cytochrome c and cytochrome c peroxidase in electron shuttling from Erv1. EMBO J 26:4801–11 [Google Scholar]
  99. Kawano S, Yamano K, Naoé M, Momose T, Terao K. 99.  et al. 2009. Structural basis of yeast Tim40/Mia40 as an oxidative translocator in the mitochondrial intermembrane space. PNAS 106:14403–7 [Google Scholar]
  100. Bien M, Longen S, Wagener N, Chwalla I, Herrmann JM, Riemer J. 100.  2010. Mitochondrial disulfide bond formation is driven by intersubunit electron transfer in Erv1 and proofread by glutathione. Mol. Cell 37:516–28 [Google Scholar]
  101. Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S. 101.  et al. 2012. An electron-transfer path through an extended disulfide relay system: the case of the redox protein ALR. J. Am. Chem. Soc. 134:1442–45 [Google Scholar]
  102. Curran SP, Leuenberger D, Leverich EP, Hwang DK, Beverly KN, Koehler CM. 102.  2004. The role of Hot13p and redox chemistry in the mitochondrial TIM22 import pathway. J. Biol. Chem. 279:43744–51 [Google Scholar]
  103. Mesecke N, Bihlmaier K, Grumbt B, Longen S, Terziyska N. 103.  et al. 2008. The zinc-binding protein Hot13 promotes oxidation of the mitochondrial import receptor Mia40. EMBO Rep 9:1107–13 [Google Scholar]
  104. Durigon R, Wang Q, Pavia EC, Grant CM, Lu H. 104.  2012. Cytosolic thioredoxin system facilitates the import of mitochondrial small Tim proteins. EMBO Rep 13:916–22 [Google Scholar]
  105. Banci L, Bertini I, Cefaro C, Cenacchi L, Ciofi-Baffoni S. 105.  et al. 2010. Molecular chaperone function of Mia40 triggers consecutive induced folding steps of the substrate in mitochondrial protein import. PNAS 107:20190–95 [Google Scholar]
  106. von der Malsburg K, Müller JM, Bohnert M, Oeljeklaus S, Kwiatkowska P. 106.  et al. 2011. Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev. Cell 21:694–707 [Google Scholar]
  107. Weckbecker D, Longen S, Riemer J, Herrmann JM. 107.  2012. Atp23 biogenesis reveals a chaperone-like folding activity of Mia40 in the IMS of mitochondria. EMBO J 31:4348–58 [Google Scholar]
  108. Peleh V, Cordat E, Herrmann JM. 108.  2016. Mia40 is a trans-site receptor that drives protein import into the mitochondrial intermembrane space by hydrophobic substrate binding. eLife 5:e16177 [Google Scholar]
  109. Milenkovic D, Ramming T, Müller JM, Wenz LS, Gebert N. 109.  et al. 2009. Identification of the signal directing Tim9 and Tim10 into the intermembrane space of mitochondria. Mol. Biol. Cell 20:2530–39 [Google Scholar]
  110. Sideris DP, Petrakis N, Katrakili N, Mikropoulou D, Gallo A. 110.  et al. 2009. A novel intermembrane space-targeting signal docks cysteines onto Mia40 during mitochondrial oxidative folding. J. Cell Biol. 187:1007–22 [Google Scholar]
  111. Koch JR, Schmid FX. 111.  2014. Mia40 combines thiol oxidase and disulfide isomerase activity to efficiently catalyze oxidative folding in mitochondria. J. Mol. Biol. 426:4087–98 [Google Scholar]
  112. Wrobel L, Trojanowska A, Sztolsztener ME, Chacinska A. 112.  2013. Mitochondrial protein import: Mia40 facilitates Tim22 translocation into the inner membrane of mitochondria. Mol. Biol. Cell 24:543–54 [Google Scholar]
  113. Okamoto H, Miyagawa A, Shiota T, Tamura Y, Endo T. 113.  2014. Intramolecular disulfide bond of Tim22 protein maintains integrity of the TIM22 complex in the mitochondrial inner membrane. J. Biol. Chem. 289:4827–38 [Google Scholar]
  114. Longen S, Woellhaf MW, Petrungaro C, Riemer J, Herrmann JM. 114.  2014. The disulfide relay of the intermembrane space oxidizes the ribosomal subunit Mrp10 on its transit into the mitochondrial matrix. Dev. Cell 28:30–42 [Google Scholar]
