The determination of the crystal structures of small-molecule transporters has shed light on the conformational changes that take place during structural isomerization from outward- to inward-facing states. Rather than using a simple rocking movement of two bundles around a central substrate-binding site, it has become clear that even the most simplistic transporters utilize rearrangements of nonrigid bodies. In the most dramatic cases, one bundle is fixed while the other, structurally divergent, bundle carries the substrate some 18 Å across the membrane, which in this review is termed an elevator alternating-access mechanism. Here, we compare and contrast rocker-switch, rocking-bundle, and elevator alternating-access mechanisms to highlight shared features and novel refinements to the basic alternating-access model.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Mitchell P. 1.  1957. A general theory of membrane transport from studies of bacteria. Nature 180:134–36 [Google Scholar]
  2. Mitchell P. 1a.  1990. Osmochemistry of solute translocation. Res. Microbiol. 141:286–89 [Google Scholar]
  3. Patlak CS. 2.  1957. Contributions to the theory of active transport: II. The gate type non-carrier mechanism and generalizations concerning tracer flow, efficiency, and measurement of energy expenditure. Bull. Math. Biophys. 19:209–35 [Google Scholar]
  4. Jardetzky O. 3.  1966. Simple allosteric model for membrane pumps. Nature 211:969–70 [Google Scholar]
  5. Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S. 4.  2003. Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–15 [Google Scholar]
  6. Ethayathulla AS, Yousef MS, Amin A, Leblanc G, Kaback HR, Guan L. 5.  2014. Structure-based mechanism for Na+/melibiose symport by MelB. Nat. Commun. 5:3009 [Google Scholar]
  7. Accardi A, Miller C. 6.  2004. Secondary active transport mediated by a prokaryotic homologue of ClC Cl channels. Nature 427:803–7 [Google Scholar]
  8. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R. 7.  2002. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415:287–94 [Google Scholar]
  9. Dutzler R, Campbell EB, MacKinnon R. 8.  2003. Gating the selectivity filter in ClC chloride channels. Science 300:108–12 [Google Scholar]
  10. Feng L, Campbell EB, Hsiung Y, MacKinnon R. 9.  2010. Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle. Science 330:635–41 [Google Scholar]
  11. Elvington SM, Liu CW, Maduke MC. 10.  2009. Substrate-driven conformational changes in ClC-ec1 observed by fluorine NMR. EMBO J. 28:3090–102 [Google Scholar]
  12. Basilio D, Noack K, Picollo A, Accardi A. 11.  2014. Conformational changes required for H+/Cl exchange mediated by a CLC transporter. Nat. Struct. Mol. Biol. 21:456–63 [Google Scholar]
  13. Abraham SJ, Cheng RC, Chew TA, Khantwal CM, Liu CW. 12.  et al. 2015. 13C NMR detects conformational change in the 100-kD membrane transporter ClC-ec1. J. Biomol. NMR 61:209–26 [Google Scholar]
  14. Jayaram H, Accardi A, Wu F, Williams C, Miller C. 13.  2008. Ion permeation through a Cl-selective channel designed from a CLC Cl/H+ exchanger. PNAS 105:11194–99 [Google Scholar]
  15. Walden M, Accardi A, Wu F, Xu C, Williams C, Miller C. 14.  2007. Uncoupling and turnover in a Cl/H+ exchange transporter. J. Gen. Physiol. 129:317–29 [Google Scholar]
  16. Accardi A, Picollo A. 15.  2010. CLC channels and transporters: proteins with borderline personalities. Biochim. Biophys. Acta 1798:1457–64 [Google Scholar]
  17. Yan N. 16.  2015. Structural biology of the major facilitator superfamily transporters. Annu. Rev. Biophys. 44:257–83 [Google Scholar]
  18. Forrest LR, Rudnick G. 17.  2009. The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology 24:377–86 [Google Scholar]
  19. Reyes N, Ginter C, Boudker O. 18.  2009. Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462:880–85 [Google Scholar]
