Transcript termination is essential for accurate gene expression and the removal of RNA polymerase (RNAP) at the ends of transcription units. In bacteria, two mechanisms are responsible for proper transcript termination: intrinsic termination and Rho-dependent termination. Intrinsic termination is mediated by signals directly encoded within the DNA template and nascent RNA, whereas Rho-dependent termination relies upon the adenosine triphosphate-dependent RNA translocase Rho, which binds nascent RNA and dissociates the elongation complex. Although significant progress has been made in understanding these pathways, fundamental details remain undetermined. Among those that remain unresolved are the existence of an inactivated intermediate in the intrinsic termination pathway, the role of Rho–RNAP interactions in Rho-dependent termination, and the mechanisms by which accessory factors and nucleoid-associated proteins affect termination. We describe current knowledge, discuss key outstanding questions, and highlight the importance of defining the structural rearrangements of RNAP that are involved in the two mechanisms of transcript termination.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Selby CP, Sancar A. 1.  1993. Molecular mechanism of transcription-repair coupling. Science 260:53–58 [Google Scholar]
  2. Peters JM, Mooney RA, Grass JA, Jessen ED, Tran F, Landick R. 2.  2012. Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev. 26:2621–33 [Google Scholar]
  3. Peters JM, Mooney RA, Kuan PF, Rowland JL, Keles S, Landick R. 3.  2009. Rho directs widespread termination of intragenic and stable RNA transcription. PNAS 106:15406–11 [Google Scholar]
  4. Cardinale CJ, Washburn RS, Tadigotla VR, Brown LM, Gottesman ME, Nudler E. 4.  2008. Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. coli. Science 320:935–38 [Google Scholar]
  5. Leela KJ, Syeda AH, Anupama K, Gowrishankar J. 5.  2013. Rho-dependent transcription termination is essential to prevent excessive genome-wide R-loops in Escherichia coli. PNAS 110:258–63 [Google Scholar]
  6. Komissarova N, Kashlev M. 6.  1998. Functional topography of nascent RNA in elongation intermediates of RNA polymerase. PNAS 95:14699–704 [Google Scholar]
  7. Korzheva N, Mustaev A, Kozlov M, Malhotra A, Nikiforov V. 7.  et al. 2000. A structural model of transcription elongation. Science 289:619–25 [Google Scholar]
  8. Vassylyev DG, Vassylyeva MN, Perederina A, Tahirov TH, Artsimovitch I. 8.  2007. Structural basis for transcription elongation by bacterial RNA polymerase. Nature 448:157–62 [Google Scholar]
  9. Darst SA, Opalka N, Chacon P, Polyakov A, Richter C. 9.  et al. 2002. Conformational flexibility of bacterial RNA polymerase. PNAS 99:4296–301 [Google Scholar]
  10. Vassylyev DG, Sekine S, Laptenko O, Lee J, Vassylyeva MN. 10.  et al. 2002. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution. Nature 417:712–19 [Google Scholar]
  11. Chakraborty A, Wang D, Ebright YW, Korlann Y, Kortkhonjia E. 11.  et al. 2012. Opening and closing of the bacterial RNA polymerase clamp. Science 337:591–95 [Google Scholar]
  12. Tagami S, Sekine S, Kumarevel T, Hino N, Murayama Y. 12.  et al. 2010. Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein. Nature 468:978–82 [Google Scholar]
  13. Hein PP, Kolb KE, Windgassen T, Bellecourt MJ, Darst SA. 13.  et al. 2014. RNA polymerase pausing and nascent-RNA structure formation are linked through clamp-domain movement. Nat. Struct. Mol. Biol. 21:794–802 [Google Scholar]
  14. Sekine S, Murayama Y, Svetlov V, Nudler E, Yokoyama S. 14.  2015. The ratcheted and ratchetable structural states of RNA polymerase underlie multiple transcriptional functions. Mol. Cell 57:408–21 [Google Scholar]
  15. Gnatt AL, Cramer P, Fu J, Bushnell DA, Kornberg RD. 15.  2001. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science 292:1876–82 [Google Scholar]
