Dietary restriction (DR), a moderate reduction in food intake, improves health during aging and extends life span across multiple species. Specific nutrients, rather than overall calories, mediate the effects of DR, with protein and specific amino acids (AAs) playing a key role. Modulations of single dietary AAs affect traits including growth, reproduction, physiology, health, and longevity in animals. Epidemiological data in humans also link the quality and quantity of dietary proteins to long-term health. Intricate nutrient-sensing pathways fine tune the metabolic responses to dietary AAs in a highly conserved manner. In turn, these metabolic responses can affect the onset of insulin resistance, obesity, neurodegenerative disease, and other age-related diseases. In this review we discuss how AA requirements are shaped and how ingested AAs regulate a spectrum of homeostatic processes. Finally, we highlight the resulting opportunity to develop nutritional strategies to improve human health during aging.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Keenan KP, Wallig MA, Haschek WM. 1.  2013. Nature via nurture: effect of diet on health, obesity, and safety assessment. Toxicol. Pathol. 41:190–209 [Google Scholar]
  2. Simpson SJ, Raubenheimer D. 2.  2012. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity Princeton NJ: Princeton Univ. Press
  3. Solon-Biet SM, McMahon AC, Ballard WO, Ruohonen K, Wu LE. 3.  et al. 2014. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 19:418–30 [Google Scholar]
  4. 4. Food and Nutrition Board, Institute of Medicine 2001. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, DC: The National Academies PressReview of the methodological and biological factors affecting human AA requirements. [Google Scholar]
  5. Fontana L, Partridge L. 5.  2015. Promoting health and longevity through diet: from model organisms to humans. Cell 161:106–18An account of the effects of dietary interventions upon health and life span across species. [Google Scholar]
  6. Weindruch R, Walford RL. 6.  1988. The Retardation of Aging and Disease by Dietary Restriction Springfield, IL: Thomas.
  7. Mair W, Piper MDW, Partridge L. 7.  2005. Calories do not explain extension of life span by dietary restriction in Drosophila. PLOS Biol. 3:e223 [Google Scholar]
  8. Grandison RC, Piper MDW, Partridge L. 8.  2009. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462:1061–64 [Google Scholar]
  9. Horáková M, Deyl Z, Hausmann J, Macek K. 9.  1988. The effect of low protein-high dextrin diet and subsequent food restriction upon life prolongation in Fischer 344 male rats. Mech. Ageing Dev. 45:1–7 [Google Scholar]
  10. Nakagawa S, Lagisz M, Hector KL, Spencer HG. 10.  2012. Comparative and meta-analytic insights into life extension via dietary restriction. Aging Cell 11:401–9 [Google Scholar]
  11. Mirzaei H, Suarez JA, Longo VD. 11.  2014. Protein and amino acid restriction, aging and disease: from yeast to humans. Trends Endocrinol. Metab. 25:11558–66 [Google Scholar]
  12. Douris N, Melman T, Pecherer JM, Pissios P, Flier JS. 12.  et al. 2015. Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet. Biochim. Biophys. Acta 10:2056–65 [Google Scholar]
  13. Orgeron ML, Stone KP, Wanders D, Cortez CC, Van NT, Gettys TW. 13.  2014. The impact of dietary methionine restriction on biomarkers of metabolic health. Prog. Mol. Biol. Transl. Sci. 121:351–76 [Google Scholar]
  14. Zimmerman JA, Malloy V, Krajcik R, Orentreich N. 14.  2003. Nutritional control of ageing. Exp. Gerontol. 38:47–52 [Google Scholar]