  20. Lee C, Kang HJ, von Ballmoos C, Newstead S, Uzdavinys P. 19.  et al. 2013. A two-domain elevator mechanism for sodium/proton antiport. Nature 501:573–77 [Google Scholar]
  21. Cao Y, Jin X, Levin EJ, Huang H, Zong Y. 20.  et al. 2011. Crystal structure of a phosphorylation-coupled saccharide transporter. Nature 473:50–54 [Google Scholar]
  22. Luo P, Yu X, Wang W, Fan S, Li X, Wang J. 21.  2015. Crystal structure of a phosphorylation-coupled vitamin C transporter. Nat. Struct. Mol. Biol. 22:238–41 [Google Scholar]
  23. Mancusso R, Gregorio GG, Liu Q, Wang D-N. 22.  2012. Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. Nature 491:622–26 [Google Scholar]
  24. Mulligan C, Fitzgerald GA, Wang DN, Mindell JA. 23.  2014. Functional characterization of a Na+-dependent dicarboxylate transporter from Vibrio cholerae. J. Gen. Physiol. 143:745–59 [Google Scholar]
  25. Wöhlert D, Grötzinger MJ, Kühlbrandt W, Yildiz Ö. 24.  2015. Mechanism of Na+-dependent citrate transport from the structure of an asymmetrical CitS dimer. eLife 4:e09375 [Google Scholar]
  26. Johnson ZL, Cheong C-G, Lee S-Y. 25.  2012. Crystal structure of a concentrative nucleoside transporter from Vibrio cholerae at 2.4 Å. Nature 483:489–93 [Google Scholar]
  27. Bolla JR, Su C-C, Delmar JA, Radhakrishnan A, Kumar N. 26.  et al. 2015. Crystal structure of the Alcanivorax borkumensis YdaH transporter reveals an unusual topology. Nat. Commun. 6:6874 [Google Scholar]
  28. Su C-C, Bolla JR, Kumar N, Radhakrishnan A, Long F. 27.  et al. 2015. Structure and function of Neisseria gonorrhoeae MtrF illuminates a class of antimetabolite efflux pumps. Cell Rep. 11:61–70 [Google Scholar]
  29. ter Beek J, Guskov A, Slotboom DJ. 28.  2014. Structural diversity of ABC transporters. J. Gen. Physiol. 143:419–35 [Google Scholar]
  30. Yan N. 29.  2013. Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem. Sci. 38:151–59 [Google Scholar]
  31. Karpowich NK, Wang DN. 30.  2008. Structural biology: symmetric transporters for asymmetric transport. Science 321:781–82 [Google Scholar]
  32. Serdiuk T, Madej MG, Sugihara J, Kawamura S, Mari SA. 31.  et al. 2014. Substrate-induced changes in the structural properties of LacY. PNAS 111:E1571–80 [Google Scholar]
  33. Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML. 32.  et al. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–32 [Google Scholar]
  34. Xuan YH, Hu YB, Chen LQ, Sosso D, Ducat DC. 33.  et al. 2013. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. PNAS 110:E3685–94 [Google Scholar]
  35. Xu Y, Tao Y, Cheung LS, Fan C, Chen LQ. 34.  et al. 2014. Structures of bacterial homologues of SWEET transporters in two distinct conformations. Nature 515:448–52 [Google Scholar]
  36. Lee Y, Nishizawa T, Yamashita K, Ishitani R, Nureki O. 35.  2015. Structural basis for the facilitative diffusion mechanism by SemiSWEET transporter. Nat. Commun. 6:6112 [Google Scholar]
  37. Wang J, Yan C, Li Y, Hirata K, Yamamoto M. 36.  et al. 2014. Crystal structure of a bacterial homologue of SWEET transporters. Cell Res. 24:1486–89 [Google Scholar]
  38. von Heijne G. 37.  1992. Membrane protein structure prediction: hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 225:487–94 [Google Scholar]
  39. Zhai Y, Heijne WH, Smith DW, Saier MH Jr. 38.  2001. Homologues of archaeal rhodopsins in plants, animals and fungi: structural and functional predications for a putative fungal chaperone protein. Biochim. Biophys. Acta 1511:206–23 [Google Scholar]
  40. Yee DC, Shlykov MA, Vastermark A, Reddy VS, Arora S. 39.  et al. 2013. The transporter-opsin-G protein-coupled receptor (TOG) superfamily. FEBS J. 280:5780–800 [Google Scholar]