  16. Ederth J, Artsimovitch I, Isaksson LA, Landick R. 16.  2002. The downstream DNA jaw of bacterial RNA polymerase facilitates both transcriptional initiation and pausing. J. Biol. Chem. 277:37456–63 [Google Scholar]
  17. Cramer P, Bushnell DA, Fu J, Gnatt AL, Maier-Davis B. 17.  et al. 2000. Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288:640–49 [Google Scholar]
  18. Weixlbaumer A, Leon K, Landick R, Darst SA. 18.  2013. Structural basis of transcriptional pausing in bacteria. Cell 152:431–41 [Google Scholar]
  19. Wilson KS, von Hippel PH. 19.  1994. Stability of Escherichia coli transcription complexes near an intrinsic terminator. J. Mol. Biol. 244:36–51 [Google Scholar]
  20. Gusarov I, Nudler E. 20.  1999. The mechanism of intrinsic transcription termination. Mol. Cell 3:495–504 [Google Scholar]
  21. Komissarova N, Becker J, Solter S, Kireeva M, Kashlev M. 21.  2002. Shortening of RNA:DNA hybrid in the elongation complex of RNA polymerase is a prerequisite for transcription termination. Mol. Cell 10:1151–62 [Google Scholar]
  22. Lee DN, Phung L, Stewart J, Landick R. 22.  1990. Transcription pausing by Escherichia coli RNA polymerase is modulated by downstream DNA sequences. J. Biol. Chem. 265:15145–53 [Google Scholar]
  23. Toulokhonov I, Zhang J, Palangat M, Landick R. 23.  2007. A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol. Cell 27:406–19 [Google Scholar]
  24. Yarnell WS, Roberts JW. 24.  1999. Mechanism of intrinsic transcription termination and antitermination. Science 284:611–15 [Google Scholar]
  25. Kassavetis GA, Chamberlin MJ. 25.  1981. Pausing and termination of transcription within the early region of bacteriophage T7 DNA in vitro. J. Biol. Chem. 256:2777–86 [Google Scholar]
  26. Morgan WD, Bear DG, von Hippel PH. 26.  1983. Rho-dependent termination of transcription. II. Kinetics of mRNA elongation during transcription from the bacteriophage λ PR promoter. J. Biol. Chem. 258:9565–74 [Google Scholar]
  27. Lau LF, Roberts JW. 27.  1985. ρ-dependent transcription termination at λ R1 requires upstream sequences. J. Biol. Chem. 260:574–84 [Google Scholar]
  28. Galloway JL, Platt T. 28.  1988. Signals sufficient for ρ-dependent transcription termination at trp t′ span a region centered 60 base pairs upstream of the earliest 3′ end point. J. Biol. Chem. 263:1761–67 [Google Scholar]
  29. Neuman KC, Abbondanzieri EA, Landick R, Gelles J, Block SM. 29.  2003. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell 115:437–47 [Google Scholar]
  30. Larson MH, Mooney RA, Peters JM, Windgassen T, Nayak D. 30.  et al. 2014. A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science 344:1042–47 [Google Scholar]
  31. Vvedenskaya IO, Vahedian-Movahed H, Bird JG, Knoblauch JG, Goldman SR. 31.  et al. 2014. Interactions between RNA polymerase and the “core recognition element” counteract pausing. Science 344:1285–89 [Google Scholar]
  32. Toulokhonov I, Landick R. 32.  2003. The flap domain is required for pause RNA hairpin inhibition of catalysis by RNA polymerase and can modulate intrinsic termination. Mol. Cell 12:1125–36 [Google Scholar]
  33. Wang D, Severinov K, Landick R. 33.  1997. Preferential interaction of the his pause RNA hairpin with RNA polymerase β subunit residues 904–950 correlates with strong transcriptional pausing. PNAS 94:8433–38 [Google Scholar]
  34. Chan CL, Landick R. 34.  1993. Dissection of the his leader pause site by base substitution reveals a multipartite signal that includes a pause RNA hairpin. J. Mol. Biol. 233:25–42 [Google Scholar]
  35. Wilson KS, von Hippel PH. 35.  1995. Transcription termination at intrinsic terminators: the role of the RNA hairpin. PNAS 92:8793–97 [Google Scholar]
  36. Toulokhonov I, Artsimovitch I, Landick R. 36.  2001. Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins. Science 292:730–33 [Google Scholar]