  15. Shin AC, Fasshauer M, Filatova N, Grundell LA, Zielinski E. 15.  et al. 2014. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism. Cell Metab. 20:898–909 [Google Scholar]
  16. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. 16.  2013. The hallmarks of aging. Cell 153:1194–217 [Google Scholar]
  17. Rizza W, Veronese N, Fontana L. 17.  2014. What are the roles of calorie restriction and diet quality in promoting healthy longevity?. Ageing Res. Rev. 13:38–45 [Google Scholar]
  18. Brandhorst S, Choi IY, Wei M, Cheng CW, Sedrakyan S. 18.  et al. 2015. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab. 22:86–99 [Google Scholar]
  19. Hine C, Harputlugil E, Zhang Y, Ruckenstuhl C, Lee BC. 19.  et al. 2015. Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 160:132–44 [Google Scholar]
  20. Li P, Yin Y-L, Li D, Kim SW, Wu G. 20.  2007. Amino acids and immune function. Br. J. Nutr. 98:237–52 [Google Scholar]
  21. Parrella E, Maxim T, Maialetti F, Zhang L, Wan J. 21.  et al. 2013. Protein restriction cycles reduce IGF-1 and phosphorylated Tau, and improve behavioral performance in an Alzheimer's disease mouse model. Aging Cell 12:257–68 [Google Scholar]
  22. Westerterp-Plantenga MS, Nieuwenhuizen A, Tomé D, Soenen S, Westerterp KR. 22.  2009. Dietary protein, weight loss, and weight maintenance. Annu. Rev. Nutr. 29:21–41Discusses the role of protein intake in the modulation of metabolism and obesity in humans. [Google Scholar]
  23. Tremblay F, Lavigne C, Jacques H, Marette A. 23.  2007. Role of dietary proteins and amino acids in the pathogenesis of insulin resistance. Annu. Rev. Nutr. 27:293–310 [Google Scholar]
  24. 24. World Health Organ. 2007. Protein and amino acid requirements in human nutrition Geneva: United Nations UniversityLists methodological and biological factors affecting AA requirements and provides AA requirements across ages and genders.
  25. Harper AE, Benevenga NJ, Wohlhueter RM. 25.  1970. Effects of ingestion of disproportionate amounts of amino acids. Physiol. Rev. 50:428–558Review of how imbalanced AA intakes can affect health and physiology in rodents. [Google Scholar]
  26. Park B-C. 26.  2006. Amino acid imbalance-biochemical mechanism and nutritional aspects. Asian-Australas. J. Anim. Sci. 19:1361–68 [Google Scholar]
  27. 27. Board on Agriculture, National Research Council 1995. Nutrient Requirements of Laboratory Animals Washington, DC: National Academy Press, 4th ed..Official AA recommendations for laboratory animals based on thorough review of the literature and empirical data.
  28. Piper MDW, Blanc E, Leitão-Gonçalves R, Yang M, He X. 28.  et al. 2014. A holidic medium for Drosophila melanogaster. Nat. Methods 11:100–5 [Google Scholar]
  29. Tucker LA, Erickson A, LeCheminant JD, Bailey BW. 29.  2015. Dairy consumption and insulin resistance: the role of body fat, physical activity, and energy intake. J. Diabetes Res 2015:206959 [Google Scholar]
  30. Brody S. 30.  1945. Bioenergetics and growth; with special reference to the efficiency complex in domestic animals New York: Reinhold
  31. Almquist HJ. 31.  1953. Interpretation of amino acid requirement data according to the Law of Diminishing Returns. Arch. Biochem. Biophys. 44:245–47 [Google Scholar]
  32. McCay CM, Crowell MF, Maynard LA. 32.  1935. The effect of retarded growth upon the length of life span and upon the ultimate body size. J. Nutr. 10:63–79 [Google Scholar]