  41. Rotem D, Schuldiner S. 40.  2004. EmrE, a multidrug transporter from Escherichia coli, transports monovalent and divalent substrates with the same stoichiometry. J. Biol. Chem. 279:48787–93 [Google Scholar]
  42. Rapp M, Seppala S, Granseth E, von Heijne G. 41.  2007. Emulating membrane protein evolution by rational design. Science 315:1282–84 [Google Scholar]
  43. Nara T, Kouyama T, Kurata Y, Kikukawa T, Miyauchi S, Kamo N. 42.  2007. Anti-parallel membrane topology of a homo-dimeric multidrug transporter, EmrE. J. Biochem. 142:621–25 [Google Scholar]
  44. Nasie I, Steiner-Mordoch S, Gold A, Schuldiner S. 43.  2010. Topologically random insertion of EmrE supports a pathway for evolution of inverted repeats in ion-coupled transporters. J. Biol. Chem. 285:15234–44 [Google Scholar]
  45. Morrison EA, DeKoster GT, Dutta S, Vafabakhsh R, Clarkson MW. 44.  et al. 2012. Antiparallel EmrE exports drugs by exchanging between asymmetric structures. Nature 481:45–50 [Google Scholar]
  46. Lloris-Garcera P, Bianchi F, Slusky JS, Seppala S, Daley DO, von Heijne G. 45.  2012. Antiparallel dimers of the small multidrug resistance protein EmrE are more stable than parallel dimers. J. Biol. Chem. 287:26052–59 [Google Scholar]
  47. Korkhov VM, Tate CG. 46.  2008. Electron crystallography reveals plasticity within the drug binding site of the small multidrug transporter EmrE. J. Mol. Biol. 377:1094–103 [Google Scholar]
  48. Chen YJ, Pornillos O, Lieu S, Ma C, Chen AP, Chang G. 47.  2007. X-ray structure of EmrE supports dual topology model. PNAS 104:18999–9004 [Google Scholar]
  49. Yerushalmi H, Lebendiker M, Schuldiner S. 48.  1995. EmrE, an Escherichia coli 12-kDa multidrug transporter, exchanges toxic cations and H+ and is soluble in organic solvents. J. Biol. Chem. 270:6856–63 [Google Scholar]
  50. Jaehme M, Guskov A, Slotboom DJ. 49.  2014. Crystal structure of the vitamin B3 transporter PnuC, a full-length SWEET homolog. Nat. Struct. Mol. Biol. 21:1013–15 [Google Scholar]
  51. Forrest LR. 50.  2015. Structural symmetry in membrane proteins. Annu. Rev. Biophys. 44:311–37 [Google Scholar]
  52. Pao SS, Paulsen IT, Saier MH Jr. 51.  1998. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62:1–34 [Google Scholar]
  53. Lemieux MJ, Huang Y, Wang da N. 52.  2005. Crystal structure and mechanism of GlpT, the glycerol-3-phosphate transporter from E. coli. J. Electron Microsc. 54:Suppl. 1i43–46 [Google Scholar]
  54. Sun L, Zeng X, Yan C, Sun X, Gong X. 53.  et al. 2012. Crystal structure of a bacterial homologue of glucose transporters GLUT1–4. Nature 490:361–66 [Google Scholar]
  55. Deng D, Xu C, Sun P, Wu J, Yan C. 54.  et al. 2014. Crystal structure of the human glucose transporter GLUT1. Nature 510:121–25 [Google Scholar]
  56. Radestock S, Forrest LR. 55.  2011. The alternating-access mechanism of MFS transporters arises from inverted-topology repeats. J. Mol. Biol. 407:698–715 [Google Scholar]
  57. 56.  Deleted in proof
  58. Huang Y, Lemieux MJ, Song J, Auer M, Wang DN. 57.  2003. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–20 [Google Scholar]
  59. Dang S, Sun L, Huang Y, Lu F, Liu Y. 58.  et al. 2010. Structure of a fucose transporter in an outward-open conformation. Nature 467:734–38 [Google Scholar]
  60. Quistgaard EM, Low C, Moberg P, Tresaugues L, Nordlund P. 59.  2013. Structural basis for substrate transport in the GLUT-homology family of monosaccharide transporters. Nat. Struct. Mol. Biol. 20:766–68 [Google Scholar]
  61. Deng D, Sun P, Yan C, Ke M, Jiang X. 60.  et al. 2015. Molecular basis of ligand recognition and transport by glucose transporters. Nature 526:391–96 [Google Scholar]
  62. Wisedchaisri G, Park MS, Iadanza MG, Zheng H, Gonen T. 61.  2014. Proton-coupled sugar transport in the prototypical major facilitator superfamily protein XylE. Nat. Commun. 5:4521 [Google Scholar]
