Peroxiredoxins (Prxs) constitute a major family of peroxidases, with mammalian cells expressing six Prx isoforms (PrxI to PrxVI). Cells produce hydrogen peroxide (HO) at various intracellular locations where it can serve as a signaling molecule. Given that Prxs are abundant and possess a structure that renders the cysteine (Cys) residue at the active site highly sensitive to oxidation by HO, the signaling function of this oxidant requires extensive and highly localized regulation. Recent findings on the reversible regulation of PrxI through phosphorylation at the centrosome and on the hyperoxidation of the Cys at the active site of PrxIII in mitochondria are described in this review as examples of such local regulation of HO signaling. Moreover, their high affinity for and sensitivity to oxidation by HO confer on Prxs the ability to serve as sensors and transducers of HO signaling through transfer of their oxidation state to bound effector proteins.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Rhee SG, Chae HZ, Kim K. 1.  2005. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med. 38:1543–52 [Google Scholar]
  2. Poole LB, Hall A, Nelson KJ. 2.  2011. Overview of peroxiredoxins in oxidant defense and redox regulation. Curr. Protoc. Toxicol. 49:7.9.1–7.9.15 [Google Scholar]
  3. Rhee SG, Woo HA, Kil IS, Bae SH. 3.  2012. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem. 287:4403–10 [Google Scholar]
  4. Perkins A, Nelson KJ, Parsonage D, Poole LB, Karplus PA. 4.  2015. Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem. Sci. 40:435–45 [Google Scholar]
  5. Wood ZA, Poole LB, Karplus PA. 5.  2003. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300:650–53 [Google Scholar]
  6. Wood ZA, Schroder E, Robin Harris J, Poole LB. 6.  2003. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28:32–40 [Google Scholar]
  7. Rhee SG, Kang SW, Chang TS, Jeong W, Kim K. 7.  2001. Peroxiredoxin, a novel family of peroxidases. IUBMB Life 52:35–41 [Google Scholar]
  8. Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG. 8.  1994. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. PNAS 91:7017–21 [Google Scholar]
  9. Seo MS, Kang SW, Kim K, Baines IC, Lee TH, Rhee SG. 9.  2000. Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J. Biol. Chem. 275:20346–54 [Google Scholar]
  10. Rhee SG, Woo HA. 10.  2011. Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H(2)O(2), and protein chaperones. Antioxid. Redox Signal. 15:781–94 [Google Scholar]
  11. Knoops B, Goemaere J, Van der Eecken V, Declercq JP. 11.  2011. Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin. Antioxid. Redox Signal. 15:817–29 [Google Scholar]
  12. Fisher AB. 12.  2011. Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase A(2) activities. Antioxid. Redox Signal. 15:831–44 [Google Scholar]
  13. Chae HZ, Chung SJ, Rhee SG. 13.  1994. Thioredoxin-dependent peroxide reductase from yeast. J. Biol. Chem. 269:27670–78 [Google Scholar]
  14. Shau H, Kim A. 14.  1994. Identification of natural killer enhancing factor as a major antioxidant in human red blood cells. Biochem. Biophys. Res. Commun. 199:83–88 [Google Scholar]
  15. Knoops B, Loumaye E, Van Der Eecken V. 15.  2007. Evolution of the peroxiredoxins. Subcell. Biochem. 44:27–40 [Google Scholar]
  16. Dietz KJ. 16.  2011. Peroxiredoxins in plants and cyanobacteria. Antioxid. Redox Signal. 15:1129–59 [Google Scholar]
  17. Nelson KJ, Knutson ST, Soito L, Klomsiri C, Poole LB, Fetrow JS. 17.  2011. Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis. Proteins 79:947–64 [Google Scholar]
  18. Hall A, Nelson K, Poole LB, Karplus PA. 18.  2011. Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid. Redox Signal. 15:795–815 [Google Scholar]