  37. Yang X, Molimau S, Doherty GP, Johnston EB, Marles-Wright J. 37.  et al. 2009. The structure of bacterial RNA polymerase in complex with the essential transcription elongation factor NusA. EMBO Rep. 10:997–1002 [Google Scholar]
  38. Ha KS, Toulokhonov I, Vassylyev DG, Landick R. 38.  2010. The NusA N-terminal domain is necessary and sufficient for enhancement of transcriptional pausing via interaction with the RNA exit channel of RNA polymerase. J. Mol. Biol. 401:708–25 [Google Scholar]
  39. Kolb KE, Hein PP, Landick R. 39.  2014. Antisense oligonucleotide-stimulated transcriptional pausing reveals RNA exit channel specificity of RNA polymerase and mechanistic contributions of NusA and RfaH. J. Biol. Chem. 289:1151–63 [Google Scholar]
  40. Nudler E, Mustaev A, Lukhtanov E, Goldfarb A. 40.  1997. The RNA–DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. Cell 89:33–41 [Google Scholar]
  41. Guajardo R, Sousa R. 41.  1997. A model for the mechanism of polymerase translocation. J. Mol. Biol. 265:8–19 [Google Scholar]
  42. Komissarova N, Kashlev M. 42.  1997. RNA polymerase switches between inactivated and activated states by translocating back and forth along the DNA and the RNA. J. Biol. Chem. 272:15329–38 [Google Scholar]
  43. Komissarova N, Kashlev M. 43.  1997. Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′ end of the RNA intact and extruded. PNAS 94:1755–60 [Google Scholar]
  44. Jin DJ, Burgess RR, Richardson JP, Gross CA. 44.  1992. Termination efficiency at rho-dependent terminators depends on kinetic coupling between RNA polymerase and rho. PNAS 89:1453–57 [Google Scholar]
  45. Dutta D, Chalissery J, Sen R. 45.  2008. Transcription termination factor rho prefers catalytically active elongation complexes for releasing RNA. J. Biol. Chem. 283:20243–51 [Google Scholar]
  46. Herbert KM, Zhou J, Mooney RA, Porta AL, Landick R, Block SM. 46.  2010. E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase. J. Mol. Biol. 399:17–30 [Google Scholar]
  47. Yakhnin AV, Babitzke P. 47.  2010. Mechanism of NusG-stimulated pausing, hairpin-dependent pause site selection and intrinsic termination at overlapping pause and termination sites in the Bacillus subtilis trp leader. Mol. Microbiol. 76:690–705 [Google Scholar]
  48. Yakhnin AV, Yakhnin H, Babitzke P. 48.  2008. Function of the Bacillus subtilis transcription elongation factor NusG in hairpin-dependent RNA polymerase pausing in the trp leader. PNAS 105:16131–36 [Google Scholar]
  49. Czyz A, Mooney RA, Iaconi A, Landick R. 49.  2014. Mycobacterial RNA polymerase requires a U-tract at intrinsic terminators and is aided by NusG at suboptimal terminators. mBio 5:e00931 [Google Scholar]
  50. Yakhnin AV, Murakami KS, Babitzke P. 50.  2016. NusG is a sequence-specific RNA polymerase pause factor that binds to the non-template DNA within the paused transcription bubble. J. Biol. Chem. 29011611–22
  51. Sullivan SL, Gottesman ME. 51.  1992. Requirement for E. coli NusG protein in factor-dependent transcription termination. Cell 68:989–94 [Google Scholar]
  52. Nehrke KW, Zalatan F, Platt T. 52.  1993. NusG alters Rho-dependent termination of transcription in vitro independent of kinetic coupling. Gene Expr. 3:119–33 [Google Scholar]
  53. Burmann BM, Schweimer K, Luo X, Wahl MC, Stitt BL. 53.  et al. 2010. A NusE:NusG complex links transcription and translation. Science 328:501–4 [Google Scholar]
  54. Sevostyanova A, Belogurov GA, Mooney RA, Landick R, Artsimovitch I. 54.  2011. The β subunit gate loop is required for RNA polymerase modification by RfaH and NusG. Mol. Cell 43:253–62 [Google Scholar]
  55. Svetlov V, Belogurov GA, Shabrova E, Vassylyev DG, Artsimovitch I. 55.  2007. Allosteric control of the RNA polymerase by the elongation factor RfaH. Nucleic Acids Res. 35:5694–705 [Google Scholar]