  63. Iancu CV, Zamoon J, Woo SB, Aleshin A, Choe JY. 62.  2013. Crystal structure of a glucose/H+ symporter and its mechanism of action. PNAS 110:17862–67 [Google Scholar]
  64. Newstead S, Drew D, Cameron AD, Postis VL, Xia X. 63.  et al. 2011. Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO J. 30:417–26 [Google Scholar]
  65. Solcan N, Kwok J, Fowler PW, Cameron AD, Drew D. 64.  et al. 2012. Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J. 31:3411–21 [Google Scholar]
  66. Guettou F, Quistgaard EM, Raba M, Moberg P, Low C, Nordlund P. 65.  2014. Selectivity mechanism of a bacterial homolog of the human drug-peptide transporters PepT1 and PepT2. Nat. Struct. Mol. Biol. 21:728–31 [Google Scholar]
  67. Doki S, Kato HE, Solcan N, Iwaki M, Koyama M. 66.  et al. 2013. Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT. PNAS 110:11343–48 [Google Scholar]
  68. Zhao Y, Mao G, Liu M, Zhang L, Wang X, Zhang XC. 67.  2014. Crystal structure of the E. coli peptide transporter YbgH. Structure 22:1152–60 [Google Scholar]
  69. Yan H, Huang W, Yan C, Gong X, Jiang S. 68.  et al. 2013. Structure and mechanism of a nitrate transporter. Cell Rep. 3:716–23 [Google Scholar]
  70. Zheng H, Wisedchaisri G, Gonen T. 69.  2013. Crystal structure of a nitrate/nitrite exchanger. Nature 497:647–51 [Google Scholar]
  71. Sun J, Bankston JR, Payandeh J, Hinds TR, Zagotta WN, Zheng N. 70.  2014. Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 507:73–77 [Google Scholar]
  72. Parker JL, Newstead S. 71.  2014. Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature 507:68–72 [Google Scholar]
  73. Fukuda M, Takeda H, Kato HE, Doki S, Ito K. 72.  et al. 2015. Structural basis for dynamic mechanism of nitrate/nitrite antiport by NarK. Nat. Commun. 6:7097 [Google Scholar]
  74. Pedersen BP, Kumar H, Waight AB, Risenmay AJ, Roe-Zurz Z. 73.  et al. 2013. Crystal structure of a eukaryotic phosphate transporter. Nature 496:533–36 [Google Scholar]
  75. Yin Y, He X, Szewczyk P, Nguyen T, Chang G. 74.  2006. Structure of the multidrug transporter EmrD from Escherichia coli. Science 312:741–44 [Google Scholar]
  76. Jiang D, Zhao Y, Wang X, Fan J, Heng J. 75.  et al. 2013. Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A. PNAS 110:14664–69 [Google Scholar]
  77. Hirai T, Subramaniam S. 76.  2004. Structure and transport mechanism of the bacterial oxalate transporter OxlT. Biophys. J. 87:3600–7 [Google Scholar]
  78. Lyons JA, Parker JL, Solcan N, Brinth A, Li D. 77.  et al. 2014. Structural basis for polyspecificity in the POT family of proton-coupled oligopeptide transporters. EMBO Rep. 15:886–93 [Google Scholar]
  79. Nomura N, Verdon G, Kang HJ, Shimamura T, Nomura Y. 78.  et al. 2015. Structure and mechanism of the mammalian fructose transporter GLUT5. Nature 526:397–401 [Google Scholar]
  80. Seatter MJ, De la Rue SA, Porter LM, Gould GW. 79.  1998. QLS motif in transmembrane helix VII of the glucose transporter family interacts with the C-1 position of D-glucose and is involved in substrate selection at the exofacial binding site. Biochemistry 37:1322–26 [Google Scholar]
  81. Hruz PW, Mueckler MM. 80.  1999. Cysteine-scanning mutagenesis of transmembrane segment 7 of the GLUT1 glucose transporter. J. Biol. Chem. 274:36176–80 [Google Scholar]
  82. Mueckler M, Makepeace C. 81.  2002. Analysis of transmembrane segment 10 of the Glut1 glucose transporter by cysteine-scanning mutagenesis and substituted cysteine accessibility. J. Biol. Chem. 277:3498–503 [Google Scholar]
  83. Kumar H, Kasho V, Smirnova I, Finer-Moore JS, Kaback HR, Stroud RM. 82.  2014. Structure of sugar-bound LacY. PNAS 111:1784–88 [Google Scholar]
  84. Kumar H, Finer-Moore JS, Kaback HR, Stroud RM. 83.  2015. Structure of LacY with an α-substituted galactoside: connecting the binding site to the protonation site. PNAS 112:9004–9 [Google Scholar]