  115. Bragoszewski P, Wasilewski M, Sakowska P, Gornicka A, Böttinger L. 115.  et al. 2015. Retro-translocation of mitochondrial intermembrane space proteins. PNAS 112:7713–18 [Google Scholar]
  116. Bragoszewski P, Gornicka A, Sztolsztener ME, Chacinska A. 116.  2013. The ubiquitin-proteasome system regulates mitochondrial intermembrane space proteins. Mol. Cell. Biol. 33:2136–48 [Google Scholar]
  117. Jores T, Klinger A, Groß LE, Kawano S, Flinner N. 117.  et al. 2016. Characterization of the targeting signal in mitochondrial β-barrel proteins. Nat. Commun. 7:12036 [Google Scholar]
  118. Klein A, Israel L, Lackey SWK, Nargang FE, Imhof A. 118.  et al. 2012. Characterization of the insertase for β-barrel proteins of the outer mitochondrial membrane. J. Cell Biol. 199:599–611 [Google Scholar]
  119. Walther DM, Papic D, Bos MP, Tommassen J, Rapaport D. 119.  2009. Signals in bacterial β-barrel proteins are functional in eukaryotic cells for targeting to and assembly in mitochondria. PNAS 106:2531–36 [Google Scholar]
  120. Kozjak-Pavlovic V, Ott C, Götz M, Rudel T. 120.  2011. Neisserial Omp85 protein is selectively recognized and assembled into functional complexes in the outer membrane of human mitochondria. J. Biol. Chem. 286:27019–26 [Google Scholar]
  121. Ulrich T, Oberhettinger P, Schütz M, Holzer K, Ramms AS. 121.  et al. 2014. Evolutionary conservation in biogenesis of β-barrel proteins allows mitochondria to assemble a functional bacterial trimeric autotransporter protein. J. Biol. Chem. 289:29457–70 [Google Scholar]
  122. Höhr AIC, Straub SP, Warscheid B, Becker T, Wiedemann N. 122.  2015. Assembly of β-barrel proteins in the mitochondrial outer membrane. Biochim. Biophys. Acta 1853:74–88 [Google Scholar]
  123. Noinaj N, Rollauer SE, Buchanan SK. 123.  2015. The β-barrel membrane protein insertase machinery from gram-negative bacteria. Curr. Opin. Struct. Biol. 31:35–42 [Google Scholar]
  124. Kutik S, Stojanovski D, Becker L, Becker T, Meinecke M. 124.  et al. 2008. Dissecting membrane insertion of mitochondrial β-barrel proteins. Cell 132:1011–24 [Google Scholar]
  125. Habib SJ, Waizenegger T, Niewienda A, Paschen SA, Neupert W, Rapaport D. 125.  2007. The N-terminal domain of Tob55 has a receptor-like function in the biogenesis of mitochondrial β-barrel proteins. J. Cell Biol. 176:77–88 [Google Scholar]
  126. Stroud DA, Becker T, Qiu J, Stojanovski D, Pfannschmidt S. 126.  et al. 2011. Biogenesis of mitochondrial β-barrel proteins: the POTRA domain is involved in precursor release from the SAM complex. Mol. Biol. Cell 22:2823–33 [Google Scholar]
  127. Wenz LS, Ellenrieder L, Qiu J, Bohnert M, Zufall N. 127.  et al. 2015. Sam37 is crucial for formation of the mitochondrial TOM-SAM supercomplex, thereby promoting β-barrel biogenesis. J. Cell Biol. 210:1047–54 [Google Scholar]
  128. Sogo LF, Yaffe MP. 128.  1994. Regulation of mitochondrial morphology and inheritance by Mdm10p, a protein of the mitochondrial outer membrane. J. Cell Biol. 126:1361–73 [Google Scholar]
  129. Meisinger C, Rissler M, Chacinska A, Sanjuán Szklarz LK, Milenkovic D. 129.  et al. 2004. The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev. Cell 7:61–71 [Google Scholar]
  130. Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J. 130.  et al. 2009. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325:477–81 [Google Scholar]
  131. Yamano K, Tanaka-Yamano S, Endo T. 131.  2010. Mdm10 as a dynamic constituent of the TOB/SAM complex directs coordinated assembly of Tom40. EMBO Rep 11:187–93 [Google Scholar]