  33. Jünger MA, Rintelen F, Stocker H, Wasserman JD, Végh M. 33.  et al. 2003. The Drosophila Forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J. Biol. 2:20 [Google Scholar]
  34. Enesco HE, Samborsky J. 34.  1986. Influence of dietary protein restriction on cell number, cell size and growth of mouse organs during the course of aging. Arch. Gerontol. Geriatr. 5:221–33 [Google Scholar]
  35. Miller RA, Harper JM, Galecki A, Burke DT. 35.  2002. Big mice die young: Early life body weight predicts longevity in genetically heterogeneous mice. Aging Cell 1:22–29 [Google Scholar]
  36. Selman C, Nussey DH, Monaghan P. 36.  2013. Ageing: It's a dog's life. Curr. Biol. 23:R451–53 [Google Scholar]
  37. Rollo CD. 37.  2002. Growth negatively impacts the life span of mammals. Evol. Dev. 4:55–61 [Google Scholar]
  38. Bartke A. 38.  2012. Healthy aging: Is smaller better?. Gerontology 58:337–43 [Google Scholar]
  39. Partridge L, Gems D, Withers DJ. 39.  2005. Sex and death: What is the connection?. Cell 120:461–72 [Google Scholar]
  40. O'Brien DM, Kyung-Jin M, Larsen T, Tatar M. 40.  2008. Use of stable isotopes to examine how dietary restriction extends Drosophila lifespan. Curr. Biol. 18:R155–56 [Google Scholar]
  41. Hoffman JM, Creevy KE, Promislow DEL. 41.  2013. Reproductive capability is associated with lifespan and cause of death in companion dogs. PLOS ONE 8:e61082 [Google Scholar]
  42. Tabatabaie V, Atzmon G, Rajpathak SN, Freeman R, Barzilai N, Crandall J. 42.  2011. Exceptional longevity is associated with decreased reproduction. Aging 3:1202–5 [Google Scholar]
  43. Jahan-Mihan A, Luhovyy BL, El Khoury D, Anderson GH. 43.  2011. Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract. Nutrients 3:574–603 [Google Scholar]
  44. Rutherfurd SM, Moughan PJ. 44.  2012. Available versus digestible dietary amino acids. Br. J. Nutr. 108:S298–305 [Google Scholar]
  45. Bröer S. 45.  2008. Amino acid transport across mammalian intestinal and renal epithelia. Physiol. Rev. 88:249–86 [Google Scholar]
  46. Zhang Z, Adelman AS, Rai D, Boettcher J, Lőnnerdal B. 46.  2013. Amino acid profiles in term and preterm human milk through lactation: a systematic review. Nutrients 5:4800–21 [Google Scholar]
  47. Davila A-M, Blachier F, Gotteland M, Andriamihaja M, Benetti PH. 47.  et al. 2013. Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol. Res. 68:95–107 [Google Scholar]
  48. Metges CC, Petzke KJ. 48.  2007. Utilization of essential amino acids synthesized in the intestinal microbiota of monogastric mammals. Br. J. Nutr. 94:621–22 [Google Scholar]
  49. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA. 49.  et al. 2009. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. PNAS 106:3698–703 [Google Scholar]
  50. McDonald P, Edwards RA, Greenhalgh JFD, Morgan CA, Sinclair LA. 50.  2010. Animal Nutrition London: Pearson
  51. Zhang C, Li S, Yang L, Huang P, Li W. 51.  et al. 2013. Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat. Commun. 4:1–10 [Google Scholar]
  52. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY. 52.  et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–8 [Google Scholar]
  53. Erkosar B, Storelli G, Defaye A, Leulier F. 53.  2013. Host-intestinal microbiota mutualism: “learning on the fly.”. Cell Host Microbe 13:8–14 [Google Scholar]
  54. Neuman H, Debelius JW, Knight R, Koren O. 54.  2015. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol. Rev. 39:4509–21 [Google Scholar]
  55. Stoll B, Burrin DG. 55.  2006. Measuring splanchnic amino acid metabolism in vivo using stable isotopic tracers. J. Anim. Sci. 84:E60–72 [Google Scholar]