  85. Stelzl LS, Fowler PW, Sansom MS, Beckstein O. 84.  2014. Flexible gates generate occluded intermediates in the transport cycle of LacY. J. Mol. Biol. 426:735–51 [Google Scholar]
  86. Fowler PW, Orwick-Rydmark M, Radestock S, Solcan N, Dijkman PM. 85.  et al. 2015. Gating topology of the proton-coupled oligopeptide symporters. Structure 23:290–301 [Google Scholar]
  87. Lowe AG. 86.  1989. The kinetics and thermodynamics of glucose transport in human erythrocytes: indications for the molecular mechanism of transport. Biochem. Soc. Trans. 17:435–38 [Google Scholar]
  88. Mueckler M, Thorens B. 87.  2013. The SLC2 (GLUT) family of membrane transporters. Mol. Asp. Med. 34:121–38 [Google Scholar]
  89. Majumdar DS, Smirnova I, Kasho V, Nir E, Kong X. 88.  et al. 2007. Single-molecule FRET reveals sugar-induced conformational dynamics in LacY. PNAS 104:12640–45 [Google Scholar]
  90. Kaback HR. 89.  2015. A chemiosmotic mechanism of symport. PNAS 112:1259–64 [Google Scholar]
  91. Klingenberg M. 90.  2005. Ligand–protein interaction in biomembrane carriers: the induced transition fit of transport catalysis. Biochemistry 44:8563–70 [Google Scholar]
  92. Law CJ, Almqvist J, Bernstein A, Goetz RM, Huang Y. 91.  et al. 2008. Salt-bridge dynamics control substrate-induced conformational change in the membrane transporter GlpT. J. Mol. Biol. 378:828–39 [Google Scholar]
  93. Mirza O, Guan L, Verner G, Iwata S, Kaback HR. 92.  2006. Structural evidence for induced fit and a mechanism for sugar/H+ symport in LacY. EMBO J. 25:1177–83 [Google Scholar]
  94. Smirnova IN, Kasho V, Kaback HR. 93.  2008. Protonation and sugar binding to LacY. PNAS 105:8896–901 [Google Scholar]
  95. Andersson M, Bondar AN, Freites JA, Tobias DJ, Kaback HR, White SH. 94.  2012. Proton-coupled dynamics in lactose permease. Structure 20:1893–904 [Google Scholar]
  96. Manolescu A, Salas-Burgos AM, Fischbarg J, Cheeseman CI. 95.  2005. Identification of a hydrophobic residue as a key determinant of fructose transport by the facilitative hexose transporter SLC2A7 (GLUT7). J. Biol. Chem. 280:42978–83 [Google Scholar]
  97. Kasahara T, Maeda M, Boles E, Kasahara M. 96.  2009. Identification of a key residue determining substrate affinity in the human glucose transporter GLUT1. Biochim. Biophys. Acta 1788:1051–55 [Google Scholar]
  98. Maiden MC, Davis EO, Baldwin SA, Moore DC, Henderson PJ. 97.  1987. Mammalian and bacterial sugar transport proteins are homologous. Nature 325:641–43 [Google Scholar]
  99. Schurmann A, Doege H, Ohnimus H, Monser V, Buchs A, Joost HG. 98.  1997. Role of conserved arginine and glutamate residues on the cytosolic surface of glucose transporters for transporter function. Biochemistry 36:12897–902 [Google Scholar]
  100. Tanaka Y, Hipolito CJ, Maturana AD, Ito K, Kuroda T. 99.  et al. 2013. Structural basis for the drug extrusion mechanism by a MATE multidrug transporter. Nature 496:247–51 [Google Scholar]
  101. Lu M, Radchenko M, Symersky J, Nie R, Guo Y. 100.  2013. Structural insights into H+-coupled multidrug extrusion by a MATE transporter. Nat. Struct. Mol. Biol. 20:1310–17 [Google Scholar]
  102. Lu M, Symersky J, Radchenko M, Koide A, Guo Y. 101.  et al. 2013. Structures of a Na+-coupled, substrate-bound MATE multidrug transporter. PNAS 110:2099–104 [Google Scholar]
  103. Radchenko M, Symersky J, Nie R, Lu M. 102.  2015. Structural basis for the blockade of MATE multidrug efflux pumps. Nat. Commun. 6:7995 [Google Scholar]
  104. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E. 103.  2005. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437:215–23 [Google Scholar]
  105. Weyand S, Shimamura T, Yajima S, Suzuki S, Mirza O. 104.  et al. 2008. Structure and molecular mechanism of a nucleobase–cation–symport-1 family transporter. Science 322:709–13 [Google Scholar]