  132. Flinner N, Ellenrieder L, Stiller SB, Becker T, Schleiff E, Mirus O. 132.  2013. Mdm10 is an ancient eukaryotic porin co-occurring with the ERMES complex. Biochim. Biophys. Acta 1833:3314–25 [Google Scholar]
  133. Meisinger C, Wiedemann N, Rissler M, Strub A, Milenkovic D. 133.  et al. 2006. Mitochondrial protein sorting: differentiation of β-barrel assembly by Tom7-mediated segregation of Mdm10. J. Biol. Chem. 281:22819–26 [Google Scholar]
  134. Yamano K, Tanaka-Yamano S, Endo T. 134.  2010. Tom7 regulates Mdm10-mediated assembly of the mitochondrial import channel protein Tom40. J. Biol. Chem. 285:41222–31 [Google Scholar]
  135. Model K, Meisinger C, Prinz T, Wiedemann N, Truscott KN. 135.  et al. 2001. Multistep assembly of the protein import channel of the mitochondrial outer membrane. Nat. Struct. Biol. 8:361–70 [Google Scholar]
  136. Dukanovic J, Rapaport D. 136.  2011. Multiple pathways in the integration of proteins into the mitochondrial outer membrane. Biochim. Biophys. Acta 1808:971–80 [Google Scholar]
  137. Ellenrieder L, Mårtensson CU, Becker T. 137.  2015. Biogenesis of mitochondrial outer membrane proteins, problems and diseases. Biol. Chem. 396:1199–213 [Google Scholar]
  138. Dimmer KS, Papic D, Schumann B, Sperl D, Krumpe K. 138.  et al. 2012. A crucial role for Mim2 in the biogenesis of mitochondrial outer membrane proteins. J. Cell Sci. 125:3464–73 [Google Scholar]
  139. Becker T, Wenz LS, Krüger V, Lehmann W, Müller JM. 139.  et al. 2011. The mitochondrial import protein Mim1 promotes biogenesis of multispanning outer membrane proteins. J. Cell Biol. 194:387–95 [Google Scholar]
  140. Papic D, Krumpe K, Dukanovic J, Dimmer KS, Rapaport D. 140.  2011. Multispan mitochondrial outer membrane protein Ugo1 follows a unique Mim1-dependent import pathway. J. Cell Biol. 194:397–405 [Google Scholar]
  141. Vögtle FN, Keller M, Taskin AA, Horvath SE, Guan XL. 141.  et al. 2015. The fusogenic lipid phosphatidic acid promotes the biogenesis of mitochondrial outer membrane protein Ugo1. J. Cell Biol. 210:951–60 [Google Scholar]
  142. Setoguchi K, Otera H, Mihara K. 142.  2006. Cytosolic factor- and TOM-independent import of C-tail-anchored mitochondrial outer membrane proteins. EMBO J 25:5635–47 [Google Scholar]
  143. Kemper C, Habib SJ, Engl G, Heckmeyer P, Dimmer KS, Rapaport D. 143.  2008. Integration of tail-anchored proteins into the mitochondrial outer membrane does not require any known import components. J. Cell Sci. 121:1990–98 [Google Scholar]
  144. Krumpe K, Frumkin I, Herzig Y, Rimon N, Özbalci C. 144.  et al. 2012. Ergosterol content specifies targeting of tail-anchored proteins to mitochondrial outer membranes. Mol. Biol. Cell. 23:3927–35 [Google Scholar]
  145. Keil P, Pfanner N. 145.  1993. Insertion of MOM22 into the mitochondrial outer membrane strictly depends on surface receptors. FEBS Lett 321:197–200 [Google Scholar]
  146. Stojanovski D, Guiard B, Kozjak-Pavlovic V, Pfanner N, Meisinger C. 146.  2007. Alternative function for the mitochondrial SAM complex in biogenesis of α-helical TOM proteins. J. Cell Biol. 179:881–93 [Google Scholar]
  147. Papic D, Elbaz-Alon Y, Koerdt SN, Leopold K, Worm D. 147.  et al. 2013. The role of Djp1 in import of the mitochondrial protein Mim1 demonstrates specificity between a cochaperone and its substrate protein. Mol. Cell. Biol. 33:4083–94 [Google Scholar]
  148. Wenz LS, Opalinski L, Schuler MH, Ellenrieder L, Ieva R. 148.  et al. 2014. The presequence pathway is involved in protein sorting to the mitochondrial outer membrane. EMBO Rep 15:678–85 [Google Scholar]
  149. Song J, Tamura Y, Yoshihisa T, Endo T. 149.  2014. A novel import route for an N-anchor mitochondrial outer membrane protein aided by the TIM23 complex. EMBO Rep 15:670–77 [Google Scholar]