  56. Belogurov GA, Vassylyeva MN, Svetlov V, Klyuyev S, Grishin NV. 56.  et al. 2007. Structural basis for converting a general transcription factor into an operon-specific virulence regulator. Mol. Cell 26:117–29 [Google Scholar]
  57. Schmidt MC, Chamberlin MJ. 57.  1987. nusA protein of Escherichia coli is an efficient transcription termination factor for certain terminator sites. J. Mol. Biol. 195:809–18 [Google Scholar]
  58. Mondal S, Yakhnin AV, Sebastian A, Albert I, Babitzke P. 58.  2016. NusA-dependent transcription termination prevents misregulation of global gene expression. Nat. Microbiol. 1:15007 [Google Scholar]
  59. Santangelo TJ, Artsimovitch I. 59.  2011. Termination and antitermination: RNA polymerase runs a stop sign. Nat. Rev. Microbiol. 9:319–29 [Google Scholar]
  60. d'Aubenton Carafa Y, Brody E, Thermes C. 60.  1990. Prediction of rho-independent Escherichia coli transcription terminators: a statistical analysis of their RNA stem-loop structures. J. Mol. Biol. 216:835–58 [Google Scholar]
  61. McDowell JC, Roberts JW, Jin DJ, Gross C. 61.  1994. Determination of intrinsic transcription termination efficiency by RNA polymerase elongation rate. Science 266:822–25 [Google Scholar]
  62. Kireeva ML, Kashlev M. 62.  2009. Mechanism of sequence-specific pausing of bacterial RNA polymerase. PNAS 106:8900–5 [Google Scholar]
  63. Chan CL, Wang D, Landick R. 63.  1997. Multiple interactions stabilize a single paused transcription intermediate in which hairpin to 3′ end spacing distinguishes pause and termination pathways. J. Mol. Biol. 268:54–68 [Google Scholar]
  64. Lubkowska L, Maharjan AS, Komissarova N. 64.  2011. RNA folding in transcription elongation complex: implication for transcription termination. J. Biol. Chem. 286:31576–85 [Google Scholar]
  65. Chen YJ, Liu P, Nielsen AA, Brophy JA, Clancy K. 65.  et al. 2013. Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat. Methods 10:659–64 [Google Scholar]
  66. Penno C, Sharma V, Coakley A, O'Connell Motherway M, van Sinderen D. 66.  et al. 2015. Productive mRNA stem loop-mediated transcriptional slippage: crucial features in common with intrinsic terminators. PNAS 112:E1984–93 [Google Scholar]
  67. Chan C, Wang D, Landick R. 67.  1997. Spacing from the transcript 3′ end determines whether a nascent RNA hairpin interacts with RNA polymerase to prolong pausing or triggers termination. J. Mol. Biol. 268:54–68 [Google Scholar]
  68. Goliger JA, Yang XJ, Guo HC, Roberts JW. 68.  1989. Early transcribed sequences affect termination efficiency of Escherichia coli RNA polymerase. J. Mol. Biol. 205:331–41 [Google Scholar]
  69. Telesnitsky AP, Chamberlin MJ. 69.  1989. Sequences linked to prokaryotic promoters can affect the efficiency of downstream termination sites. J. Mol. Biol. 205:315–30 [Google Scholar]
  70. Larson MH, Greenleaf WJ, Landick R, Block SM. 70.  2008. Applied force reveals mechanistic and energetic details of transcription termination. Cell 132:971–82 [Google Scholar]
  71. Reynolds R, Bermudez-Cruz RM, Chamberlin MJ. 71.  1992. Parameters affecting transcription termination by Escherichia coli RNA polymerase. I. Analysis of 13 rho-independent terminators. J. Mol. Biol. 224:31–51 [Google Scholar]
  72. Toulokhonov I, Landick R. 72.  2006. The role of the lid element in transcription by E. coli RNA polymerase. J. Mol. Biol. 361:644–58 [Google Scholar]
  73. Santangelo TJ, Roberts JW. 73.  2004. Forward translocation is the natural pathway of RNA release at an intrinsic terminator. Mol. Cell 14:117–26 [Google Scholar]
  74. Peters JM, Vangeloff AD, Landick R. 74.  2011. Bacterial transcription terminators: the RNA 3′-end chronicles. J. Mol. Biol. 412:793–813 [Google Scholar]