  106. Ressl S, Terwisscha van Scheltinga AC, Vonrhein C, Ott V, Ziegler C. 105.  2009. Molecular basis of transport and regulation in the Na+/betaine symporter BetP. Nature 458:47–52 [Google Scholar]
  107. Faham S, Watanabe A, Besserer GM, Cascio D, Specht A. 106.  et al. 2008. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321:810–14 [Google Scholar]
  108. Gao X, Lu F, Zhou L, Dang S, Sun L. 107.  et al. 2009. Structure and mechanism of an amino acid antiporter. Science 324:1565–68 [Google Scholar]
  109. Shaffer PL, Goehring A, Shankaranarayanan A, Gouaux E. 108.  2009. Structure and mechanism of a Na+-independent amino acid transporter. Science 325:1010–14 [Google Scholar]
  110. Tang L, Bai L, Wang WH, Jiang T. 109.  2010. Crystal structure of the carnitine transporter and insights into the antiport mechanism. Nat. Struct. Mol. Biol. 17:492–96 [Google Scholar]
  111. Penmatsa A, Gouaux E. 110.  2014. How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters. J. Physiol. 592:863–69 [Google Scholar]
  112. Shi Y. 111.  2013. Common folds and transport mechanisms of secondary active transporters. Annu. Rev. Biophys. 42:51–72 [Google Scholar]
  113. Claxton DP, Quick M, Shi L, de Carvalho FD, Weinstein H. 112.  et al. 2010. Ion/substrate-dependent conformational dynamics of a bacterial homolog of neurotransmitter:sodium symporters. Nat. Struct. Mol. Biol. 17:822–29 [Google Scholar]
  114. Perez C, Koshy C, Yildiz O, Ziegler C. 113.  2012. Alternating-access mechanism in conformationally asymmetric trimers of the betaine transporter BetP. Nature 490:126–30 [Google Scholar]
  115. Shimamura T, Weyand S, Beckstein O, Rutherford NG, Hadden JM. 114.  et al. 2010. Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1. Science 328:470–73 [Google Scholar]
  116. Watanabe A, Choe S, Chaptal V, Rosenberg JM, Wright EM. 115.  et al. 2010. The mechanism of sodium and substrate release from the binding pocket of vSGLT. Nature 468:988–91 [Google Scholar]
  117. Krishnamurthy H, Gouaux E. 116.  2012. X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481:469–74 [Google Scholar]
  118. Singh SK, Piscitelli CL, Yamashita A, Gouaux E. 117.  2008. A competitive inhibitor traps LeuT in an open-to-out conformation. Science 322:1655–61 [Google Scholar]
  119. Pedersen AV, Andreassen TF, Loland CJ. 118.  2014. A conserved salt bridge between transmembrane segments 1 and 10 constitutes an extracellular gate in the dopamine transporter. J. Biol. Chem. 289:35003–14 [Google Scholar]
  120. Kniazeff J, Shi L, Loland CJ, Javitch JA, Weinstein H, Gether U. 119.  2008. An intracellular interaction network regulates conformational transitions in the dopamine transporter. J. Biol. Chem. 283:17691–701 [Google Scholar]
  121. Shi L, Quick M, Zhao Y, Weinstein H, Javitch JA. 120.  2008. The mechanism of a neurotransmitter:sodium symporter–inward release of Na+ and substrate is triggered by substrate in a second binding site. Mol. Cell 30:667–77 [Google Scholar]
  122. Malinauskaite L, Quick M, Reinhard L, Lyons JA, Yano H. 121.  et al. 2014. A mechanism for intracellular release of Na+ by neurotransmitter/sodium symporters. Nat. Struct. Mol. Biol. 21:1006–12 [Google Scholar]
  123. Simmons KJ, Jackson SM, Brueckner F, Patching SG, Beckstein O. 122.  et al. 2014. Molecular mechanism of ligand recognition by membrane transport protein, Mhp1. EMBO J. 33:1831–44 [Google Scholar]
  124. Nyola A, Karpowich NK, Zhen J, Marden J, Reith ME, Wang D-N. 123.  2010. Substrate and drug binding sites in LeuT. Curr. Opin. Struct. Biol. 20:415–22 [Google Scholar]
  125. Liao J, Li H, Zeng W, Sauer DB, Belmares R, Jiang Y. 124.  2012. Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science 335:686–90 [Google Scholar]