  150. Sinzel M, Tan T, Wendling P, Kalbacher H, Özbalci C. 150.  et al. 2016. Mcp3 is a novel mitochondrial outer membrane protein that follows a unique IMP-dependent biogenesis pathway. EMBO Rep 17:965–81 [Google Scholar]
  151. Harner M, Neupert W, Deponte M. 151.  2011. Lateral release of proteins from the TOM complex into the outer membrane of mitochondria. EMBO J 30:3232–41 [Google Scholar]
  152. Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM. 152.  et al. 2011. A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J. Cell Biol. 195:323–40 [Google Scholar]
  153. Harner M, Körner C, Walther D, Mokranjac D, Kaesmacher J. 153.  et al. 2011. The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO J 30:4356–70 [Google Scholar]
  154. Pfanner N, van der Laan M, Amati P, Capaldi RA, Caudy AA. 154.  et al. 2014. Uniform nomenclature for the mitochondrial contact site and cristae organizing system. J. Cell Biol. 204:1083–86 [Google Scholar]
  155. Xie J, Marusich MF, Souda P, Whitelegge J, Capaldi RA. 155.  2007. The mitochondrial inner membrane protein mitofilin exists as a complex with SAM50, metaxins 1 and 2, coiled-coil-helix coiled-coil-helix domain-containing protein 3 and 6 and DnaJC11. FEBS Lett 581:3545–49 [Google Scholar]
  156. Bohnert M, Wenz LS, Zerbes RM, Horvath SE, Stroud DA. 156.  et al. 2012. Role of mitochondrial inner membrane organizing system in protein biogenesis of the mitochondrial outer membrane. Mol. Biol. Cell 23:3948–56 [Google Scholar]
  157. Körner C, Barrera M, Dukanovic J, Eydt K, Harner M. 157.  et al. 2012. The C-terminal domain of Fcj1 is required for formation of crista junctions and interacts with the TOB/SAM complex in mitochondria. Mol. Biol. Cell 23:2143–55 [Google Scholar]
  158. Zerbes RM, Bohnert M, Stroud DA, von der Malsburg K, Kram A. 158.  et al. 2012. Role of MINOS in mitochondrial membrane architecture: Cristae morphology and outer membrane interactions differentially depend on mitofilin domains. J. Mol. Biol. 422:183–91 [Google Scholar]
  159. Sakowska P, Jans DC, Mohanraj K, Riedel D, Jakobs S, Chacinska A. 159.  2015. The oxidation status of Mic19 regulates MICOS assembly. Mol. Cell. Biol. 35:4222–37 [Google Scholar]
  160. van der Laan M, Bohnert M, Wiedemann N, Pfanner N. 160.  2012. Role of MINOS in mitochondrial membrane architecture and biogenesis. Trends Cell Biol 22:185–92 [Google Scholar]
  161. Mani J, Desy S, Niemann M, Chanfon A, Oeljeklaus S. 161.  et al. 2015. Mitochondrial protein import receptors in kinetoplastids reveal convergent evolution over large phylogenetic distances. Nat. Commun. 6:6646 [Google Scholar]
  162. Singha UK, Hamilton V, Chaudhuri M. 162.  2015. Tim62, a novel mitochondrial protein in Trypanosoma brucei, is essential for assembly and stability of the TbTim17 protein complex. J. Biol. Chem. 290:23226–39 [Google Scholar]
  163. Eliyahu E, Pnueli L, Melamed D, Scherrer T, Gerber AP. 163.  et al. 2010. Tom20 mediates localization of mRNAs to mitochondria in a translation-dependent manner. Mol. Cell. Biol. 30:284–94 [Google Scholar]
  164. Gao J, Schatton D, Martinelli P, Hansen H, Pla-Martin D. 164.  et al. 2014. CLUH regulates mitochondrial biogenesis by binding mRNAs of nuclear-encoded mitochondrial proteins. J. Cell Biol. 207:213–23 [Google Scholar]
  165. Williams CC, Jan CH, Weissman JS. 165.  2014. Targeting and plasticity of mitochondrial proteins revealed by proximity-specific ribosome profiling. Science 346:748–51 [Google Scholar]