  75. Reynolds R, Chamberlin MJ. 75.  1992. Parameters affecting transcription termination by Escherichia coli RNA. II. Construction and analysis of hybrid terminators. J. Mol. Biol. 224:53–63 [Google Scholar]
  76. von Hippel PH. 76.  1998. An integrated model of the transcription complex in elongation, termination, and editing. Science 281:660–65 [Google Scholar]
  77. von Hippel PH, Yager TD. 77.  1992. The elongation–termination decision in transcription. Science 255:809–12 [Google Scholar]
  78. Yin H, Artsimovitch I, Landick R, Gelles J. 78.  1999. Nonequilibrium mechanism of transcription termination from observations of single RNA polymerase molecules. PNAS 96:13124–29 [Google Scholar]
  79. Kashlev M, Komissarova N. 79.  2002. Transcription termination: primary intermediates and secondary adducts. J. Biol. Chem. 277:14501–8 [Google Scholar]
  80. Epshtein V, Cardinale CJ, Ruckenstein AE, Borukhov S, Nudler E. 80.  2007. An allosteric path to transcription termination. Mol. Cell 28:991–1001 [Google Scholar]
  81. Martin FH, Tinoco I Jr. 81.  1980. DNA–RNA hybrid duplexes containing oligo(dA:rU) sequences are exceptionally unstable and may facilitate termination of transcription. Nucleic Acids Res. 8:2295–99 [Google Scholar]
  82. Weilbaecher R, Hebron C, Feng G, Landick R. 82.  1994. Termination-altering amino acid substitutions in the β′ subunit of Escherichia coli RNA polymerase identify regions involved in RNA chain elongation. Genes Dev. 8:2913–27 [Google Scholar]
  83. Cheeran A, Babu Suganthan R, Swapna G, Bandey I, Achary MS. 83.  et al. 2005. Escherichia coli RNA polymerase mutations located near the upstream edge of an RNA:DNA hybrid and the beginning of the RNA-exit channel are defective for transcription antitermination by the N protein from lambdoid phage H-19B. J. Mol. Biol. 352:28–43 [Google Scholar]
  84. Binshtein E, Ohi MD. 84.  2015. Cryo-electron microscopy and the amazing race to atomic resolution. Biochemistry 54:3133–41 [Google Scholar]
  85. Lowery-Goldhammer C, Richardson JP. 85.  1974. An RNA-dependent nucleoside triphosphate phosphohydrolase (ATPase) associated with rho termination factor. PNAS 71:2003–7 [Google Scholar]
  86. Rutherford ST, Villers CL, Lee JH, Ross W, Gourse RL. 86.  2009. Allosteric control of Escherichia coli rRNA promoter complexes by DksA. Genes Dev. 23:236–48 [Google Scholar]
  87. Chen CY, Richardson JP. 87.  1987. Sequence elements essential for ρ-dependent transcription termination at λtR1. J. Biol. Chem. 262:11292–99 [Google Scholar]
  88. Zalatan F, Platt T. 88.  1992. Effects of decreased cytosine content on rho interaction with the rho-dependent terminator trp t′ in Escherichia coli. J. Biol. Chem. 267:19082–88 [Google Scholar]
  89. McSwiggen JA, Bear DG, von Hippel PH. 89.  1988. Interactions of Escherichia coli transcription termination factor rho with RNA. I. Binding stoichiometries and free energies. J. Mol. Biol. 199:609–22 [Google Scholar]
  90. Koslover DJ, Fazal FM, Mooney RA, Landick R, Block SM. 90.  2012. Binding and translocation of termination factor rho studied at the single-molecule level. J. Mol. Biol. 423:664–76 [Google Scholar]
  91. Alifano P, Rivellini F, Limauro D, Bruni CB, Carlomagno MS. 91.  1991. A consensus motif common to all rho-dependent prokaryotic transcription terminators. Cell 64:553–63 [Google Scholar]
  92. Chen CY, Galluppi GR, Richardson JP. 92.  1986. Transcription termination at λ tR1 is mediated by interaction of rho with specific single-stranded domains near the 3′ end of cro mRNA. Cell 46:1023–28 [Google Scholar]
  93. Hollands K, Proshkin S, Sklyarova S, Epshtein V, Mironov A. 93.  et al. 2012. Riboswitch control of Rho-dependent transcription termination. PNAS 109:5376–81 [Google Scholar]
  94. Hollands K, Sevostiyanova A, Groisman EA. 94.  2014. Unusually long-lived pause required for regulation of a Rho-dependent transcription terminator. PNAS 111:E1999–2007 [Google Scholar]