  19. Karplus PA. 19.  2015. A primer on peroxiredoxin biochemistry. Free Radic. Biol. Med. 80:183–90 [Google Scholar]
  20. Rhee SG. 20.  2016. Overview on peroxiredoxin. Mol. Cells 39:1–5 [Google Scholar]
  21. Woo HA, Chae HZ, Hwang SC, Yang KS, Kang SW. 21.  et al. 2003. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300:653–56 [Google Scholar]
  22. Woo HA, Yim SH, Shin DH, Kang D, Yu DY, Rhee SG. 22.  2010. Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell 140:517–28 [Google Scholar]
  23. Lim JM, Lee KS, Woo HA, Kang D, Rhee SG. 23.  2015. Control of the pericentrosomal H2O2 level by peroxiredoxin I is critical for mitotic progression. J. Cell Biol. 210:23–33 [Google Scholar]
  24. Chae HZ, Uhm TB, Rhee SG. 24.  1994. Dimerization of thiol-specific antioxidant and the essential role of cysteine 47. PNAS 91:7022–26 [Google Scholar]
  25. Hirotsu S, Abe Y, Okada K, Nagahara N, Hori H. 25.  et al. 1999. Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product. PNAS 96:12333–38 [Google Scholar]
  26. Declercq JP, Evrard C, Clippe A, Stricht DV, Bernard A, Knoops B. 26.  2001. Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 A resolution. J. Mol. Biol. 311:751–59 [Google Scholar]
  27. Smeets A, Marchand C, Linard D, Knoops B, Declercq JP. 27.  2008. The crystal structures of oxidized forms of human peroxiredoxin 5 with an intramolecular disulfide bond confirm the proposed enzymatic mechanism for atypical 2-Cys peroxiredoxins. Arch. Biochem. Biophys. 477:98–104 [Google Scholar]
  28. Choi HJ, Kang SW, Yang CH, Rhee SG, Ryu SE. 28.  1998. Crystal structure of a novel human peroxidase enzyme at 2.0 A resolution. Nat. Struct. Biol. 5:400–6 [Google Scholar]
  29. Shichi H, Demar JC. 29.  1990. Non-selenium glutathione peroxidase without glutathione S-transferase activity from bovine ciliary body. Exp. Eye Res. 50:513–20 [Google Scholar]
  30. Kang SW, Baines IC, Rhee SG. 30.  1998. Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. J. Biol. Chem. 273:6303–11 [Google Scholar]
  31. Fisher AB, Dodia C, Manevich Y, Chen JW, Feinstein SI. 31.  1999. Phospholipid hydroperoxides are substrates for non-selenium glutathione peroxidase. J. Biol. Chem. 274:21326–34 [Google Scholar]
  32. Peshenko IV, Shichi H. 32.  2001. Oxidation of active center cysteine of bovine 1-Cys peroxiredoxin to the cysteine sulfenic acid form by peroxide and peroxynitrite. Free Radic. Biol. Med. 31:292–303 [Google Scholar]
  33. Chen JW, Dodia C, Feinstein SI, Jain MK, Fisher AB. 33.  2000. 1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. J. Biol. Chem. 275:28421–27 [Google Scholar]
  34. Manevich Y, Feinstein SI, Fisher AB. 34.  2004. Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with πGST. PNAS 101:3780–85 [Google Scholar]
  35. Ralat LA, Manevich Y, Fisher AB, Colman RF. 35.  2006. Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase π with activity changes in both enzymes. Biochemistry 45:360–72 [Google Scholar]
  36. Ralat LA, Misquitta SA, Manevich Y, Fisher AB, Colman RF. 36.  2008. Characterization of the complex of glutathione S-transferase π and 1-cysteine peroxiredoxin. Arch. Biochem. Biophys. 474:109–18 [Google Scholar]
  37. Trujillo M, Clippe A, Manta B, Ferrer-Sueta G, Smeets A. 37.  et al. 2007. Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation. Arch. Biochem. Biophys. 467:95–106 [Google Scholar]
  38. Manta B, Hugo M, Ortiz C, Ferrer-Sueta G, Trujillo M, Denicola A. 38.  2009. The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2. Arch. Biochem. Biophys. 484:146–54 [Google Scholar]
  39. Winterbourn CC. 39.  2013. The biological chemistry of hydrogen peroxide. Methods Enzymol 528:3–25 [Google Scholar]
  40. Ogusucu R, Rettori D, Munhoz DC, Netto LE, Augusto O. 40.  2007. Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics. Free Radic. Biol. Med. 42:326–34 [Google Scholar]
