Mammalian mitochondrial DNA (mtDNA) encodes 13 proteins that are essential for the function of the oxidative phosphorylation system, which is composed of four respiratory-chain complexes and adenosine triphosphate (ATP) synthase. Remarkably, the maintenance and expression of mtDNA depend on the mitochondrial import of hundreds of nuclear-encoded proteins that control genome maintenance, replication, transcription, RNA maturation, and mitochondrial translation. The importance of this complex regulatory system is underscored by the identification of numerous mutations of nuclear genes that impair mtDNA maintenance and expression at different levels, causing human mitochondrial diseases with pleiotropic clinical manifestations. The basic scientific understanding of the mechanisms controlling mtDNA function has progressed considerably during the past few years, thanks to advances in biochemistry, genetics, and structural biology. The challenges for the future will be to understand how mtDNA maintenance and expression are regulated and to what extent direct intramitochondrial cross talk between different processes, such as transcription and translation, is important.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Martin WF, Garg S, Zimorski V. 1.  2015. Endosymbiotic theories for eukaryote origin. Philos. Trans. R. Soc. Lond. Ser. B 370:20140330 [Google Scholar]
  2. Stewart JB, Larsson NG. 2.  2014. Keeping mtDNA in shape between generations. PLOS Genet. 10:e1004670 [Google Scholar]
  3. Hayashi J, Ohta S, Kikuchi A, Takemitsu M, Goto Y, Nonaka I. 3.  1991. Introduction of disease-related mitochondrial DNA deletions into HeLa cells lacking mitochondrial DNA results in mitochondrial dysfunction. PNAS 88:10614–18 [Google Scholar]
  4. Larsson NG, Clayton DA. 4.  1995. Molecular genetic aspects of human mitochondrial disorders. Annu. Rev. Genet. 29:151–78 [Google Scholar]
  5. Larsson NG, Garman JD, Oldfors A, Barsh GS, Clayton DA. 5.  1996. A single mouse gene encodes the mitochondrial transcription factor A and a testis-specific nuclear HMG-box protein. Nat. Genet. 13:296–302 [Google Scholar]
  6. Larsson NG, Oldfors A, Garman JD, Barsh GS, Clayton DA. 6.  1997. Down-regulation of mitochondrial transcription factor A during spermatogenesis in humans. Hum. Mol. Genet. 6:185–91 [Google Scholar]
  7. Kaneda H, Hayashi J, Takahama S, Taya C, Lindahl KF, Yonekawa H. 7.  1995. Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. PNAS 92:4542–46 [Google Scholar]
  8. Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G. 8.  1999. Ubiquitin tag for sperm mitochondria. Nature 402:371–72 [Google Scholar]
  9. Ebert KM, Liem H, Hecht NB. 9.  1988. Mitochondrial DNA in the mouse preimplantation embryo. J. Reprod. Fertil. 82:145–49 [Google Scholar]
  10. Larsson NG. 10.  2010. Somatic mitochondrial DNA mutations in mammalian aging. Annu. Rev. Biochem. 79:683–706 [Google Scholar]
  11. Hauswirth WW, Laipis PJ. 11.  1982. Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. PNAS 79:4686–90 [Google Scholar]
  12. Stewart JB, Freyer C, Elson JL, Wredenberg A, Cansu Z. 12.  et al. 2008. Strong purifying selection in transmission of mammalian mitochondrial DNA. PLOS Biol. 6:e10 [Google Scholar]
  13. Ross JM, Stewart JB, Hagstrom E, Brene S, Mourier A. 13.  et al. 2013. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature 501:412–15 [Google Scholar]
  14. Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P. 14.  et al. 1998. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18:231–36 [Google Scholar]
  15. Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R. 15.  et al. 2003. The proteome of Saccharomyces cerevisiae mitochondria. PNAS 100:13207–12 [Google Scholar]
  16. Foster LJ, de Hoog CL, Zhang Y, Zhang Y, Xie X. 16.  et al. 2006. A mammalian organelle map by protein correlation profiling. Cell 125:187–99 [Google Scholar]
