1932

Abstract

Recent developments indicate that macrodomains, an ancient and diverse protein domain family, are key players in the recognition, interpretation, and turnover of ADP-ribose (ADPr) signaling. Crucial to this is the ability of macrodomains to recognize ADPr either directly, in the form of a metabolic derivative, or as a modification covalently bound to proteins. Thus, macrodomains regulate a wide variety of cellular and organismal processes, including DNA damage repair, signal transduction, and immune response. Their importance is further indicated by the fact that dysregulation or mutation of a macrodomain is associated with several diseases, including cancer, developmental defects, and neurodegeneration. In this review, we summarize the current insights into macrodomain evolution and how this evolution influenced their structural and functional diversification. We highlight some aspects of macrodomain roles in pathobiology as well as their emerging potential as therapeutic targets.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060815-014935
2016-06-02
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/biochem/85/1/annurev-biochem-060815-014935.html?itemId=/content/journals/10.1146/annurev-biochem-060815-014935&mimeType=html&fmt=ahah

Literature Cited

  1. Till S, Ladurner AG. 1.  2009. Sensing NAD metabolites through macro domains. Front. Biosci. 14:3246–58 [Google Scholar]
  2. Lee HJ, Shieh CK, Gorbalenya AE, Koonin EV, La Monica N. 2.  et al. 1991. The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology 180:567–82 [Google Scholar]
  3. Pehrson JR, Fried VA. 3.  1992. MacroH2A, a core histone containing a large nonhistone region. Science 257:1398–400 [Google Scholar]
  4. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ. 4.  2007. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14:1025–40 [Google Scholar]
  5. Ahel D, Horejsi Z, Wiechens N, Polo SE, Garcia-Wilson E. 5.  et al. 2009. Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Science 325:1240–43 [Google Scholar]
  6. Karras GI, Kustatscher G, Buhecha HR, Allen MD, Pugieux C. 6.  et al. 2005. The macro domain is an ADP-ribose binding module. EMBO J. 24:1911–20 [Google Scholar]
  7. Kraus WL. 7.  2009. New functions for an ancient domain. Nat. Struct. Mol. Biol. 16:904–7 [Google Scholar]
  8. Chen D, Vollmar M, Rossi MN, Phillips C, Kraehenbuehl R. 8.  et al. 2011. Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases. J. Biol. Chem. 286:13261–71 [Google Scholar]
  9. Johnson MA, Chatterjee A, Neuman BW, Wuthrich K. 9.  2010. SARS coronavirus unique domain: three-domain molecular architecture in solution and RNA binding. J. Mol. Biol. 400:724–42 [Google Scholar]
  10. Tan J, Vonrhein C, Smart OS, Bricogne G, Bollati M. 10.  et al. 2009. The SARS-unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes. PLOS Pathog. 5:e1000428 [Google Scholar]
  11. Feijs KL, Forst AH, Verheugd P, Luscher B. 11.  2013. Macrodomain-containing proteins: regulating new intracellular functions of mono(ADP-ribosyl)ation. Nat. Rev. Mol. Cell. Biol. 14:443–51 [Google Scholar]
  12. Han W, Li X, Fu X. 12.  2011. The macro domain protein family: structure, functions, and their potential therapeutic implications. Mutat. Res. 727:86–103 [Google Scholar]