  56. Hinton T, Noyes DT, Ellis J. 56.  1951. Amino acids and growth factors in a chemically defined medium for Drosophila. Physiol. Zool. 24:335–53 [Google Scholar]
  57. Ball RO, Courtney-Martin G, Pencharz PB. 57.  2006. The in vivo sparing of methionine by cysteine in sulfur amino acid requirements in animal models and adult humans. J. Nutr. 136:1682S–93S [Google Scholar]
  58. Sarup P, Pedersen SMM, Nielsen NC, Malmendal A, Loeschcke V. 58.  2012. The metabolic profile of long-lived Drosophila melanogaster. PLOS ONE 7:e47461 [Google Scholar]
  59. Tomás-Loba A, Bernardes de Jesus B, Mato JM, Blasco MA. 59.  2012. A metabolic signature predicts biological age in mice. Aging Cell 12:193–101 [Google Scholar]
  60. Selman C, Kerrison ND, Corray A, Piper MD, Lingard SJ. 60.  et al. 2006. Coordinated multitissue transcriptional and plasma metabonomic profiles following acute caloric restriction in mice. Physiol. Genom. 27:3187–200 [Google Scholar]
  61. Richards SE, Wang Y, Claus SP, Lawler D, Kochhar S. 61.  et al. 2013. Metabolic phenotype modulation by caloric restriction in a lifelong dog study. J. Proteome Res. 12:3117–27 [Google Scholar]
  62. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP. 62.  et al. 2011. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17:448–53 [Google Scholar]
  63. Wijeyesekera A, Selman C, Barton RH, Holmes E, Nicholson JK, Withers DJ. 63.  2012. Metabotyping of long-lived mice using 1H NMR spectroscopy. J. Proteome Res. 11:2224–35 [Google Scholar]
  64. Kilberg MS, Pan Y-X, Chen H, Leung-Pineda V. 64.  2005. Nutritional control of gene expression: how mammalian cells respond to amino acid limitation. Annu. Rev. Nutr. 25:59–85 [Google Scholar]
  65. Wauson EM, Lorente-Rodríguez A, Cobb MH. 65.  2013. Minireview: nutrient sensing by G protein-coupled receptors. Mol. Endocrinol. 27:1188–97 [Google Scholar]
  66. Pochini L, Scalise M, Galluccio M, Indiveri C. 66.  2014. Membrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health. Front. Chem. 2:61 [Google Scholar]
  67. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H. 67.  et al. 2009. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136:521–34 [Google Scholar]
  68. Lemaitre B, Miguel-Aliaga I. 68.  2013. The digestive tract of Drosophila melanogaster. Annu. Rev. Genet. 47:377–404 [Google Scholar]
  69. Libert S, Pletcher SD. 69.  2007. Modulation of longevity by environmental sensing. Cell 131:1231–34 [Google Scholar]
  70. Bjordal M, Arquier N, Kniazeff J, Pin JP, Leopold P. 70.  2014. Sensing of amino acids in a dopaminergic circuitry promotes rejection of an incomplete diet in Drosophila. Cell 156:510–21 [Google Scholar]
  71. Gietzen DW, Hao S, Anthony TG. 71.  2007. Mechanisms of food intake repression in indispensable amino acid deficiency. Annu. Rev. Nutr. 27:63–78Report on GCN2-mediated molecular responses to AA limitations. [Google Scholar]
  72. Chaveroux C, Lambert-Langlais S, Cherasse Y, Averous J, Parry L. 72.  et al. 2010. Molecular mechanisms involved in the adaptation to amino acid limitation in mammals. Biochimie 92:736–45Revision of transcriptional and translational adaptations to limiting AAs. [Google Scholar]
  73. Alves VS, Motta FL, Roffé M, Delamano A, Pesquero JB, Castilho BA. 73.  2009. GCN2 activation and eIF2α phosphorylation in the maturation of mouse oocytes. Biochem. Biophys. Res. Commun. 378:41–44 [Google Scholar]
  74. Efeyan A, Comb WC, Sabatini DM. 74.  2015. Nutrient-sensing mechanisms and pathways. Nature 517:302–10 [Google Scholar]