  17. Hallberg BM, Larsson NG. 17.  2014. Making proteins in the powerhouse. Cell Metab. 20:226–40 [Google Scholar]
  18. Berk AJ, Clayton DA. 18.  1974. Mechanism of mitochondrial DNA replication in mouse L-cells: asynchronous replication of strands, segregation of circular daughter molecules, aspects of topology and turnover of an initiation sequence. J. Mol. Biol. 86:801–24 [Google Scholar]
  19. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR. 19.  et al. 1981. Sequence and organization of the human mitochondrial genome. Nature 290:457–65 [Google Scholar]
  20. Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA. 20.  1981. Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–80 [Google Scholar]
  21. Ojala D, Montoya J, Attardi G. 21.  1981. tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–74 [Google Scholar]
  22. Falkenberg M, Larsson NG, Gustafsson CM. 22.  2007. DNA replication and transcription in mammalian mitochondria. Annu. Rev. Biochem. 76:679–99 [Google Scholar]
  23. Cermakian N, Ikeda TM, Cedergren R, Gray MW. 23.  1996. Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 RNA polymerases are widespread throughout the eukaryotic lineage. Nucleic Acids Res. 24:648–54 [Google Scholar]
  24. Gray MW, Burger G, Lang BF. 24.  1999. Mitochondrial evolution. Science 283:1476–81 [Google Scholar]
  25. Shutt TE, Gray MW. 25.  2006. Bacteriophage origins of mitochondrial replication and transcription proteins. Trends Genet. 22:90–95 [Google Scholar]
  26. Kelly JL, Lehman IR. 26.  1986. Yeast mitochondrial RNA polymerase: purification and properties of the catalytic subunit. J. Biol. Chem. 261:10340–47 [Google Scholar]
  27. Masters BS, Stohl LL, Clayton DA. 27.  1987. Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell 51:89–99 [Google Scholar]
  28. Ringel R, Sologub M, Morozov YI, Litonin D, Cramer P, Temiakov D. 28.  2011. Structure of human mitochondrial RNA polymerase. Nature 478:269–73 [Google Scholar]
  29. Schwinghammer K, Cheung AC, Morozov YI, Agaronyan K, Temiakov D, Cramer P. 29.  2013. Structure of human mitochondrial RNA polymerase elongation complex. Nat. Struct. Mol. Biol. 20:1298–303 [Google Scholar]
  30. Falkenberg M, Gaspari M, Rantanen A, Trifunovic A, Larsson NG, Gustafsson CM. 30.  2002. Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat. Genet. 31:289–94 [Google Scholar]
  31. Sologub M, Litonin D, Anikin M, Mustaev A, Temiakov D. 31.  2009. TFB2 is a transient component of the catalytic site of the human mitochondrial RNA polymerase. Cell 139:934–44 [Google Scholar]
  32. Mangus DA, Jang SH, Jaehning JA. 32.  1994. Release of the yeast mitochondrial RNA polymerase specificity factor from transcription complexes. J. Biol. Chem. 269:26568–74 [Google Scholar]
  33. Shutt TE, Gray MW. 33.  2006. Homologs of mitochondrial transcription factor B, sparsely distributed within the eukaryotic radiation, are likely derived from the dimethyladenosine methyltransferase of the mitochondrial endosymbiont. Mol. Biol. Evol. 23:1169–79 [Google Scholar]
  34. Moustafa IM, Uchida A, Wang Y, Yennawar N, Cameron CE. 34.  2015. Structural models of mammalian mitochondrial transcription factor B2. Biochim. Biophys. Acta 1849:987–1002 [Google Scholar]
  35. Guja KE, Venkataraman K, Yakubovskaya E, Shi H, Mejia E. 35.  et al. 2013. Structural basis for S-adenosylmethionine binding and methyltransferase activity by mitochondrial transcription factor B1. Nucleic Acids Res. 41:7947–59 [Google Scholar]
  36. Carrodeguas JA, Theis K, Bogenhagen DF, Kisker C. 36.  2001. Crystal structure and deletion analysis show that the accessory subunit of mammalian DNA polymerase γ, PolγB, functions as a homodimer. Mol. Cell 7:43–54 [Google Scholar]
  37. Metodiev MD, Lesko N, Park CB, Camara Y, Shi Y. 37.  et al. 2009. Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome. Cell Metab. 9:386–97 [Google Scholar]