  41. Cox AG, Peskin AV, Paton LN, Winterbourn CC, Hampton MB. 41.  2009. Redox potential and peroxide reactivity of human peroxiredoxin 3. Biochemistry 48:6495–501 [Google Scholar]
  42. Peskin AV, Low FM, Paton LN, Maghzal GJ, Hampton MB, Winterbourn CC. 42.  2007. The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents. J. Biol. Chem. 282:11885–92 [Google Scholar]
  43. Parsonage D, Nelson KJ, Ferrer-Sueta G, Alley S, Karplus PA. 43.  et al. 2015. Dissecting peroxiredoxin catalysis: separating binding, peroxidation, and resolution for a bacterial AhpC. Biochemistry 54:1567–75 [Google Scholar]
  44. Nakamura T, Kado Y, Yamaguchi T, Matsumura H, Ishikawa K, Inoue T. 44.  2010. Crystal structure of peroxiredoxin from Aeropyrum pernix K1 complexed with its substrate, hydrogen peroxide. J. Biochem. 147:109–15 [Google Scholar]
  45. Nagy P, Karton A, Betz A, Peskin AV, Pace P. 45.  et al. 2011. Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study. J. Biol. Chem. 286:18048–55 [Google Scholar]
  46. Yang KS, Kang SW, Woo HA, Hwang SC, Chae HZ. 46.  et al. 2002. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 277:38029–36 [Google Scholar]
  47. Wood ZA, Poole LB, Hantgan RR, Karplus PA. 47.  2002. Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry 41:5493–504 [Google Scholar]
  48. Koo KH, Lee S, Jeong SY, Kim ET, Kim HJ. 48.  et al. 2002. Regulation of thioredoxin peroxidase activity by C-terminal truncation. Arch. Biochem. Biophys. 397:312–18 [Google Scholar]
  49. Peskin AV, Dickerhof N, Poynton RA, Paton LN, Pace PE. 49.  et al. 2013. Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine. J. Biol. Chem. 288:14170–77 [Google Scholar]
  50. Biteau B, Labarre J, Toledano MB. 50.  2003. ATP-dependent reduction of cysteine–sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425:980–84 [Google Scholar]
  51. Chang TS, Jeong W, Woo HA, Lee SM, Park S, Rhee SG. 51.  2004. Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J. Biol. Chem. 279:50994–1001 [Google Scholar]
  52. Rabilloud T, Heller M, Gasnier F, Luche S, Rey C. 52.  et al. 2002. Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J. Biol. Chem. 277:19396–401 [Google Scholar]
  53. Woo HA, Kang SW, Kim HK, Yang KS, Chae HZ, Rhee SG. 53.  2003. Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence. J. Biol. Chem. 278:47361–64 [Google Scholar]
  54. Jang HH, Lee KO, Chi YH, Jung BG, Park SK. 54.  et al. 2004. Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117:625–35 [Google Scholar]
  55. Moon JC, Hah YS, Kim WY, Jung BG, Jang HH. 55.  et al. 2005. Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death. J. Biol. Chem. 280:28775–84 [Google Scholar]
  56. Phalen TJ, Weirather K, Deming PB, Anathy V, Howe AK. 56.  et al. 2006. Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery. J. Cell Biol. 175:779–89 [Google Scholar]
  57. Schroder E, Littlechild JA, Lebedev AA, Errington N, Vagin AA, Isupov MN. 57.  2000. Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 A resolution. Structure 8:605–15 [Google Scholar]
  58. Saccoccia F, Di Micco P, Boumis G, Brunori M, Koutris I. 58.  et al. 2012. Moonlighting by different stressors: crystal structure of the chaperone species of a 2-Cys peroxiredoxin. Structure 20:429–39 [Google Scholar]
  59. Yewdall NA, Venugopal H, Desfosses A, Abrishami V, Yosaatmadja Y. 59.  et al. 2016. Structures of human peroxiredoxin 3 suggest self-chaperoning assembly that maintains catalytic state. Structure 24:1120–29 [Google Scholar]
  60. Konig J, Galliardt H, Jutte P, Schaper S, Dittmann L, Dietz KJ. 60.  2013. The conformational bases for the two functionalities of 2-cysteine peroxiredoxins as peroxidase and chaperone. J. Exp. Bot. 64:3483–97 [Google Scholar]