  75. Dang Do AN, Kimball SR, Cavener DR, Jefferson LS. 75.  2009. eIF2α kinases GCN2 and PERK modulate transcription and translation of distinct sets of mRNAs in mouse liver. Physiol. Genomics 38:328–41 [Google Scholar]
  76. De Sousa-Coelho AL, Relat J, Hondares E, Pérez-Martí A, Ribas F. 76.  et al. 2013. FGF21 mediates the lipid metabolism response to amino acid starvation. J. Lipid Res. 54:1786–97 [Google Scholar]
  77. Leib DE, Zachary AK. 77.  2015. Re-examination of dietary amino acid sensing reveals a GCN2-independent mechanism. Cell Rep. 13:1081–89 [Google Scholar]
  78. Karnani MM, Apergis-Schoute J, Adamantidis A, Jensen LT, de Lecea L. 78.  et al. 2011. Activation of central orexin/hypocretin neurons by dietary amino acids. Neuron 72:4616–29 [Google Scholar]
  79. Blouet C, Schwartz GJ. 79.  2012. Brainstem nutrient sensing in the nucleus of the solitary tract inhibits feeding. Cell Metab 16:579–87 [Google Scholar]
  80. Deval C, Chaveroux C, Maurin AC, Cherasse Y, Parry L. 80.  et al. 2009. Amino acid limitation regulates the expression of genes involved in several specific biological processes through GCN2-dependent and GCN2-independent pathways. FEBS J. 276:707–18 [Google Scholar]
  81. Suryawan A, O'Connor PMJ, Bush JA, Nguyen HV, Davis TA. 81.  2009. Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs. Amino Acids 37:97–104 [Google Scholar]
  82. Stenesen D, Suh JM, Seo J, Yu K, Lee KS. 83.  et al. 2013. Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab. 17:101–12 [Google Scholar]
  83. Chotechuang N, Azzout-Marniche D, Bos C, Chaumontet C, Gausserès N. 82.  et al. 2009. mTOR, AMPK, and GCN2 coordinate the adaptation of hepatic energy metabolic pathways in response to protein intake in the rat. Am. J. Physiol. Endocrinol. Metab 297:E1313–23 [Google Scholar]
  84. Tews JK, Kim YW, Harper AE. 84.  1980. Induction of threonine imbalance by dispensable amino acids: relationships between tissue amino acids and diet in rats. J. Nutr. 110:394–408 [Google Scholar]
  85. Davis AJ, Austic RE. 85.  1994. Dietary threonine imbalance alters threonine dehydrogenase activity in isolated hepatic mitochondria of chicks and rats. J. Nutr. 124:1667–77 [Google Scholar]
  86. Palii SS, Kays CE, Deval C, Bruhat A, Fafournoux P, Kilberg MS. 86.  2009. Specificity of amino acid regulated gene expression: analysis of genes subjected to either complete or single amino acid deprivation. Amino Acids 37:79–88 [Google Scholar]
  87. Takenaka A, Oki N, Takahashi SI, Noguchi T. 87.  2000. Dietary restriction of single essential amino acids reduces plasma insulin-like growth factor-I (IGF-I) but does not affect plasma IGF-binding protein-1 in rats. J. Nutr. 130:2910–14 [Google Scholar]
  88. Liao C-Y, Rikke BA, Johnson TE, Gelfond JA, Diaz V, Nelson JF. 88.  2011. Fat maintenance is a predictor of the murine lifespan response to dietary restriction. Aging Cell 10:629–39 [Google Scholar]
  89. Linford NJ, Beyer RP, Gollahon K, Krajcik RA, Malloy VL. 89.  et al. 2007. Transcriptional response to aging and caloric restriction in heart and adipose tissue. Aging Cell 6:673–88 [Google Scholar]
  90. Demetriades C, Doumpas N, Teleman AA. 90.  2014. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 156:786–99 [Google Scholar]
  91. Kim J, Guan K-L. 91.  2011. Amino acid signaling in TOR activation. Annu. Rev. Biochem. 80:1001–32 [Google Scholar]
  92. Chantranupong L, Wolfson RL, Sabatini DM. 92.  Nutrient-sensing mechanisms across evolution. Cell 161:67–83 [Google Scholar]