  95. Schwartz A, Walmacq C, Rahmouni AR, Boudvillain M. 95.  2007. Noncanonical interactions in the management of RNA structural blocks by the transcription termination rho helicase. Biochemistry 46:9366–79 [Google Scholar]
  96. Hart CM, Roberts JW. 96.  1991. Rho-dependent transcription termination: characterization of the requirement for cytidine in the nascent transcript. J. Biol. Chem. 266:24140–48 [Google Scholar]
  97. Skordalakes E, Berger JM. 97.  2003. Structure of the Rho transcription terminator: mechanism of mRNA recognition and helicase loading. Cell 114:135–46 [Google Scholar]
  98. Gogol EP, Seifried SE, von Hippel PH. 98.  1991. Structure and assembly of the Escherichia coli transcription termination factor rho and its interaction with RNA. I. Cryoelectron microscopic studies. J. Mol. Biol. 221:1127–38 [Google Scholar]
  99. Thomsen ND, Berger JM. 99.  2009. Running in reverse: the structural basis for translocation polarity in hexameric helicases. Cell 139:523–34 [Google Scholar]
  100. Briercheck DM, Wood TC, Allison TJ, Richardson JP, Rule GS. 100.  1998. The NMR structure of the RNA binding domain of E. coli rho factor suggests possible RNA–protein interactions. Nat. Struct. Biol. 5:393–99 [Google Scholar]
  101. Ceruzzi MAF, Bektesh SL, Richardson JP. 101.  1985. Interaction of Rho factor with bacteriophage λ cro gene transcripts. J. Biol. Chem. 260:9412–18 [Google Scholar]
  102. Pereira S, Platt T. 102.  1995. A mutation in the ATP binding domain of Rho alters its RNA binding properties and uncouples ATP hydrolysis from helicase activity. J. Biol. Chem. 270:30401–7 [Google Scholar]
  103. Gan E, Richardson JP. 103.  1999. Identification of a structural element that is essential for two functions of transcription factor NusG. Biochemistry 38:16882–88 [Google Scholar]
  104. Walmacq C, Rahmouni AR, Boudvillain M. 104.  2004. Influence of substrate composition on the helicase activity of transcription termination factor Rho: reduced processivity of Rho hexamers during unwinding of RNA–DNA hybrid regions. J. Mol. Biol. 342:403–20 [Google Scholar]
  105. Faus I, Richardson JP. 105.  1989. Thermodynamic and enzymological characterization of the interaction between transcription termination factor ρ and λ cro mRNA. Biochemistry 28:3510–17 [Google Scholar]
  106. Steinmetz EJ, Platt T. 106.  1994. Evidence supporting a tethered tracking model for helicase activity of Escherichia coli Rho factor. PNAS 91:1401–5 [Google Scholar]
  107. D'Heygere F, Rabhi M, Boudvillain M. 107.  2013. Phyletic distribution and conservation of the bacterial transcription termination factor Rho. Microbiology 159:1423–36 [Google Scholar]
  108. Canals A, Uson I, Coll M. 108.  2010. The structure of RNA-free Rho termination factor indicates a dynamic mechanism of transcript capture. J. Mol. Biol. 400:16–23 [Google Scholar]
  109. D'Heygere F, Schwartz A, Coste F, Castaing B, Boudvillain M. 109.  2015. ATP-dependent motor activity of the transcription termination factor Rho from Mycobacterium tuberculosis. Nucleic Acids Res. 43:6099–111 [Google Scholar]
  110. Miwa Y, Horiguchi T, Shigesada K. 110.  1995. Structural and functional dissections of transcription termination factor rho by random mutagenesis. J. Mol. Biol. 254:815–37 [Google Scholar]
  111. Story R, Weber I, Steitz T. 111.  1992. The structure of the E. coli recA protein monomer and polymer. Nature 355:818–325 [Google Scholar]
  112. Richardson JP. 112.  1982. Activation of rho protein ATPase requires simultaneous interaction at two kinds of nucleic acid-binding sites. J. Biol. Chem. 257:5760–66 [Google Scholar]
  113. Briercheck DM, Allison TJ, Richardson JP, Ellena JF, Wood TC, Rule GS. 113.  1996. 1H, 15N and 13C resonance assignments and secondary structure determination of the RNA-binding domain of E. coli rho protein. J. Biomol. NMR 8:429–44 [Google Scholar]