  61. Teixeira F, Castro H, Cruz T, Tse E, Koldewey P. 61.  et al. 2015. Mitochondrial peroxiredoxin functions as crucial chaperone reservoir in Leishmania infantum. PNAS 112:E616–24 [Google Scholar]
  62. Toledano MB, Huang B. 62.  2016. Microbial 2-Cys peroxiredoxins: insights into their complex physiological roles. Mol. Cells 39:31–39 [Google Scholar]
  63. Bae SH, Sung SH, Cho EJ, Lee SK, Lee HE. 63.  et al. 2011. Concerted action of sulfiredoxin and peroxiredoxin I protects against alcohol-induced oxidative injury in mouse liver. Hepatology 53:945–53 [Google Scholar]
  64. Kil IS, Ryu KW, Lee SY, Kim YY, Chu SY. 64.  et al. 2015. Circadian oscillation of sulfiredoxin in the mitochondria. Mol. Cell 59:1–13 [Google Scholar]
  65. O'Neill JS, Reddy AB. 65.  2011. Circadian clocks in human red blood cells. Nature 469:498–503 [Google Scholar]
  66. Cho CS, Yoon HJ, Kim JY, Woo HA, Rhee SG. 66.  2014. Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells. PNAS 111:12043–48 [Google Scholar]
  67. Kil IS, Lee SK, Ryu KW, Woo HA, Hu MC. 67.  et al. 2012. Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol. Cell 46:584–94 [Google Scholar]
  68. Yim SH, Kim YJ, Oh SY, Fujii J, Zhang Y. 68.  et al. 2011. Identification and characterization of alternatively transcribed form of peroxiredoxin IV gene that is specifically expressed in spermatids of postpubertal mouse testis. J. Biol. Chem. 286:39002–12 [Google Scholar]
  69. Mohawk JA, Green CB, Takahashi JS. 69.  2012. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35:445–62 [Google Scholar]
  70. O'Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F. 70.  et al. 2011. Circadian rhythms persist without transcription in a eukaryote. Nature 469:554–58 [Google Scholar]
  71. Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M. 71.  et al. 2012. Peroxiredoxins are conserved markers of circadian rhythms. Nature 485:459–64 [Google Scholar]
  72. Olmedo M, O'Neill JS, Edgar RS, Valekunja UK, Reddy AB, Merrow M. 72.  2012. Circadian regulation of olfaction and an evolutionarily conserved, nontranscriptional marker in Caenorhabditis elegans. PNAS 109:20479–84 [Google Scholar]
  73. Johnson RM, Goyette G Jr., Ravindranath Y, Ho YS. 73.  2005. Hemoglobin autoxidation and regulation of endogenous H2O2 levels in erythrocytes. Free Radic. Biol. Med. 39:1407–17 [Google Scholar]
  74. Cho CS, Lee S, Lee GT, Woo HA, Choi EJ, Rhee SG. 74.  2010. Irreversible inactivation of glutathione peroxidase 1 and reversible inactivation of peroxiredoxin II by H2O2 in red blood cells. Antioxid. Redox Signal. 12:1235–46 [Google Scholar]
  75. Grune T, Merker K, Sandig G, Davies KJ. 75.  2003. Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem. Biophys. Res. Commun. 305:709–18 [Google Scholar]
  76. Pace PE, Peskin AV, Han MH, Hampton MB, Winterbourn CC. 76.  2013. Hyperoxidized peroxiredoxin 2 interacts with the protein disulfide-isomerase ERp46. Biochem. J. 453:475–85 [Google Scholar]
  77. Watabe S, Kohno H, Kouyama H, Hiroi T, Yago N, Nakazawa T. 77.  1994. Purification and characterization of a substrate protein for mitochondrial ATP-dependent protease in bovine adrenal cortex. J. Biochem. 115:648–54 [Google Scholar]
  78. Hanukoglu I. 78.  2006. Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells. Drug Metab. Rev. 38:171–96 [Google Scholar]
  79. Cox AG, Winterbourn CC, Hampton MB. 79.  2010. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem. J. 425:313–25 [Google Scholar]
  80. Matsuzawa A, Ichijo H. 80.  2008. Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim. Biophys. Acta 1780:1325–36 [Google Scholar]
  81. Nadeau PJ, Charette SJ, Toledano MB, Landry J. 81.  2007. Disulfide bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H2O2-induced c-Jun NH2-terminal kinase activation and apoptosis. Mol. Biol. Cell 18:3903–13 [Google Scholar]