  93. Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM. 93.  et al. 2015. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351:43–48 [Google Scholar]
  94. Wang S, Tsun Z-Y, Wolfson RL, Shen K, Wyant GA. 94.  et al. 2015. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347:188–94 [Google Scholar]
  95. Tsun Z-Y, Bar-Peled L, Chantranupong L, Zoncu R, Wang T. 95.  et al. 2013. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol. Cell 52:495–505 [Google Scholar]
  96. Li L, Kim E, Yuan H, Inok K, Goraksha-Hicks P. 96.  et al. 2010. Regulation of mTORC1 by the Rab and Arf GTPases. J. Biol. Chem. 285:19705–9 [Google Scholar]
  97. Jewell JL, Kim YC, Russell RC, Yu F-X, Park WH. 97.  et al. 2015. Differential regulation of mTORC1 by leucine and glutamine. Science 347:194–98 [Google Scholar]
  98. Lamming DW, Ye L, Karajisto P, Golcalves MD, Saitoh M. 98.  et al. 2012. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335:1638–43 [Google Scholar]
  99. Saha AK, Xu XJ, Balon TW, Brandon A, Kraegen EW, Ruderman NB. 99.  2011. Insulin resistance due to nutrient excess: Is it a consequence of AMPK downregulation?. Cell Cycle 10:3447–51 [Google Scholar]
  100. Han JM, Jeong SJ, Park MC, Kim G, Kwon NH. 100.  et al. 2012. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149:410–24 [Google Scholar]
  101. Saxton RA, Knockenhauer KE, Wolfson RL, Chantranupong L, Pacold ME. 101.  et al. 2015. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science 351:53–58 [Google Scholar]
  102. Norheim F, Gjelstad IMF, Hjorth M, Vinknes KJ, Langleite TM. 102.  et al. 2012. Molecular nutrition research: the modern way of performing nutritional science. Nutrients 4:1898–944 [Google Scholar]
  103. Journel M, Chaumontet C, Darcel N, Fromentin G, Tomé D. 103.  2012. Brain responses to high-protein diets. Adv. Nutr. 3:322–29 [Google Scholar]
  104. Kohl S, Behrens M, Dunkel A, Hofmann T, Meyerhof W. 104.  2013. Amino acids and peptides activate at least five members of the human bitter taste receptor family. J. Agric. Food Chem 61:53–60 [Google Scholar]
  105. Lindgren O, Pacini G, Tura A, Holst JJ, Deacon CF, Ahren B. 105.  2015. Incretin effect after oral amino acid ingestion in humans. J. Clin. Endocrinol. Metab. 100:1172–76 [Google Scholar]
  106. Alfa RW, Park S, Skelly KR, Poffenberger G, Jain N. 106.  et al. 2015. Suppression of insulin production and secretion by a decretin hormone. Cell Metab. 21:323–33 [Google Scholar]
  107. Jiang Y, Rose AJ, Sijmonsma TP, Broer A, Pfenninger A. 107.  et al. 2015. Mice lacking neutral amino acid transporter B0AT1 (Slc6a19) have elevated levels of FGF21 and GLP-1 and improved glycaemic control. Mol. Metab. 4:406–17 [Google Scholar]
  108. Crespo CS, Cachero AP, Jiménez LP, Barrios V, Ferreiro EA. 108.  2014. Peptides and food intake. Front. Endocrinol 5:58 [Google Scholar]
  109. Jordi J, Herzog B, Camargo SMR, Boyle CN, Lutz TA, Verrey F. 109.  2013. Specific amino acids inhibit food intake via the area postrema or vagal afferents. J. Physiol 591:5611–21 [Google Scholar]
  110. McCormick MA, Tsai SY, Kennedy BK. 110.  2010. TOR and ageing: a complex pathway for a complex process. Philos. Trans. R. Soc. B 366:17–27 [Google Scholar]
  111. Edwards C, Canfield J, Copes N, Brito A, Rehan M. 111.  et al. 2015. Mechanisms of amino acid-mediated lifespan extension in Caenorhabditis elegans. BMC Genet. 16:8 [Google Scholar]