  38. Shi Y, Dierckx A, Wanrooij PH, Wanrooij S, Larsson NG. 38.  et al. 2012. Mammalian transcription factor A is a core component of the mitochondrial transcription machinery. PNAS 109:16510–15 [Google Scholar]
  39. Ngo HB, Kaiser JT, Chan DC. 39.  2011. The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA. Nat. Struct. Mol. Biol. 18:1290–96 [Google Scholar]
  40. Jimenez-Menendez N, Fernandez-Millan P, Rubio-Cosials A, Arnan C, Montoya J. 40.  et al. 2010. Human mitochondrial mTERF wraps around DNA through a left-handed superhelical tandem repeat. Nat. Struct. Mol. Biol. 17:891–93 [Google Scholar]
  41. Farge G, Mehmedovic M, Baclayon M, van den Wildenberg SM, Roos WH. 41.  et al. 2014. In vitro-reconstituted nucleoids can block mitochondrial DNA replication and transcription. Cell Rep. 8:66–74 [Google Scholar]
  42. Kukat C, Davies KM, Wurm CA, Spahr H, Bonekamp NA. 42.  et al. 2015. Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid. PNAS 112:11288–93 [Google Scholar]
  43. Kukat C, Wurm CA, Spahr H, Falkenberg M, Larsson NG, Jakobs S. 43.  2011. Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. PNAS 108:13534–39 [Google Scholar]
  44. Kaufman BA, Durisic N, Mativetsky JM, Costantino S, Hancock MA. 44.  et al. 2007. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol. Biol. Cell 18:3225–36 [Google Scholar]
  45. Farge G, Laurens N, Broekmans OD, van den Wildenberg SM, Dekker LC. 45.  et al. 2012. Protein sliding and DNA denaturation are essential for DNA organization by human mitochondrial transcription factor A. Nat. Commun. 3:1013 [Google Scholar]
  46. Traverso JJ, Manoranjan VS, Bishop AR, Rasmussen KO, Voulgarakis NK. 46.  2015. Allostery through protein-induced DNA bubbles. Sci. Rep. 5:9037 [Google Scholar]
  47. Yakubovskaya E, Guja KE, Eng ET, Choi WS, Mejia E. 47.  et al. 2014. Organization of the human mitochondrial transcription initiation complex. Nucleic Acids Res. 42:4100–12 [Google Scholar]
  48. Posse V, Hoberg E, Dierckx A, Shahzad S, Koolmeister C. 48.  et al. 2014. The amino terminal extension of mammalian mitochondrial RNA polymerase ensures promoter specific transcription initiation. Nucleic Acids Res. 42:3638–47 [Google Scholar]
  49. Morozov YI, Agaronyan K, Cheung AC, Anikin M, Cramer P, Temiakov D. 49.  2014. A novel intermediate in transcription initiation by human mitochondrial RNA polymerase. Nucleic Acids Res. 42:3884–93 [Google Scholar]
  50. Morozov YI, Parshin AV, Agaronyan K, Cheung AC, Anikin M. 50.  et al. 2015. A model for transcription initiation in human mitochondria. Nucleic Acids Res. 43:3726–35 [Google Scholar]
  51. Lodeiro MF, Uchida AU, Arnold JJ, Reynolds SL, Moustafa IM, Cameron CE. 51.  2010. Identification of multiple rate-limiting steps during the human mitochondrial transcription cycle in vitro. J. Biol. Chem. 285:16387–402 [Google Scholar]
  52. Minczuk M, He J, Duch AM, Ettema TJ, Chlebowski A. 52.  et al. 2011. TEFM (c17orf42) is necessary for transcription of human mtDNA. Nucleic Acids Res. 39:4284–99 [Google Scholar]
  53. Posse V, Shahzad S, Falkenberg M, Hallberg BM, Gustafsson CM. 53.  2015. TEFM is a potent stimulator of mitochondrial transcription elongation in vitro. Nucleic Acids Res. 43:2615–24 [Google Scholar]
  54. Agaronyan K, Morozov YI, Anikin M, Temiakov D. 54.  2015. Mitochondrial biology: replication-transcription switch in human mitochondria. Science 347:548–51 [Google Scholar]
  55. Montoya J, Christianson T, Levens D, Rabinowitz M, Attardi G. 55.  1982. Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA. PNAS 79:7195–99 [Google Scholar]
  56. Litonin D, Sologub M, Shi Y, Savkina M, Anikin M. 56.  et al. 2010. Human mitochondrial transcription revisited: Only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro. J. Biol. Chem. 285:18129–33 [Google Scholar]
  57. Hixson JE, Clayton DA. 57.  1985. Initiation of transcription from each of the two human mitochondrial promoters requires unique nucleotides at the transcriptional start sites. PNAS 82:2660–64 [Google Scholar]