  82. Barajas-Espinosa A, Basye A, Angelos MG, Chen C-A. 82.  2015. Modulation of p38 kinase by DUSP4 is important in regulating cardiovascular function under oxidative stress. Free Radic. Biol. Med. 89:170–81 [Google Scholar]
  83. Jefcoate CR, Lee J, Cherradi N, Takemori H, Duan H. 83.  2011. cAMP stimulation of StAR expression and cholesterol metabolism is modulated by co-expression of labile suppressors of transcription and mRNA turnover. Mol. Cell Endocrinol. 336:53–62 [Google Scholar]
  84. Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D. 84.  et al. 2006. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab 4:163–73 [Google Scholar]
  85. Noh YH, Baek JY, Jeong W, Rhee SG, Chang TS. 85.  2009. Sulfiredoxin translocation into mitochondria plays a crucial role in reducing hyperoxidized peroxiredoxin III. J. Biol. Chem. 284:8470–77 [Google Scholar]
  86. Asher G, Schibler U. 86.  2011. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13:125–37 [Google Scholar]
  87. Gerhart-Hines Z, Feng D, Emmett MJ, Everett LJ, Loro E. 87.  et al. 2013. The nuclear receptor Rev-erbα controls circadian thermogenic plasticity. Nature 503:410–13 [Google Scholar]
  88. Putker M, O'Neill JS. 88.  2016. Reciprocal control of the circadian clock and cellular redox state—a critical appraisal. Mol. Cells 39:6–19 [Google Scholar]
  89. Sena LA, Chandel NS. 89.  2012. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48:158–67 [Google Scholar]
  90. Yun J, Finkel T. 90.  2014. Mitohormesis. Cell Metab 19:757–66 [Google Scholar]
  91. Sabharwal SS, Schumacker PT. 91.  2014. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel?. Nat. Rev. Cancer 14:709–21 [Google Scholar]
  92. Rhee SG, Bae YS, Lee S-R, Kwon J. 92.  2000. Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci. Signal Transduct. Knowl. Environ 2000:pe1 [Google Scholar]
  93. Lee SR, Kwon KS, Kim SR, Rhee SG. 93.  1998. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273:15366–72 [Google Scholar]
  94. Kwon J, Lee SR, Yang KS, Ahn Y, Kim YJ. 94.  et al. 2004. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. PNAS 101:16419–24 [Google Scholar]
  95. Tonks NK. 95.  2005. Redox redux: revisiting PTPs and the control of cell signaling. Cell 121:667–70 [Google Scholar]
  96. Finkel T. 96.  1998. Oxygen radicals and signaling. Curr. Opin. Cell Biol. 10:248–53 [Google Scholar]
  97. Rhee SG. 97.  2006. Cell signaling. H2O2, a necessary evil for cell signaling. Science 312:1882–83 [Google Scholar]
  98. D'Autreaux B, Toledano MB. 98.  2007. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8:813–24 [Google Scholar]
  99. Ushio-Fukai M. 99.  2006. Localizing NADPH oxidase-derived ROS. Sci. Signal Transduct. Knowl. Environ 2006:re8 [Google Scholar]
  100. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. 100.  1995. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–99 [Google Scholar]
  101. Bae YS, Kang SW, Seo MS, Baines IC, Tekle E. 101.  et al. 1997. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272:217–21 [Google Scholar]
  102. Singer AJ, Clark RA. 102.  1999. Cutaneous wound healing. N. Engl. J. Med. 341:738–46 [Google Scholar]
  103. Chiarugi P. 103.  2008. Src redox regulation: There is more than meets the eye. Mol. Cells 26:329–37 [Google Scholar]
  104. Chang TS, Jeong W, Choi SY, Yu S, Kang SW, Rhee SG. 104.  2002. Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation. J. Biol. Chem. 277:25370–76 [Google Scholar]
  105. Bonnet J, Coopman P, Morris MC. 105.  2008. Characterization of centrosomal localization and dynamics of Cdc25C phosphatase in mitosis. Cell Cycle 7:1991–98 [Google Scholar]
  106. Lindqvist A, Rodriguez-Bravo V, Medema RH. 106.  2009. The decision to enter mitosis: feedback and redundancy in the mitotic entry network. J. Cell Biol. 185:193–202 [Google Scholar]