  112. Santos J, Leao C, Sousa MJ. 112.  2012. Growth culture conditions and nutrient signaling modulating yeast chronological longevity. Oxidative Med. Cell. Longev. 2012:10 [Google Scholar]
  113. Cai Z, Zhou Y, Xiao M, Yan L-J, He W. 113.  2015. Activation of mTOR: a culprit of Alzheimer's disease?. Neuropsychiatr. Dis. Treat. 11:1015–30 [Google Scholar]
  114. Kimball SR, Jefferson LS. 114.  2006. New functions for amino acids: effects on gene transcription and translation. Am. J. Clin. Nutr. 83:500S–7S [Google Scholar]
  115. Bunpo P, Dudley A, Cundiff JK, Cavender DR, Wek RC, Anthony TG. 115.  2009. GCN2 protein kinase is required to activate amino acid deprivation responses in mice treated with the anti-cancer agent L-asparaginase. J. Biol. Chem. 284:32742–49 [Google Scholar]
  116. Rousakis A, Vlassis A, Vlanti A, Patera S, Thireos G, Syntichaki P. 116.  2013. The general control nonderepressible-2 kinase mediates stress response and longevity induced by target of rapamycin inactivation in Caenorhabditis elegans. Aging Cell 12:742–51 [Google Scholar]
  117. Ye J, Palm W, Peng M, King B, Lindsten T. 117.  et al. 2015. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev 29:2331–36 [Google Scholar]
  118. Pal S, Ellis V. 118.  2010. The acute effects of four protein meals on insulin, glucose, appetite and energy intake in lean men. Br. J. Nutr. 104:1241–48 [Google Scholar]
  119. Hoffman JR, Falvo MJ. 119.  2004. Protein—which is best?. J. Sports Sci. Med. 3:118–30 [Google Scholar]
  120. van Milgen J. 120.  2002. Modeling biochemical aspects of energy metabolism in mammals. J. Nutr. 132:3195–202 [Google Scholar]
  121. Chin RM, Fu X, Pai MY, Vergnes L, Hwang H. 121.  et al. 2014. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510:7505397–401 [Google Scholar]
  122. D'Antona G, Ragni M, Cardile A, Tedesco L, Dossena M. 122.  et al. 2010. Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metab. 12:362–72 [Google Scholar]
  123. Poff AM, Ari C, Arnold P, Seyfried TN, D'Agostino DP. 123.  2014. Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer. Int. J. Cancer 135:1711–20 [Google Scholar]
  124. Gibson AA, Seimon RV, Lee CMY, Ayre J, Franklin J. 124.  et al. 2014. Do ketogenic diets really suppress appetite? A systematic review and meta-analysis. Obes. Res. Clin. Pract. 8:36 [Google Scholar]
  125. Pedroso JAB, Zampieri TT, Donato J. 125.  2015. Reviewing the effects of l-leucine supplementation in the regulation of food intake, energy balance, and glucose homeostasis. Nutrients 7:3914–37 [Google Scholar]
  126. Komar B, Schwingshackl L, Hoffmann G. 126.  2015. Effects of leucine-rich protein supplements on anthropometric parameter and muscle strength in the elderly: a systematic review and meta-analysis. J. Nutr. Health Aging 19:437–46 [Google Scholar]
  127. Jakubowicz D, Froy O. 127.  2013. Biochemical and metabolic mechanisms by which dietary whey protein may combat obesity and type 2 diabetes. J. Nutr. Biochem. 24:1–5 [Google Scholar]
  128. McCarty MF, Barroso-Aranda J, Contreras F. 128.  2009. The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Med. Hypotheses 72:125–28 [Google Scholar]
  129. Melnik BC, John SM, Schmitz G. 129.  2013. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr. J. 12:103 [Google Scholar]
  130. Newgard CB. 130.  2012. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 15:606–14 [Google Scholar]
  131. Poulain M, Herm A, Pes G. 131.  2013. The Blue Zones: areas of exceptional longevity around the world. Vienna Yearb. Popul. Res. 11:87–180 [Google Scholar]