  58. Christianson TW, Clayton DA. 58.  1986. In vitro transcription of human mitochondrial DNA: Accurate termination requires a region of DNA sequence that can function bidirectionally. PNAS 83:6277–81 [Google Scholar]
  59. Lodeiro MF, Uchida A, Bestwick M, Moustafa IM, Arnold JJ. 59.  et al. 2012. Transcription from the second heavy-strand promoter of human mtDNA is repressed by transcription factor A in vitro. PNAS 109:6513–18 [Google Scholar]
  60. Christianson TW, Clayton DA. 60.  1988. A tridecamer DNA sequence supports human mitochondrial RNA 3′-end formation in vitro. Mol. Cell. Biol. 8:4502–9 [Google Scholar]
  61. Camasamudram V, Fang JK, Avadhani NG. 61.  2003. Transcription termination at the mouse mitochondrial H-strand promoter distal site requires an A/T rich sequence motif and sequence specific DNA binding proteins. Eur. J. Biochem. 270:1128–40 [Google Scholar]
  62. Kruse B, Narasimhan N, Attardi G. 62.  1989. Termination of transcription in human mitochondria: identification and purification of a DNA binding protein factor that promotes termination. Cell 58:391–97 [Google Scholar]
  63. Fernandez-Silva P, Martinez-Azorin F, Micol V, Attardi G. 63.  1997. The human mitochondrial transcription termination factor (mTERF) is a multizipper protein but binds to DNA as a monomer, with evidence pointing to intramolecular leucine zipper interactions. EMBO J. 16:1066–79 [Google Scholar]
  64. Terzioglu M, Ruzzenente B, Harmel J, Mourier A, Jemt E. 64.  et al. 2013. MTERF1 binds mtDNA to prevent transcriptional interference at the light-strand promoter but is dispensable for rRNA gene transcription regulation. Cell Metab. 17:618–26 [Google Scholar]
  65. Asin-Cayuela J, Schwend T, Farge G, Gustafsson CM. 65.  2005. The human mitochondrial transcription termination factor (mTERF) is fully active in vitro in the non-phosphorylated form. J. Biol. Chem. 280:25499–505 [Google Scholar]
  66. Linder T, Park CB, Asin-Cayuela J, Pellegrini M, Larsson NG. 66.  et al. 2005. A family of putative transcription termination factors shared amongst metazoans and plants. Curr. Genet. 48:265–69 [Google Scholar]
  67. Yakubovskaya E, Mejia E, Byrnes J, Hambardjieva E, Garcia-Diaz M. 67.  2010. Helix unwinding and base flipping enable human MTERF1 to terminate mitochondrial transcription. Cell 141:982–93 [Google Scholar]
  68. Spahr H, Habermann B, Gustafsson CM, Larsson NG, Hallberg BM. 68.  2012. Structure of the human MTERF4–NSUN4 protein complex that regulates mitochondrial ribosome biogenesis. PNAS 109:15253–58 [Google Scholar]
  69. Yakubovskaya E, Guja KE, Mejia E, Castano S, Hambardjieva E. 69.  et al. 2012. Structure of the essential MTERF4:NSUN4 protein complex reveals how an MTERF protein collaborates to facilitate rRNA modification. Structure 20:1940–47 [Google Scholar]
  70. Spahr H, Samuelsson T, Hallberg BM, Gustafsson CM. 70.  2010. Structure of mitochondrial transcription termination factor 3 reveals a novel nucleic acid-binding domain. Biochem. Biophys. Res. Commun. 397:386–90 [Google Scholar]
  71. Park CB, Asin-Cayuela J, Camara Y, Shi Y, Pellegrini M. 71.  et al. 2007. MTERF3 is a negative regulator of mammalian mtDNA transcription. Cell 130:273–85 [Google Scholar]
  72. Pellegrini M, Asin-Cayuela J, Erdjument-Bromage H, Tempst P, Larsson NG, Gustafsson CM. 72.  2009. MTERF2 is a nucleoid component in mammalian mitochondria. Biochim. Biophys. Acta 1787:296–302 [Google Scholar]
  73. Camara Y, Asin-Cayuela J, Park CB, Metodiev MD, Shi Y. 73.  et al. 2011. MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome. Cell Metab. 13:527–39 [Google Scholar]
  74. Wredenberg A, Lagouge M, Bratic A, Metodiev MD, Spahr H. 74.  et al. 2013. MTERF3 regulates mitochondrial ribosome biogenesis in invertebrates and mammals. PLOS Genet. 9:e1003178 [Google Scholar]