  166. Kanamori T, Nishikawa S, Shin I, Schultz PG, Endo T. 166.  1997. Probing the environment along the protein import pathways in yeast mitochondria by site-specific photocrosslinking. PNAS 94:485–90 [Google Scholar]
  167. Alder NN, Jensen RE, Johnson AE. 167.  2008. Fluorescence mapping of mitochondrial TIM23 complex reveals a water-facing, substrate-interacting helix surface. Cell 134:439–50 [Google Scholar]
  168. Gebert N, Joshi AS, Kutik S, Becker T, McKenzie M. 168.  et al. 2009. Mitochondrial cardiolipin involved in outer-membrane protein biogenesis: implications for Barth syndrome. Curr. Biol. 19:2133–39 [Google Scholar]
  169. Becker T, Horvath SE, Böttinger L, Gebert N, Daum G, Pfanner N. 169.  2013. Role of phosphatidylethanolamine in the biogenesis of mitochondrial outer membrane proteins. J. Biol. Chem. 288:16451–59 [Google Scholar]
  170. Sauerwald J, Jores T, Eisenberg-Bord M, Chuartzman SG, Schuldiner M, Rapaport D. 170.  2015. Genome-wide screens in Saccharomyces cerevisiae highlight a role for cardiolipin in biogenesis of mitochondrial outer membrane multispan proteins. Mol. Cell. Biol. 35:3200–11 [Google Scholar]
  171. Schmidt O, Harbauer AB, Rao S, Eyrich B, Zahedi RP. 171.  et al. 2011. Regulation of mitochondrial protein import by cytosolic kinases. Cell 144:227–39 [Google Scholar]
  172. Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, Haynes CM. 172.  2012. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337:587–90 [Google Scholar]
  173. Yamano K, Youle RJ. 173.  2013. PINK1 is degraded through the N-end rule pathway. Autophagy 9:1758–69 [Google Scholar]
  174. Gerbeth C, Schmidt O, Rao S, Harbauer AB, Mikropoulou D. 174.  et al. 2013. Glucose-induced regulation of protein import receptor Tom22 by cytosolic and mitochondria-bound kinases. Cell Metab 18:578–87 [Google Scholar]
  175. Wang X, Chen XJ. 175.  2015. A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death. Nature 524:481–84 [Google Scholar]
  176. Wrobel L, Topf U, Bragoszewski P, Wiese S, Sztolsztener ME. 176.  et al. 2015. Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature 524:485–88 [Google Scholar]
  177. Vögtle FN, Prinz C, Kellermann J, Lottspeich F, Pfanner N, Meisinger C. 177.  2011. Mitochondrial protein turnover: role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol. Biol. Cell 22:2135–43 [Google Scholar]
  178. Anand R, Wai T, Baker MJ, Kladt N, Schauss AC. 178.  et al. 2014. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 204:919–29 [Google Scholar]
  179. Herlan M, Bornhövd C, Hell K, Neupert W, Reichert AS. 179.  2004. Alternative topogenesis of Mgm1 and mitochondrial morphology depend on ATP and a functional import motor. J. Cell Biol. 165:167–73 [Google Scholar]
  180. Wai T, García-Prieto J, Baker MJ, Merkwirth C, Benit P. 180.  et al. 2015. Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science 350:aad0116 [Google Scholar]
  181. Harbauer AB, Zahedi RP, Sickmann A, Pfanner N, Meisinger C. 181.  2014. The protein import machinery of mitochondria—a regulatory hub in metabolism, stress, and disease. Cell Metab 19:357–72 [Google Scholar]
  182. Harbauer AB, Opalińska M, Gerbeth C, Herman JS, Rao S. 182.  et al. 2014. Cell cycle–dependent regulation of mitochondrial preprotein translocase. Science 346:1109–13 [Google Scholar]
  183. Koyano F, Okatsu K, Kosako H, Tamura Y, Go E. 183.  et al. 2014. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510:162–66 [Google Scholar]
  184. Sichting M, Mokranjac D, Azem A, Neupert W, Hell K. 184.  2005. Maintenance of structure and function of mitochondrial Hsp70 chaperones requires the chaperone Hep1. EMBO J 24:1046–56 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error