  13. Maas NM, Van de Putte T, Melotte C, Francis A, Schrander-Stumpel CT. 13.  et al. 2007. The C20orf133 gene is disrupted in a patient with Kabuki syndrome. J. Med. Genet. 44:562–69 [Google Scholar]
  14. Buschbeck M, Uribesalgo I, Wibowo I, Rue P, Martin D. 14.  et al. 2009. The histone variant macroH2A is an epigenetic regulator of key developmental genes. Nat. Struct. Mol. Biol. 16:1074–79 [Google Scholar]
  15. Timinszky G, Till S, Hassa PO, Hothorn M, Kustatscher G. 15.  et al. 2009. A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat. Struct. Mol. Biol. 16:923–29 [Google Scholar]
  16. Kim W, Chakraborty G, Kim S, Shin J, Park CH. 16.  et al. 2012. Macro histone H2A1.2 (macroH2A1) protein suppresses mitotic kinase VRK1 during interphase. J. Biol. Chem. 287:5278–89 [Google Scholar]
  17. Chen L, Hu L, Chan TH, Tsao GS, Xie D. 17.  et al. 2009. Chromodomain helicase/adenosine triphosphatase DNA binding protein 1-like (CHD1l) gene suppresses the nucleus-to-mitochondria translocation of nur77 to sustain hepatocellular carcinoma cell survival. Hepatology 50:122–29 [Google Scholar]
  18. Eriksson KK, Cervantes-Barragan L, Ludewig B, Thiel V. 18.  2008. Mouse hepatitis virus liver pathology is dependent on ADP-ribose-1′′-phosphatase, a viral function conserved in the alpha-like supergroup. J. Virol. 82:12325–34 [Google Scholar]
  19. Barkauskaite E, Jankevicius G, Ladurner AG, Ahel I, Timinszky G. 19.  2013. The recognition and removal of cellular poly(ADP-ribose) signals. FEBS J. 280:3491–507 [Google Scholar]
  20. Perina D, Mikoč A, Ahel J, Ćetković H, Žaja R, Ahel I. 20.  2014. Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life. DNA Repair 23:4–16 [Google Scholar]
  21. Feijs KL, Verheugd P, Luscher B. 21.  2013. Expanding functions of intracellular resident mono-ADP-ribosylation in cell physiology. FEBS J. 280:3519–29 [Google Scholar]
  22. Gibson BA, Kraus WL. 22.  2012. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell. Biol. 13:411–24 [Google Scholar]
  23. Denu JM. 23.  2005. The Sir 2 family of protein deacetylases. Curr. Opin. Chem. Biol. 9:431–40 [Google Scholar]
  24. Sauve AA, Youn DY. 24.  2012. Sirtuins: NAD+-dependent deacetylase mechanism and regulation. Curr. Opin. Chem. Biol. 16:535–43 [Google Scholar]
  25. Rack JG, Morra R, Barkauskaite E, Kraehenbuehl R, Ariza A. 25.  et al. 2015. Identification of a class of protein ADP-ribosylating sirtuins in microbial pathogens. Mol. Cell 59:309–20 [Google Scholar]
  26. Kowieski TM, Lee S, Denu JM. 26.  2008. Acetylation-dependent ADP-ribosylation by Trypanosoma brucei Sir2. J. Biol. Chem. 283:5317–26 [Google Scholar]
  27. Barkauskaite E, Jankevicius G, Ahel I. 27.  2015. Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation. Mol. Cell 58:935–46 [Google Scholar]
  28. Vyas S, Matic I, Uchima L, Rood J, Zaja R. 28.  et al. 2014. Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat. Commun. 5:4426 [Google Scholar]
  29. Kleine H, Poreba E, Lesniewicz K, Hassa PO, Hottiger MO. 29.  et al. 2008. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol. Cell 32:57–69 [Google Scholar]
  30. Langelier MF, Pascal JM. 30.  2013. PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis. Curr. Opin. Struct. Biol. 23:134–43 [Google Scholar]