  75. Metodiev MD, Spahr H, Loguercio Polosa P, Meharg C, Becker C. 75.  et al. 2014. NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLOS Genet. 10:e1004110 [Google Scholar]
  76. Ameur A, Stewart JB, Freyer C, Hagstrom E, Ingman M. 76.  et al. 2011. Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins. PLOS Genet. 7:e1002028 [Google Scholar]
  77. Zheng W, Khrapko K, Coller HA, Thilly WG, Copeland WC. 77.  2006. Origins of human mitochondrial point mutations as DNA polymerase γ-mediated errors. Mutat. Res. 599:11–20 [Google Scholar]
  78. Gray H, Wong TW. 78.  1992. Purification and identification of subunit structure of the human mitochondrial DNA polymerase. J. Biol. Chem. 267:5835–41 [Google Scholar]
  79. Yakubovskaya E, Chen Z, Carrodeguas JA, Kisker C, Bogenhagen DF. 79.  2006. Functional human mitochondrial DNA polymerase γ forms a heterotrimer. J. Biol. Chem. 281:374–82 [Google Scholar]
  80. Fan L, Kim S, Farr CL, Schaefer KT, Randolph KM. 80.  et al. 2006. A novel processive mechanism for DNA synthesis revealed by structure, modeling and mutagenesis of the accessory subunit of human mitochondrial DNA polymerase. J. Mol. Biol. 358:1229–43 [Google Scholar]
  81. Hance N, Ekstrand MI, Trifunovic A. 81.  2005. Mitochondrial DNA polymerase γ is essential for mammalian embryogenesis. Hum. Mol. Genet. 14:1775–83 [Google Scholar]
  82. Humble MM, Young MJ, Foley JF, Pandiri AR, Travlos GS, Copeland WC. 82.  2013. Polg2 is essential for mammalian embryogenesis and is required for mtDNA maintenance. Hum. Mol. Genet. 22:1017–25 [Google Scholar]
  83. Garcia-Gomez S, Reyes A, Martinez-Jimenez MI, Chocron ES, Mouron S. 83.  et al. 2013. PrimPol, an archaic primase/polymerase operating in human cells. Mol. Cell 52:541–53 [Google Scholar]
  84. Martinez-Jimenez MI, Garcia-Gomez S, Bebenek K, Sastre-Moreno G, Calvo PA. 84.  et al. 2015. Alternative solutions and new scenarios for translesion DNA synthesis by human PrimPol. DNA Repair 29:127–38 [Google Scholar]
  85. Kornberg A, Baker TA. 85.  1992. DNA Replication New York: Freeman, 2nd ed..
  86. Fridlender B, Weissbach A. 86.  1971. DNA polymerases of tumor virus: specific effect of ethidium bromide on the use of different synthetic templates. PNAS 68:3116–19 [Google Scholar]
  87. Beese LS, Derbyshire V, Steitz TA. 87.  1993. Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science 260:352–55 [Google Scholar]
  88. Longley MJ, Nguyen D, Kunkel TA, Copeland WC. 88.  2001. The fidelity of human DNA polymerase γ with and without exonucleolytic proofreading and the p55 accessory subunit. J. Biol. Chem. 276:38555–62 [Google Scholar]
  89. Pinz KG, Bogenhagen DF. 89.  2000. Characterization of a catalytically slow AP lyase activity in DNA polymerase γ and other family A DNA polymerases. J. Biol. Chem. 275:12509–14 [Google Scholar]
  90. Pinz KG, Bogenhagen DF. 90.  2006. The influence of the DNA polymerase γ accessory subunit on base excision repair by the catalytic subunit. DNA Repair 5:121–28 [Google Scholar]
  91. Carrodeguas JA, Pinz KG, Bogenhagen DF. 91.  2002. DNA binding properties of human pol γB. J. Biol. Chem. 277:50008–14 [Google Scholar]
  92. Farge G, Pham XH, Holmlund T, Khorostov I, Falkenberg M. 92.  2007. The accessory subunit B of DNA polymerase γ is required for mitochondrial replisome function. Nucleic Acids Res. 35:902–11 [Google Scholar]
  93. Ravichandran V, Vasquez GB, Srivastava S, Verma M, Petricoin E. 93.  et al. 2004. Data standards for proteomics: mitochondrial two-dimensional polyacrylamide gel electrophoresis data as a model system. Mitochondrion 3:327–36 [Google Scholar]
  94. Korhonen JA, Pham XH, Pellegrini M, Falkenberg M. 94.  2004. Reconstitution of a minimal mtDNA replisome in vitro. EMBO J. 23:2423–29 [Google Scholar]
  95. Macao B, Uhler JP, Siibak T, Zhu X, Shi Y. 95.  et al. 2015. The exonuclease activity of DNA polymerase γ is required for ligation during mitochondrial DNA replication. Nat. Commun. 6:7303 [Google Scholar]