  107. Pesin JA, Orr-Weaver TL. 107.  2008. Regulation of APC/C activators in mitosis and meiosis. Annu. Rev. Cell Dev. Biol. 24:475–99 [Google Scholar]
  108. Peters JM. 108.  2006. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat. Rev. Mol. Cell Biol. 7:644–56 [Google Scholar]
  109. Wurzenberger C, Gerlich DW. 109.  2011. Phosphatases: providing safe passage through mitotic exit. Nat. Rev. Mol. Cell Biol. 12:469–82 [Google Scholar]
  110. Wu J, Cho HP, Rhee DB, Johnson DK, Dunlap J. 110.  et al. 2008. Cdc14B depletion leads to centriole amplification, and its overexpression prevents unscheduled centriole duplication. J. Cell Biol. 181:475–83 [Google Scholar]
  111. Jang HH, Kim SY, Park SK, Jeon HS, Lee YM. 111.  et al. 2006. Phosphorylation and concomitant structural changes in human 2-Cys peroxiredoxin isotype I differentially regulate its peroxidase and molecular chaperone functions. FEBS Lett 580:351–55 [Google Scholar]
  112. Chu KL, Lew QJ, Rajasegaran V, Kung JT, Zheng L. 112.  et al. 2013. Regulation of PRDX1 peroxidase activity by Pin1. Cell Cycle 12:944–52 [Google Scholar]
  113. Qu D, Rashidian J, Mount MP, Aleyasin H, Parsanejad M. 113.  et al. 2007. Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson's disease. Neuron 55:37–52 [Google Scholar]
  114. Rashidian J, Rousseaux MW, Venderova K, Qu D, Callaghan SM. 114.  et al. 2009. Essential role of cytoplasmic cdk5 and Prx2 in multiple ischemic injury models. in vivo. J. Neurosci. 29:12497–505 [Google Scholar]
  115. Delaunay A, Pflieger D, Barrault MB, Vinh J, Toledano MB. 115.  2002. A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111:471–81 [Google Scholar]
  116. Bozonet SM, Findlay VJ, Day AM, Cameron J, Veal EA, Morgan BA. 116.  2005. Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide. J. Biol. Chem. 280:23319–27 [Google Scholar]
  117. Zito E, Melo EP, Yang Y, Wahlander A, Neubert TA, Ron D. 117.  2010. Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin. Mol. Cell 40:787–97 [Google Scholar]
  118. Tavender TJ, Springate JJ, Bulleid NJ. 118.  2010. Recycling of peroxiredoxin IV provides a novel pathway for disulphide formation in the endoplasmic reticulum. EMBO J 29:4185–97 [Google Scholar]
  119. Jarvis RM, Hughes SM, Ledgerwood EC. 119.  2012. Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic. Biol. Med. 53:1522–30 [Google Scholar]
  120. Nassour H, Wang Z, Saad A, Papaluca A, Brosseau N. 120.  et al. 2016. Peroxiredoxin 1 interacts with and blocks the redox factor APE1 from activating interleukin-8 expression. Sci. Rep. 6:29389 [Google Scholar]
  121. Sobotta MC, Liou W, Stocker S, Talwar D, Oehler M. 121.  et al. 2015. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol. 11:64–70 [Google Scholar]
  122. Fernandez-Caggiano M, Schroder E, Cho HJ, Burgoyne J, Barallobre-Barreiro J. 122.  et al. 2016. Oxidant-induced interprotein disulfide formation in cardiac protein DJ-1 occurs via an interaction with peroxiredoxin 2. J. Biol. Chem. 291:10399–410 [Google Scholar]
  123. Korn SH, Wouters EF, Vos N, Janssen-Heininger YM. 123.  2001. Cytokine-induced activation of nuclear factor-κB is inhibited by hydrogen peroxide through oxidative inactivation of IκB kinase. J. Biol. Chem. 276:35693–700 [Google Scholar]
  124. Yoo SK, Starnes TW, Deng Q, Huttenlocher A. 124.  2011. Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480:109–12 [Google Scholar]
  125. Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT. 125.  2010. ATM activation by oxidative stress. Science 330:517–21 [Google Scholar]
  126. Kato M, Iwashita T, Takeda K, Akhand AA, Liu W. 126.  et al. 2000. Ultraviolet light induces redox reaction-mediated dimerization and superactivation of oncogenic Ret tyrosine kinases. Mol. Biol. Cell 11:93–101 [Google Scholar]