  114. Schwartz A, Rabhi M, Jacquinot F, Margeat E, Rahmouni AR, Boudvillain M. 114.  2009. A stepwise 2′-hydroxyl activation mechanism for the bacterial transcription termination factor Rho helicase. Nat. Struct. Mol. Biol. 16:1309–16 [Google Scholar]
  115. Adelman JL, Jeong YJ, Liao JC, Patel G, Kim DE. 115.  et al. 2006. Mechanochemistry of transcription termination factor Rho. Mol. Cell 22:611–21 [Google Scholar]
  116. Mooney RA, Davis SE, Peters JM, Rowland JL, Ansari AZ, Landick R. 116.  2009. Regulator trafficking on bacterial transcription units in vivo. Mol. Cell 33:97–108 [Google Scholar]
  117. Epshtein V, Dutta D, Wade J, Nudler E. 117.  2010. An allosteric mechanism of Rho-dependent transcription termination. Nature 463:245–49 [Google Scholar]
  118. Browne RJ, Barr EW, Stitt BL. 118.  2005. Catalytic cooperativity among subunits of Escherichia coli transcription termination factor Rho: kinetics and substrate structural requirements. J. Biol. Chem. 280:13292–99 [Google Scholar]
  119. Soares E, Schwartz A, Nollmann M, Margeat E, Boudvillain M. 119.  2014. The RNA-mediated, asymmetric ring regulatory mechanism of the transcription termination Rho helicase decrypted by time-resolved nucleotide analog interference probing (trNAIP). Nucleic Acids Res. 42:9270–84 [Google Scholar]
  120. Steinmetz EJ, Brennan CA, Platt T. 120.  1990. A short intervening structure can block rho factor helicase action at a distance. J. Biol. Chem. 265:18408–13 [Google Scholar]
  121. Galluppi GR, Richardson JP. 121.  1980. ATP-induced changes in the binding of RNA synthesis termination protein Rho to RNA. J. Mol. Biol. 138:513–39 [Google Scholar]
  122. Schwartz A, Margeat E, Rahmouni AR, Boudvillain M. 122.  2007. Transcription termination factor Rho can displace streptavidin from biotinylated RNA. J. Biol. Chem. 282:31469–76 [Google Scholar]
  123. Lau LF, Roberts JW, Wu R. 123.  1982. Transcription terminates at λtR1 in three clusters. PNAS 79:6171–75 [Google Scholar]
  124. Brennan CA, Dombroski AJ, Platt T. 124.  1987. Transcription termination factor rho is an RNA–DNA helicase. Cell 48:945–52 [Google Scholar]
  125. Pasman Z, von Hippel PH. 125.  2000. Regulation of Rho-dependent transcription termination by NusG is specific to the Escherichia coli elongation complex. Biochemistry 39:5573–85 [Google Scholar]
  126. Lang H, Platt T, Reeder R. 126.  1998. Escherichia coli Rho factor induces release of yeast RNA polymerase II but not polymerase I or III. PNAS 95:4900–5 [Google Scholar]
  127. Park JS, Roberts JW. 127.  2006. Role of DNA bubble rewinding in enzymatic transcription termination. PNAS 103:4870–75 [Google Scholar]
  128. Richardson JP. 128.  2002. Rho-dependent termination and ATPases in transcript termination. Biochim. Biophys. Acta 1577:251–60 [Google Scholar]
  129. Downing WL, Sullivan SL, Gottesman ME, Dennis PP. 129.  1990. Sequence and transcriptional pattern of the essential Escherichia coli secE-nusG operon. J. Bacteriol. 172:1621–27 [Google Scholar]
  130. Martinez-Rucobo FW, Sainsbury S, Cheung AC, Cramer P. 130.  2011. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. EMBO J. 30:1302–10 [Google Scholar]
  131. Chen H, Contreras X, Yamaguchi Y, Handa H, Peterlin BM, Guo S. 131.  2009. Repression of RNA polymerase II elongation in vivo is critically dependent on the C-terminus of Spt5. PLOS ONE 4:e6918 [Google Scholar]
  132. Burova E, Hung SC, Sagitov V, Stitt BL, Gottesman ME. 132.  1995. Escherichia coli NusG protein stimulates transcription elongation rates in vivo and in vitro. J. Bacteriol 177:1388–92 [Google Scholar]
  133. Mooney RA, Schweimer K, Rosch P, Gottesman M, Landick R. 133.  2009. Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. J. Mol. Biol. 391:341–58 [Google Scholar]