  96. Milenkovic D, Matic S, Kuhl I, Ruzzenente B, Freyer C. 96.  et al. 2013. TWINKLE is an essential mitochondrial helicase required for synthesis of nascent D-loop strands and complete mtDNA replication. Hum. Mol. Genet. 22:1983–93 [Google Scholar]
  97. Spelbrink JN, Li FY, Tiranti V, Nikali K, Yuan QP. 97.  et al. 2001. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat. Genet. 28:223–31 [Google Scholar]
  98. Shutt TE, Gray MW. 98.  2006. Twinkle, the mitochondrial replicative DNA helicase, is widespread in the eukaryotic radiation and may also be the mitochondrial DNA primase in most eukaryotes. J. Mol. Evol. 62:588–99 [Google Scholar]
  99. Wanrooij S, Fuste JM, Farge G, Shi Y, Gustafsson CM, Falkenberg M. 99.  2008. Human mitochondrial RNA polymerase primes lagging-strand DNA synthesis in vitro. PNAS 105:11122–27 [Google Scholar]
  100. Fuste JM, Wanrooij S, Jemt E, Granycome CE, Cluett TJ. 100.  et al. 2010. Mitochondrial RNA polymerase is needed for activation of the origin of light-strand DNA replication. Mol. Cell 37:67–78 [Google Scholar]
  101. Korhonen JA, Gaspari M, Falkenberg M. 101.  2003. TWINKLE has 5′ → 3′ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J. Biol. Chem. 278:48627–32 [Google Scholar]
  102. Korhonen JA, Pande V, Holmlund T, Farge G, Pham XH. 102.  et al. 2008. Structure–function defects of the TWINKLE linker region in progressive external ophthalmoplegia. J. Mol. Biol. 377:691–705 [Google Scholar]
  103. Kaguni LS. 103.  2004. DNA polymerase γ, the mitochondrial replicase. Annu. Rev. Biochem. 73:293–320 [Google Scholar]
  104. Champoux JJ. 104.  2001. DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70:369–413 [Google Scholar]
  105. Zhang H, Barcelo JM, Lee B, Kohlhagen G, Zimonjic DB. 105.  et al. 2001. Human mitochondrial topoisomerase I. PNAS 98:10608–13 [Google Scholar]
  106. Zhang H, Pommier Y. 106.  2008. Mitochondrial topoisomerase I sites in the regulatory D-loop region of mitochondrial DNA. Biochemistry 47:11196–203 [Google Scholar]
  107. Sobek S, Dalla Rosa I, Pommier Y, Bornholz B, Kalfalah F. 107.  et al. 2013. Negative regulation of mitochondrial transcription by mitochondrial topoisomerase I. Nucleic Acids Res. 41:9848–57 [Google Scholar]
  108. Zhang H, Zhang YW, Yasukawa T, Dalla Rosa I, Khiati S, Pommier Y. 108.  2014. Increased negative supercoiling of mtDNA in TOP1mt knockout mice and presence of topoisomerases IIα and IIβ in vertebrate mitochondria. Nucleic Acids Res. 42:7259–67 [Google Scholar]
  109. Copeland WC. 109.  2014. Defects of mitochondrial DNA replication. J. Child Neurol. 29:1216–24 [Google Scholar]
  110. Clayton DA. 110.  1991. Replication and transcription of vertebrate mitochondrial DNA. Annu. Rev. Cell Biol. 7:453–78 [Google Scholar]
  111. Miralles Fuste J, Shi Y, Wanrooij S, Zhu X, Jemt E. 111.  et al. 2014. In vivo occupancy of mitochondrial single-stranded DNA binding protein supports the strand displacement mode of DNA replication. PLOS Genet. 10:e1004832 [Google Scholar]
  112. Berk AJ, Clayton DA. 112.  1976. Mechanism of mitochondrial DNA replication in mouse L-cells: topology of circular daughter molecules and dynamics of catenated oligomer formation. J. Mol. Biol. 100:85–92 [Google Scholar]
  113. Bogenhagen DF, Clayton DA. 113.  2003. The mitochondrial DNA replication bubble has not burst. Trends Biochem. Sci. 28:357–60 [Google Scholar]
  114. Wanrooij S, Miralles Fuste J, Stewart JB, Wanrooij PH, Samuelsson T. 114.  et al. 2012. In vivo mutagenesis reveals that OriL is essential for mitochondrial DNA replication. EMBO Rep. 13:1130–37 [Google Scholar]
  115. Stewart JB, Alaei-Mahabadi B, Sabarinathan R, Samuelsson T, Gorodkin J. 115.  et al. 2015. Simultaneous DNA and RNA mapping of somatic mitochondrial mutations across diverse human cancers. PLOS Genet. 11:e1005333 [Google Scholar]