  127. Seo JH, Lim JC, Lee DY, Kim KS, Piszczek G. 127.  et al. 2009. Novel protective mechanism against irreversible hyperoxidation of peroxiredoxin: Nα-terminal acetylation of human peroxiredoxin II. J. Biol. Chem. 284:13455–65 [Google Scholar]
  128. Chae HZ, Oubrahim H, Park JW, Rhee SG, Chock PB. 128.  2012. Protein glutathionylation in the regulation of peroxiredoxins: a family of thiol-specific peroxidases that function as antioxidants, molecular chaperones, and signal modulators. Antioxid. Redox Signal. 16:506–23 [Google Scholar]
  129. Peskin AV, Pace PE, Behring JB, Paton LN, Soethoudt M. 129.  et al. 2016. Glutathionylation of the active site cysteines of peroxiredoxin 2 and recycling by glutaredoxin. J. Biol. Chem. 291:3053–62 [Google Scholar]
  130. Engelman R, Weisman-Shomer P, Ziv T, Xu J, Arner ES, Benhar M. 130.  2013. Multilevel regulation of 2-Cys peroxiredoxin reaction cycle by S-nitrosylation. J. Biol. Chem. 288:11312–24 [Google Scholar]
  131. Randall LM, Manta B, Hugo M, Gil M, Batthyany C. 131.  et al. 2014. Nitration transforms a sensitive peroxiredoxin 2 into a more active and robust peroxidase. J. Biol. Chem. 289:15536–43 [Google Scholar]
  132. Wu B, Yu H, Wang Y, Pan Z, Zhang Y. 132.  et al. 2016. Peroxiredoxin-2 nitrosylation facilitates cardiomyogenesis of mouse embryonic stem cells via XBP-1s/PI3K pathway. Free Radic. Biol. Med. 97:179–91 [Google Scholar]
  133. Prosperi MT, Ferbus D, Karczinski I, Goubin G. 133.  1993. A human cDNA corresponding to a gene overexpressed during cell proliferation encodes a product sharing homology with amoebic and bacterial proteins. J. Biol. Chem. 268:11050–56 [Google Scholar]
  134. Ishii T, Yamada M, Sato H, Matsue M, Taketani S. 134.  et al. 1993. Cloning and characterization of a 23-kDa stress-induced mouse peritoneal macrophage protein. J. Biol. Chem. 268:18633–36 [Google Scholar]
  135. Shau H, Butterfield LH, Chiu R, Kim A. 135.  1994. Cloning and sequence analysis of candidate human natural killer-enhancing factor genes. Immunogenetics 40:129–34 [Google Scholar]
  136. Iwahara S, Satoh H, Song DX, Webb J, Burlingame AL. 136.  et al. 1995. Purification, characterization, and cloning of a heme-binding protein (23 kDa) in rat liver cytosol. Biochemistry 34:13398–406 [Google Scholar]
  137. Kawai S, Takeshita S, Okazaki M, Kikuno R, Kudo A, Amann E. 137.  1994. Cloning and characterization of OSF-3, a new member of the MER5 family, expressed in mouse osteoblastic cells. J. Biochem. 115:641–43 [Google Scholar]
  138. Yamamoto T, Matsui Y, Natori S, Obinata M. 138.  1989. Cloning of a housekeeping-type gene (MER5) preferentially expressed in murine erythroleukemia cells. Gene 80:337–43 [Google Scholar]
  139. Jin DY, Chae HZ, Rhee SG, Jeang KT. 139.  1997. Regulatory role for a novel human thioredoxin peroxidase in NF-κB activation. J. Biol. Chem. 272:30952–61 [Google Scholar]
  140. Kropotov A, Sedova V, Ivanov V, Sazeeva N, Tomilin A. 140.  et al. 1999. A novel human DNA-binding protein with sequence similarity to a subfamily of redox proteins which is able to repress RNA-polymerase-III-driven transcription of the Alu-family retroposons in vitro. Eur. J. Biochem. 260:336–46 [Google Scholar]
  141. Yamashita H, Avraham S, Jiang S, London R, Van Veldhoven PP. 141.  et al. 1999. Characterization of human and murine PMP20 peroxisomal proteins that exhibit antioxidant activity in vitro. J. Biol. Chem. 274:29897–904 [Google Scholar]
  142. Kim TS, Sundaresh CS, Feinstein SI, Dodia C, Skach WR. 142.  et al. 1997. Identification of a human cDNA clone for lysosomal type Ca2+-independent phospholipase A2 and properties of the expressed protein. J. Biol. Chem. 272:2542–50 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error