  31. Miwa M, Ishihara M, Takishima S, Takasuka N, Maeda M. 31.  et al. 1981. The branching and linear portions of poly(adenosine diphosphate ribose) have the same α(1→2) ribose-ribose linkage. J. Biol. Chem. 256:2916–21 [Google Scholar]
  32. Martzen MR, McCraith SM, Spinelli SL, Torres FM, Fields S. 32.  et al. 1999. A biochemical genomics approach for identifying genes by the activity of their products. Science 286:1153–55 [Google Scholar]
  33. Shull NP, Spinelli SL, Phizicky EM. 33.  2005. A highly specific phosphatase that acts on ADP-ribose 1″-phosphate, a metabolite of tRNA splicing in Saccharomyces cerevisiae. Nucleic Acids Res. 33:650–60 [Google Scholar]
  34. Jankevicius G, Hassler M, Golia B, Rybin V, Zacharias M. 34.  et al. 2013. A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat. Struct. Mol. Biol. 20:508–14 [Google Scholar]
  35. Barkauskaite E, Brassington A, Tan ES, Warwicker J, Dunstan MS. 35.  et al. 2013. Visualization of poly(ADP-ribose) bound to PARG reveals inherent balance between exo- and endo-glycohydrolase activities. Nat. Commun. 4:2164 [Google Scholar]
  36. Miwa M, Sugimura T. 36.  1971. Splitting of the ribose-ribose linkage of poly(adenosine diphosphate-ribose) by a calf thymus extract. J. Biol. Chem. 246:6362–64 [Google Scholar]
  37. Peterson FC, Chen D, Lytle BL, Rossi MN, Ahel I. 37.  et al. 2011. Orphan macrodomain protein (human C6orf130) is an O-acyl-ADP-ribose deacylase: solution structure and catalytic properties. J. Biol. Chem. 286:35955–65 [Google Scholar]
  38. Rosenthal F, Feijs KL, Frugier E, Bonalli M, Forst AH. 38.  et al. 2013. Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat. Struct. Mol. Biol. 20:502–7 [Google Scholar]
  39. Sharifi R, Morra R, Appel CD, Tallis M, Chioza B. 39.  et al. 2013. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J. 32:1225–37 [Google Scholar]
  40. Slade D, Dunstan MS, Barkauskaite E, Weston R, Lafite P. 40.  et al. 2011. The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 477:616–20 [Google Scholar]
  41. Fliegert R, Gasser A, Guse AH. 41.  2007. Regulation of calcium signalling by adenine-based second messengers. Biochem. Soc. Trans. 35:109–14 [Google Scholar]
  42. Neuvonen M, Ahola T. 42.  2009. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites. J. Mol. Biol. 385:212–25 [Google Scholar]
  43. Chatterjee A, Johnson MA, Serrano P, Pedrini B, Joseph JS. 43.  et al. 2009. Nuclear magnetic resonance structure shows that the severe acute respiratory syndrome coronavirus-unique domain contains a macrodomain fold. J. Virol. 83:1823–36 [Google Scholar]
  44. Allen MD, Buckle AM, Cordell SC, Lowe J, Bycroft M. 44.  2003. The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A. J. Mol. Biol. 330:503–11 [Google Scholar]
  45. Egloff MP, Malet H, Putics A, Heinonen M, Dutartre H. 45.  et al. 2006. Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains. J. Virol. 80:8493–502 [Google Scholar]
  46. Kustatscher G, Hothorn M, Pugieux C, Scheffzek K, Ladurner AG. 46.  2005. Splicing regulates NAD metabolite binding to histone macroH2A. Nat. Struct. Mol. Biol. 12:624–25 [Google Scholar]