  116. Ju YS, Alexandrov LB, Gerstung M, Martincorena I, Nik-Zainal S. 116.  et al. 2014. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. eLife 3:e02935 [Google Scholar]
  117. Holt IJ, Lorimer HE, Jacobs HT. 117.  2000. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 100:515–24 [Google Scholar]
  118. Yasukawa T, Yang MY, Jacobs HT, Holt IJ. 118.  2005. A bidirectional origin of replication maps to the major noncoding region of human mitochondrial DNA. Mol. Cell 18:651–62 [Google Scholar]
  119. Yasukawa T, Reyes A, Cluett TJ, Yang MY, Bowmaker M. 119.  et al. 2006. Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand. EMBO J. 25:5358–71 [Google Scholar]
  120. Yang MY, Bowmaker M, Reyes A, Vergani L, Angeli P. 120.  et al. 2002. Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymmetric DNA replication. Cell 111:495–505 [Google Scholar]
  121. Reyes A, Kazak L, Wood SR, Yasukawa T, Jacobs HT, Holt IJ. 121.  2013. Mitochondrial DNA replication proceeds via a ‘bootlace’ mechanism involving the incorporation of processed transcripts. Nucleic Acids Res. 41:5837–50 [Google Scholar]
  122. Holt IJ, Jacobs HT. 122.  2014. Unique features of DNA replication in mitochondria: a functional and evolutionary perspective. BioEssays 36:1024–31 [Google Scholar]
  123. Jacob F, Brenner S, Cuzin F. 123.  1963. On the regulation of DNA replication in bacteria. Cold Spring Harb. Symp. Quant. Biol. 28:329–48 [Google Scholar]
  124. Kang D, Miyako K, Kai Y, Irie T, Takeshige K. 124.  1997. In vivo determination of replication origins of human mitochondrial DNA by ligation-mediated polymerase chain reaction. J. Biol. Chem. 272:15275–79 [Google Scholar]
  125. Xu B, Clayton DA. 125.  1995. A persistent RNA–DNA hybrid is formed during transcription at a phylogenetically conserved mitochondrial DNA sequence. Mol. Cell. Biol. 15:580–89 [Google Scholar]
  126. Pham XH, Farge G, Shi Y, Gaspari M, Gustafsson CM, Falkenberg M. 126.  2006. Conserved sequence box II directs transcription termination and primer formation in mitochondria. J. Biol. Chem. 281:24647–52 [Google Scholar]
  127. Wanrooij PH, Uhler JP, Simonsson T, Falkenberg M, Gustafsson CM. 127.  2010. G-quadruplex structures in RNA stimulate mitochondrial transcription termination and primer formation. PNAS 107:16072–77 [Google Scholar]
  128. Wanrooij PH, Uhler JP, Shi Y, Westerlund F, Falkenberg M, Gustafsson CM. 128.  2012. A hybrid G-quadruplex structure formed between RNA and DNA explains the extraordinary stability of the mitochondrial R-loop. Nucleic Acids Res. 40:10334–44 [Google Scholar]
  129. Lakshmipathy U, Campbell C. 129.  1999. The human DNA ligase III gene encodes nuclear and mitochondrial proteins. Mol. Cell. Biol. 19:3869–76 [Google Scholar]
  130. Puebla-Osorio N, Lacey DB, Alt FW, Zhu C. 130.  2006. Early embryonic lethality due to targeted inactivation of DNA ligase III. Mol. Cell. Biol. 26:3935–41 [Google Scholar]
  131. He Q, Shumate CK, White MA, Molineux IJ, Yin YW. 131.  2013. Exonuclease of human DNA polymerase γ disengages its strand displacement function. Mitochondrion 13:592–601 [Google Scholar]
  132. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT. 132.  et al. 2004. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–23 [Google Scholar]
  133. Cerritelli SM, Frolova EG, Feng C, Grinberg A, Love PE, Crouch RJ. 133.  2003. Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice. Mol. Cell 11:807–15 [Google Scholar]
  134. Holmes JB, Akman G, Wood SR, Sakhuja K, Cerritelli SM. 134.  et al. 2015. Primer retention owing to the absence of RNase H1 is catastrophic for mitochondrial DNA replication. PNAS 112:9334–39 [Google Scholar]
  135. Kornblum C, Nicholls TJ, Haack TB, Scholer S, Peeva V. 135.  et al. 2013. Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease. Nat. Genet. 45:214–19 [Google Scholar]