  126. Waight AB, Pedersen BP, Schlessinger A, Bonomi M, Chau BH. 125.  et al. 2013. Structural basis for alternating access of a eukaryotic calcium/proton exchanger. Nature 499:107–10 [Google Scholar]
  127. Wu M, Tong S, Waltersperger S, Diederichs K, Wang M, Zheng L. 125a.  2013. Crystal structure of Ca2+/H+ antiporter protein YfkE reveals the mechanisms of Ca2+ efflux and its pH regulation. PNAS 110:11367–-72 [Google Scholar]
  128. Lu F, Li S, Jiang Y, Jiang J, Fan H. 126.  et al. 2011. Structure and mechanism of the uracil transporter UraA. Nature 472:243–46 [Google Scholar]
  129. Geertsma ER, Chang Y-N, Shaik FR, Neldner Y, Pardon E. 127.  et al. 2015. Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat. Struct. Mol. Biol. 22:803–8 [Google Scholar]
  130. Fluman N, Ryan CM, Whitelegge JP, Bibi E. 128.  2012. Dissection of mechanistic principles of a secondary multidrug efflux protein. Mol. Cell 47:777–87 [Google Scholar]
  131. Tirosh O, Sigal N, Gelman A, Sahar N, Fluman N. 129.  et al. 2012. Manipulating the drug/proton antiport stoichiometry of the secondary multidrug transporter MdfA. PNAS 109:12473–78 [Google Scholar]
  132. Parker JL, Mindell JA, Newstead S. 130.  2014. Thermodynamic evidence for a dual transport mechanism in a POT peptide transporter. eLife 3:e04273 [Google Scholar]
  133. 131.  Deleted in proof
  134. Boudker O, Ryan RM, Yernool D, Shimamoto K, Gouaux E. 132.  2007. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445:387–93 [Google Scholar]
  135. Yernool D, Boudker O, Jin Y, Gouaux E. 133.  2004. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–18 [Google Scholar]
  136. Georgieva ER, Borbat PP, Ginter C, Freed JH, Boudker O. 134.  2013. Conformational ensemble of the sodium-coupled aspartate transporter. Nat. Struct. Mol. Biol. 20:215–21 [Google Scholar]
  137. Hanelt I, Wunnicke D, Bordignon E, Steinhoff HJ, Slotboom DJ. 135.  2013. Conformational heterogeneity of the aspartate transporter GltPh. Nat. Struct. Mol. Biol. 20:210–14 [Google Scholar]
  138. Erkens GB, Hanelt I, Goudsmits JM, Slotboom DJ, van Oijen AM. 136.  2013. Unsynchronised subunit motion in single trimeric sodium-coupled aspartate transporters. Nature 502:119–23 [Google Scholar]
  139. Akyuz N, Altman RB, Blanchard SC, Boudker O. 137.  2013. Transport dynamics in a glutamate transporter homologue. Nature 502:114–18 [Google Scholar]
  140. Akyuz N, Georgieva ER, Zhou Z, Stolzenberg S, Cuendet MA. 138.  et al. 2015. Transport domain unlocking sets the uptake rate of an aspartate transporter. Nature 518:68–73 [Google Scholar]
  141. Crisman TJ, Qu S, Kanner BI, Forrest LR. 139.  2009. Inward-facing conformation of glutamate transporters as revealed by their inverted-topology structural repeats. PNAS 106:20752–57 [Google Scholar]
  142. Kühlbrandt W, Davies KM. 140.  2016. Rotary ATPases: a new twist to an ancient machine. Trends Biochem. Sci. 41:106–16 [Google Scholar]
  143. Morales-Rios E, Montgomery MG, Leslie AGW, Walker JE. 141.  2015. Structure of ATP synthase from Paracoccus denitrificans determined by X-ray crystallography at 4.0 Å resolution. PNAS 112:13231–36 [Google Scholar]
  144. Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H. 142.  2005. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–202 [Google Scholar]
  145. Hu N-J, Iwata S, Cameron AD, Drew D. 143.  2011. Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. Nature 478:408–11 [Google Scholar]
  146. Zhou X, Levin EJ, Pan Y, McCoy JG, Sharma R. 144.  et al. 2014. Structural basis of the alternating-access mechanism in a bile acid transporter. Nature 505:569–73 [Google Scholar]
  147. Wöhlert D, Kühlbrandt W, Yildiz Ö. 145.  2014. Structure and substrate ion binding in the sodium/proton antiporter PaNhaP. eLife 3:e03579 [Google Scholar]
  148. Paulino C, Wöhlert D, Kapotova E, Yildiz Ö, Kühlbrandt W. 146.  2014. Structure and transport mechanism of the sodium/proton antiporter MjNhaP1. eLife 3:e03583 [Google Scholar]