  47. Gottschalk AJ, Timinszky G, Kong SE, Jin J, Cai Y. 47.  et al. 2009. Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. PNAS 106:13770–74 [Google Scholar]
  48. Forst AH, Karlberg T, Herzog N, Thorsell AG, Gross A. 48.  et al. 2013. Recognition of mono-ADP-ribosylated ARTD10 substrates by ARTD8 macrodomains. Structure 21:462–75 [Google Scholar]
  49. Zaja R, Mikoc A, Barkauskaite E, Ahel I. 49.  2012. Molecular insights into poly(ADP-ribose) recognition and processing. Biomolecules 3:1–17 [Google Scholar]
  50. Tallis M, Morra R, Barkauskaite E, Ahel I. 50.  2014. Poly(ADP-ribosyl)ation in regulation of chromatin structure and the DNA damage response. Chromosoma 123:79–90 [Google Scholar]
  51. Hirsch BM, Burgos ES, Schramm VL. 51.  2014. Transition-state analysis of 2-O-acetyl-ADP-ribose hydrolysis by human macrodomain 1. ACS Chem. Biol. 9:2255–62 [Google Scholar]
  52. Dunstan MS, Barkauskaite E, Lafite P, Knezevic CE, Brassington A. 52.  et al. 2012. Structure and mechanism of a canonical poly(ADP-ribose) glycohydrolase. Nat. Commun. 3:878 [Google Scholar]
  53. Patel CN, Koh DW, Jacobson MK, Oliveira MA. 53.  2005. Identification of three critical acidic residues of poly(ADP-ribose) glycohydrolase involved in catalysis: determining the PARG catalytic domain. Biochem. J. 388:493–500 [Google Scholar]
  54. Tucker JA, Bennett N, Brassington C, Durant ST, Hassall G. 54.  et al. 2012. Structures of the human poly (ADP-ribose) glycohydrolase catalytic domain confirm catalytic mechanism and explain inhibition by ADP-HPD derivatives. PLOS ONE 7:e50889 [Google Scholar]
  55. Kim IK, Kiefer JR, Ho CM, Stegeman RA, Classen S. 55.  et al. 2012. Structure of mammalian poly(ADP-ribose) glycohydrolase reveals a flexible tyrosine clasp as a substrate-binding element. Nat. Struct. Mol. Biol. 19:653–56 [Google Scholar]
  56. Lambrecht MJ, Brichacek M, Barkauskaite E, Ariza A, Ahel I, Hergenrother PJ. 56.  2015. Synthesis of dimeric ADP-ribose and its structure with human poly(ADP-ribose) glycohydrolase. J. Am. Chem. Soc. 137:3558–64 [Google Scholar]
  57. Andrabi SA, Kim NS, Yu SW, Wang H, Koh DW. 57.  et al. 2006. Poly(ADP-ribose) (PAR) polymer is a death signal. PNAS 103:18308–13 [Google Scholar]
  58. Daugherty MD, Young JM, Kerns JA, Malik HS. 58.  2014. Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts. PLOS Genet. 10:e1004403 [Google Scholar]
  59. de Souza RF, Aravind L. 59.  2012. Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions. Mol. BioSyst. 8:1661–77 [Google Scholar]
  60. Citarelli M, Teotia S, Lamb RS. 60.  2010. Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes. BMC Evol. Biol. 10:308 [Google Scholar]
  61. Gossmann TI, Ziegler M. 61.  2014. Sequence divergence and diversity suggests ongoing functional diversification of vertebrate NAD metabolism. DNA Repair 23:39–48 [Google Scholar]
  62. Rass U, Ahel I, West SC. 62.  2008. Molecular mechanism of DNA deadenylation by the neurological disease protein Aprataxin. J. Biol. Chem. 283:33994–4001 [Google Scholar]
  63. McLennan AG. 63.  2006. The Nudix hydrolase superfamily. Cell. Mol. Life Sci. 63:123–43 [Google Scholar]
  64. Tong L, Lee S, Denu JM. 64.  2009. Hydrolase regulates NAD+ metabolites and modulates cellular redox. J. Biol. Chem. 284:11256–66 [Google Scholar]