  136. Nicholls TJ, Zsurka G, Peeva V, Scholer S, Szczesny RJ. 136.  et al. 2014. Linear mtDNA fragments and unusual mtDNA rearrangements associated with pathological deficiency of MGME1 exonuclease. Hum. Mol. Genet. 23:6147–62 [Google Scholar]
  137. Uhler JP, Falkenberg M. 137.  2015. Primer removal during mammalian mitochondrial DNA replication. DNA Repair 34:28–38 [Google Scholar]
  138. Nicholls TJ, Minczuk M. 138.  2014. In D-loop: 40 years of mitochondrial 7S DNA. Exp. Gerontol. 56:175–81 [Google Scholar]
  139. Jemt E, Persson O, Shi Y, Mehmedovic M, Uhler JP. 139.  et al. 2015. Regulation of DNA replication at the end of the mitochondrial D-loop involves the helicase TWINKLE and a conserved sequence element. Nucleic Acids Res. 43:9262–75 [Google Scholar]
  140. Garg P, Stith CM, Sabouri N, Johansson E, Burgers PM. 140.  2004. Idling by DNA polymerase δ maintains a ligatable nick during lagging-strand DNA replication. Genes Dev. 18:2764–73 [Google Scholar]
  141. Liu P, Qian L, Sung JS, de Souza-Pinto NC, Zheng L. 141.  et al. 2008. Removal of oxidative DNA damage via FEN1-dependent long-patch base excision repair in human cell mitochondria. Mol. Cell. Biol. 28:4975–87 [Google Scholar]
  142. Zheng L, Zhou M, Guo Z, Lu H, Qian L. 142.  et al. 2008. Human DNA2 is a mitochondrial nuclease/helicase for efficient processing of DNA replication and repair intermediates. Mol. Cell 32:325–36 [Google Scholar]
  143. Brown TA, Clayton DA. 143.  2002. Release of replication termination controls mitochondrial DNA copy number after depletion with 2′,3′-dideoxycytidine. Nucleic Acids Res. 30:2004–10 [Google Scholar]
  144. Pohjoismaki JL, Wanrooij S, Hyvarinen AK, Goffart S, Holt IJ. 144.  et al. 2006. Alterations to the expression level of mitochondrial transcription factor A, TFAM, modify the mode of mitochondrial DNA replication in cultured human cells. Nucleic Acids Res. 34:5815–28 [Google Scholar]
  145. Doda JN, Wright CT, Clayton DA. 145.  1981. Elongation of displacement-loop strands in human and mouse mitochondrial DNA is arrested near specific template sequences. PNAS 78:6116–20 [Google Scholar]
  146. Bogenhagen D, Clayton DA. 146.  1978. Mechanism of mitochondrial DNA replication in mouse L-cells: kinetics of synthesis and turnover of the initiation sequence. J. Mol. Biol. 119:49–68 [Google Scholar]
  147. Roberti M, Musicco C, Polosa PL, Milella F, Gadaleta MN, Cantatore P. 147.  1998. Multiple protein-binding sites in the TAS-region of human and rat mitochondrial DNA. Biochem. Biophys. Res. Commun. 243:36–40 [Google Scholar]
  148. Tyynismaa H, Sembongi H, Bokori-Brown M, Granycome C, Ashley N. 148.  et al. 2004. Twinkle helicase is essential for mtDNA maintenance and regulates mtDNA copy number. Hum. Mol. Genet. 13:3219–27 [Google Scholar]
  149. Ylikallio E, Tyynismaa H, Tsutsui H, Ide T, Suomalainen A. 149.  2010. High mitochondrial DNA copy number has detrimental effects in mice. Hum. Mol. Genet. 19:2695–705 [Google Scholar]
  150. Ikeda M, Ide T, Fujino T, Arai S, Saku K. 150.  et al. 2015. Overexpression of TFAM or Twinkle increases mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress. PLOS ONE 10:e0119687 [Google Scholar]
  151. Nass MM. 151.  1966. The circularity of mitochondrial DNA. PNAS 56:1215–22 [Google Scholar]
  152. Dame RT, Espeli O, Grainger DC, Wiggins PA. 152.  2012. Multidisciplinary perspectives on bacterial genome organization and dynamics. Mol. Microbiol. 86:1023–30 [Google Scholar]
  153. Kukat C, Larsson NG. 153.  2013. mtDNA makes a U-turn for the mitochondrial nucleoid. Trends Cell Biol. 23:457–63 [Google Scholar]
  154. Brown TA, Tkachuk AN, Shtengel G, Kopek BG, Bogenhagen DF. 154.  et al. 2011. Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol. Cell. Biol. 31:4994–5010 [Google Scholar]
  155. Bogenhagen DF. 155.  2012. Mitochondrial DNA nucleoid structure. Biochim. Biophys. Acta 1819:914–20 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error