  149. Lee C, Yashiro S, Dotson DL, Uzdavinys P, Iwata S. 147.  et al. 2014. Crystal structure of the sodium-proton antiporter NhaA dimer and new mechanistic insights. J. Gen. Physiol. 144:529–44 [Google Scholar]
  150. Coincon M, Uzdavinys P, Nji E, Dotson DL, Winkelmann I. 148.  et al. 2016. Crystal structures reveal the molecular basis of ion translocation in sodium/proton antiporters. Nat. Struct. Mol. Biol. 23:248–55 [Google Scholar]
  151. Williams KA. 149.  2000. Three-dimensional structure of the ion-coupled transport protein NhaA. Nature 403:112–15 [Google Scholar]
  152. Paulino C, Kuhlbrandt W. 150.  2014. pH- and sodium-induced changes in a sodium/proton antiporter. eLife 3:e01412 [Google Scholar]
  153. Rimon A, Tzubery T, Padan E. 151.  2007. Monomers of the NhaA Na+/H+ antiporter of Escherichia coli are fully functional yet dimers are beneficial under extreme stress conditions at alkaline pH in the presence of Na+ or Li+. J. Biol. Chem. 282:26810–21 [Google Scholar]
  154. Vergara-Jaque A, Fenollar-Ferrer C, Mulligan C, Mindell JA, Forrest LR. 152.  2015. Family resemblances: a common fold for some dimeric ion-coupled secondary transporters. J. Gen. Physiol. 146:423–34 [Google Scholar]
  155. Focke PJ, Moenne-Loccoz P, Larsson HP. 153.  2011. Opposite movement of the external gate of a glutamate transporter homolog upon binding cotransported sodium compared with substrate. J. Neurosci. 31:6255–62 [Google Scholar]
  156. Verdon G, Oh S, Serio RN, Boudker O. 154.  2014. Coupled ion binding and structural transitions along the transport cycle of glutamate transporters. eLife 3:e02283 [Google Scholar]
  157. Huang Z, Tajkhorshid E. 155.  2008. Dynamics of the extracellular gate and ion-substrate coupling in the glutamate transporter. Biophys. J. 95:2292–2300 [Google Scholar]
  158. Shrivastava IH, Jiang J, Amara SG, Bahar I. 156.  2008. Time-resolved mechanism of extracellular gate opening and substrate binding in a glutamate transporter. J. Biol. Chem. 283:28680–90 [Google Scholar]
  159. Jensen S, Guskov A, Rempel S, Hanelt I, Slotboom DJ. 157.  2013. Crystal structure of a substrate-free aspartate transporter. Nat. Struct. Mol. Biol. 20:1224–26 [Google Scholar]
  160. Ryan RM, Compton EL, Mindell JA. 158.  2009. Functional characterization of a Na+-dependent aspartate transporter from Pyrococcus horikoshii. J. Biol. Chem. 284:17540–48 [Google Scholar]
  161. Groeneveld M, Slotboom DJ. 158a.  2010. Na+: aspartate coupling stoichiometry in the glutamate transporter homologue GltPh. Biochemistry 49:3511–-13 [Google Scholar]
  162. Reyes N, Oh S, Boudker O. 159.  2013. Binding thermodynamics of a glutamate transporter homolog. Nat. Struct. Mol. Biol. 20:634–40 [Google Scholar]
  163. Zhao Y, Terry D, Shi L, Weinstein H, Blanchard SC, Javitch JA. 160.  2010. Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature 465:188–93 [Google Scholar]
  164. Zhao Y, Terry DS, Shi L, Quick M, Weinstein H. 161.  et al. 2011. Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homologue. Nature 474:109–13 [Google Scholar]
  165. Zhou Y, Wang X, Tzingounis AV, Danbolt NC, Larsson HP. 162.  2014. EAAT2 (GLT-1; slc1a2) glutamate transporters reconstituted in liposomes argues against heteroexchange being substantially faster than net uptake. J. Neurosci. 34:13472–85 [Google Scholar]
  166. Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trezeguet V, Lauquin GJ, Brandolin G. 163.  2003. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426:39–44 [Google Scholar]
  167. Verdon G, Boudker O. 164.  2012. Crystal structure of an asymmetric trimer of a bacterial glutamate transporter homolog. Nat. Struct. Mol. Biol. 19:355–7 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error