  65. Palazzo L, Thomas B, Jemth AS, Colby T, Leidecker O. 65.  et al. 2015. Processing of protein ADP-ribosylation by Nudix hydrolases. Biochem. J. 468:293–301 [Google Scholar]
  66. Buschbeck M, Di Croce L. 66.  2010. Approaching the molecular and physiological function of macroH2A variants. Epigenetics 5:118–23 [Google Scholar]
  67. Rasmussen TP, Huang T, Mastrangelo MA, Loring J, Panning B, Jaenisch R. 67.  1999. Messenger RNAs encoding mouse histone macroH2A1 isoforms are expressed at similar levels in male and female cells and result from alternative splicing. Nucleic Acids Res. 27:3685–89 [Google Scholar]
  68. Posavec M, Timinszky G, Buschbeck M. 68.  2013. Macro domains as metabolite sensors on chromatin. Cell. Mol. Life Sci. 70:1509–24 [Google Scholar]
  69. Turinetto V, Giachino C. 69.  2015. Histone variants as emerging regulators of embryonic stem cell identity. Epigenetics 10:563–73 [Google Scholar]
  70. Creppe C, Janich P, Cantarino N, Noguera M, Valero V. 70.  et al. 2012. MacroH2A1 regulates the balance between self-renewal and differentiation commitment in embryonic and adult stem cells. Mol. Cell. Biol. 32:1442–52 [Google Scholar]
  71. Yildirim O, Hung JH, Cedeno RJ, Weng Z, Lengner CJ, Rando OJ. 71.  2014. A system for genome-wide histone variant dynamics in ES cells reveals dynamic MacroH2A2 replacement at promoters. PLOS Genet. 10:e1004515 [Google Scholar]
  72. Doyen CM, An W, Angelov D, Bondarenko V, Mietton F. 72.  et al. 2006. Mechanism of polymerase II transcription repression by the histone variant macroH2A. Mol. Cell. Biol. 26:1156–64 [Google Scholar]
  73. Cantarino N, Douet J, Buschbeck M. 73.  2013. MacroH2A—an epigenetic regulator of cancer. Cancer Lett. 336:247–52 [Google Scholar]
  74. Ryan DP, Owen-Hughes T. 74.  2011. Snf2-family proteins: chromatin remodellers for any occasion. Curr. Opin. Chem. Biol. 15:649–56 [Google Scholar]
  75. Chen L, Chan TH, Yuan YF, Hu L, Huang J. 75.  et al. 2010. CHD1L promotes hepatocellular carcinoma progression and metastasis in mice and is associated with these processes in human patients. J. Clin. Investig. 120:1178–91 [Google Scholar]
  76. Ji X, Li J, Zhu L, Cai J, Zhang J. 76.  et al. 2013. CHD1L promotes tumor progression and predicts survival in colorectal carcinoma. J. Surg. Res. 185:84–91 [Google Scholar]
  77. Snider AC, Leong D, Wang QT, Wysocka J, Yao MW, Scott MP. 77.  2013. The chromatin remodeling factor Chd1l is required in the preimplantation embryo. Biol. Open 2:121–31 [Google Scholar]
  78. Gottschalk AJ, Trivedi RD, Conaway JW, Conaway RC. 78.  2012. Activation of the SNF2 family ATPase ALC1 by poly(ADP-ribose) in a stable ALC1·PARP1·nucleosome intermediate. J. Biol. Chem. 287:43527–32 [Google Scholar]
  79. Cheng W, Su Y, Xu F. 79.  2013. CHD1L: a novel oncogene. Mol. Cancer 12:170 [Google Scholar]
  80. Chen M, Huang JD, Hu L, Zheng BJ, Chen L. 80.  et al. 2009. Transgenic CHD1L expression in mouse induces spontaneous tumors. PLOS ONE 4:e6727 [Google Scholar]
  81. Brockschmidt A, Chung B, Weber S, Fischer DC, Kolatsi-Joannou M. 81.  et al. 2012. CHD1L: a new candidate gene for congenital anomalies of the kidneys and urinary tract (CAKUT). Nephrol. Dial. Transplant. 27:2355–64 [Google Scholar]