  132. Trichopoulou A, Vasilopoulou E. 132.  2000. Mediterranean diet and longevity. Br. J. Nutr. 84:S205–9 [Google Scholar]
  133. Buckland G, Agudo A, Travier N, Huerta JM, Cirera L. 133.  et al. 2011. Adherence to the Mediterranean diet reduces mortality in the Spanish cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Spain). Br. J. Nutr. 106:1581–91 [Google Scholar]
  134. Metaxakis A, Partridge L. 134.  2013. Dietary restriction extends lifespan in wild-derived populations of Drosophila melanogaster. PLOS ONE 8:e74681 [Google Scholar]
  135. Liao C-Y, Rikke BA, Johnson TE, Diaz V, Nelson JF. 135.  2010. Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening. Aging Cell 9:92–95 [Google Scholar]
  136. Ram R, Mehta M, Balmer L, Gatti DM, Morahan G. 136.  2014. Rapid identification of major-effect genes using the collaborative cross. Genetics 198:75–86 [Google Scholar]
  137. Miller DS, Payne PR. 137.  1968. Longevity and protein intake. Exp. Gerontol. 3:231–34 [Google Scholar]
  138. Gilani GS, Sepehr E. 138.  2003. Protein digestibility and quality in products containing antinutritional factors are adversely affected by old age in rats. J. Nutr. 133:220–25 [Google Scholar]
  139. Sun L, Sadighi Akha AA, Miller RA, Harper JM. 139.  2009. Life-span extension in mice by preweaning food restriction and by methionine restriction in middle age. J. Gerontol. A 64A:711–22 [Google Scholar]
  140. Ozanne SE, Hales CN. 140.  2004. Lifespan: catch-up growth and obesity in male mice. Nature 427:411–12 [Google Scholar]
  141. John AM, Bell JM. 141.  1976. Amino acid requirements of the growing mouse. J. Nutr. 106:1361–67 [Google Scholar]
  142. Zhang X, Beynen AC. 142.  1993. Lowering effect of dietary milk-whey protein v. casein on plasma and liver cholesterol concentrations in rats. Br. J. Nutr. 70:139–46 [Google Scholar]
  143. Kalu DN, Masoro EJ, Yu BP, Hardin RR, Hollis BW. 143.  1988. Modulation of age-related hyperparathyroidism and senile bone loss in Fischer rats by soy protein and food restriction. Endocrinology 122:1847–54 [Google Scholar]
  144. Shertzer HG, Woods SE, Krishan M, Genter MB, Pearson KJ. 144.  2011. Dietary whey protein lowers the risk for metabolic disease in mice fed a high-fat diet. J. Nutr. 141:582–87 [Google Scholar]
  145. Bounous G, Gervais F, Amer V, Batist G, Gold P. 145.  1989. The influence of dietary whey protein on tissue glutathione and the diseases of aging. Clin. Investig. Med. 12:343–49 [Google Scholar]
  146. Crowe FL, Key TJ, Allen NE, Appleby PN, Roddam A. 146.  et al. 2009. The association between diet and serum concentrations of IGF-1, IGFBP-1, IGFBP-2, and IGFBP-3 in the European Prospective Investigation into cancer and nutrition. Cancer Epidemiol. Biomark. Prev. 18:1333–40 [Google Scholar]
  147. Coker RH, Miller S, Schutzler S, Deutz N, Wolfe RR. 147.  2012. Whey protein and essential amino acids promote the reduction of adipose tissue and increased muscle protein synthesis during caloric restriction-induced weight loss in elderly, obese individuals. Nutr. J. 11:105 [Google Scholar]
  148. Noguchi T. 148.  2000. Protein nutrition and insulin-like growth factor system. Br. J. Nutr. 84:S241–44 [Google Scholar]
  149. O'Neill B. 149.  2010. A scientific review of the reported effects of vegan nutrition on the occurrence and prevalence of cancer and cardiovascular disease. Biosci. Horiz. 3:197–212 [Google Scholar]
  150. Berg JM, Tymoczko JL, Stryer L. 150.  2006. Biochemistry New York: Freeman

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error