  134. Chalissery J, Muteeb G, Kalarickal NC, Mohan S, Jisha V, Sen R. 134.  2011. Interaction surface of the transcription terminator Rho required to form a complex with the C-terminal domain of the antiterminator NusG. J. Mol. Biol. 405:49–64 [Google Scholar]
  135. Adhya S, Gottesman M. 135.  1978. Control of transcription termination. Annu. Rev. Biochem. 47:967–96 [Google Scholar]
  136. Burns CM, Richardson JP. 136.  1995. NusG is required to overcome a kinetic limitation to Rho function at an intragenic terminator. PNAS 92:4738–42 [Google Scholar]
  137. Kalyani BS, Muteeb G, Qayyum MZ, Sen R. 137.  2011. Interaction with the nascent RNA is a prerequisite for the recruitment of Rho to the transcription elongation complex in vitro. J. Mol. Biol. 413:548–60 [Google Scholar]
  138. de Hoon MJ, Makita Y, Nakai K, Miyano S. 138.  2005. Prediction of transcriptional terminators in Bacillus subtilis and related species. PLOS Comput. Biol. 1:e25 [Google Scholar]
  139. Washburn RS, Gottesman ME. 139.  2010. Transcription termination maintains chromosome integrity. PNAS 108:792–97 [Google Scholar]
  140. Gan W, Guan Z, Liu J, Gui T, Shen K. 140.  et al. 2011. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev. 25:2041–56 [Google Scholar]
  141. Hamperl S, Cimprich KA. 141.  2014. The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability. DNA Repair 19:84–94 [Google Scholar]
  142. Navarre WW, McClelland M, Libby SJ, Fang FC. 142.  2007. Silencing of xenogeneic DNA by H-NS-facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev. 21:1456–71 [Google Scholar]
  143. Singh SS, Singh N, Bonocora RP, Fitzgerald DM, Wade JT, Grainger DC. 143.  2014. Widespread suppression of intragenic transcription initiation by H-NS. Genes Dev. 28:214–19 [Google Scholar]
  144. Owen-Hughes TA, Pavitt GD, Santos DS, Sidebotham JM, Hulton CSJ. 144.  1992. The chromatin-associated protein H-NS interacts with curved DNA to influence DNA topology and gene expression. Cell 71:255–65 [Google Scholar]
  145. Saxena S, Gowrishankar J. 145.  2011. Modulation of Rho-dependent transcription termination in Escherichia coli by the H-NS family of proteins. J. Bacteriol. 193:3832–41 [Google Scholar]
  146. Tran L, van Baarsel JA, Washburn RS, Gottesman ME, Miller JH. 146.  2011. Single-gene deletion mutants of Escherichia coli with altered sensitivity to bicyclomycin, an inhibitor of transcription termination factor Rho. J. Bacteriol. 193:2229–35 [Google Scholar]
  147. Arold ST, Leonard PG, Parkinson GN, Ladbury JE. 147.  2010. H-NS forms a superhelical protein scaffold for DNA condensation. PNAS 107:15728–32 [Google Scholar]
  148. Kotlajich MV, Hron DR, Boudreau BA, Sun Z, Lyubchenko YL, Landick R. 148.  2015. Bridged filaments of histone-like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria. eLife 10.7554/eLife.04970
  149. Leirmo S, Harrison C, Cayley DS, Burgess RR, Record MT Jr. 149.  1987. Replacement of potassium chloride by potassium glutamate dramatically enhances protein–DNA interactions in vitro. Biochemistry 26:2095–101 [Google Scholar]
  150. Cayley S, Lewis BA, Guttman HJ, Record MT Jr. 150.  1991. Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity: implications for protein–DNA interactions in vivo. J. Mol. Biol. 222:281–300 [Google Scholar]
  151. Chan CL, Landick R. 151.  1997. Effects of neutral salts on RNA chain elongation and pausing by Escherichia coli RNA polymerase. J. Mol. Biol. 268:37–53 [Google Scholar]
  152. Fischer N, Neumann P, Konevega AL, Bock LV, Ficner R. 152.  et al. 2015. Structure of the E. coli ribosome–EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM. Nature 520:567–70 [Google Scholar]
  153. Selby CP, Sancar A. 153.  1995. Structure and function of transcription-repair coupling factor. I. Structural domains and binding-properties. J. Biol. Chem. 270:4882–89 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error