  82. Aguiar RC, Takeyama K, He C, Kreinbrink K, Shipp MA. 82.  2005. B-aggressive lymphoma family proteins have unique domains that modulate transcription and exhibit poly(ADP-ribose) polymerase activity. J. Biol. Chem. 280:33756–65 [Google Scholar]
  83. Aguiar RC, Yakushijin Y, Kharbanda S, Salgia R, Fletcher JA, Shipp MA. 83.  2000. BAL is a novel risk-related gene in diffuse large B-cell lymphomas that enhances cellular migration. Blood 96:4328–34 [Google Scholar]
  84. Juszczynski P, Kutok JL, Li C, Mitra J, Aguiar RC, Shipp MA. 84.  2006. BAL1 and BBAP are regulated by a gamma interferon-responsive bidirectional promoter and are overexpressed in diffuse large B-cell lymphomas with a prominent inflammatory infiltrate. Mol. Cell. Biol. 26:5348–59 [Google Scholar]
  85. Hakmé A, Huber A, Dollé P, Schreiber V. 85.  2008. The macroPARP genes parp-9 and parp-14 are developmentally and differentially regulated in mouse tissues. Dev. Dyn. 237:209–15 [Google Scholar]
  86. Yan Q, Xu R, Zhu L, Cheng X, Wang Z. 86.  et al. 2013. BAL1 and its partner E3 ligase, BBAP, link Poly(ADP-ribose) activation, ubiquitylation, and double-strand DNA repair independent of ATM, MDC1, and RNF8. Mol. Cell. Biol. 33:845–57 [Google Scholar]
  87. Camicia R, Bachmann SB, Winkler HC, Beer M, Tinguely M. 87.  et al. 2013. BAL1/ARTD9 represses the anti-proliferative and pro-apoptotic IFNγ-STAT1-IRF1-p53 axis in diffuse large B-cell lymphoma. J. Cell Sci. 126:1969–80 [Google Scholar]
  88. Guerrero-Preston R, Michailidi C, Marchionni L, Pickering CR, Frederick MJ. 88.  et al. 2014. Key tumor suppressor genes inactivated by “greater promoter” methylation and somatic mutations in head and neck cancer. Epigenetics 9:1031–46 [Google Scholar]
  89. Saito K, Tautz L, Mustelin T. 89.  2007. The lipid-binding SEC14 domain. Biochim. Biophys. Acta 1771:719–26 [Google Scholar]
  90. Tong L, Denu JM. 90.  2010. Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose. Biochim. Biophys. Acta 1804:1617–25 [Google Scholar]
  91. Han WD, Zhao YL, Meng YG, Zang L, Wu ZQ. 91.  et al. 2007. Estrogenically regulated LRP16 interacts with estrogen receptor α and enhances the receptor's transcriptional activity. Endocr. Relat. Cancer 14:741–53 [Google Scholar]
  92. Yang J, Zhao YL, Wu ZQ, Si YL, Meng YG. 92.  et al. 2009. The single-macro domain protein LRP16 is an essential cofactor of androgen receptor. Endocr. Relat. Cancer 16:139–53 [Google Scholar]
  93. Mohseni M, Cidado J, Croessmann S, Cravero K, Cimino-Mathews A. 93.  et al. 2014. MACROD2 overexpression mediates estrogen independent growth and tamoxifen resistance in breast cancers. PNAS 111:17606–11 [Google Scholar]
  94. Rajaram M, Zhang J, Wang T, Li J, Kuscu C. 94.  et al. 2013. Two distinct categories of focal deletions in cancer genomes. PLOS ONE 8:e66264 [Google Scholar]
  95. Yao F, Kausalya JP, Sia YY, Teo AS, Lee WH. 95.  et al. 2015. Recurrent fusion genes in gastric cancer: CLDN18-ARHGAP26 induces loss of epithelial integrity. Cell Rep. 12:272–85 [Google Scholar]
  96. Meyer-Ficca ML, Meyer RG, Coyle DL, Jacobson EL, Jacobson MK. 96.  2004. Human poly(ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments. Exp. Cell Res. 297:521–32 [Google Scholar]
  97. Niere M, Mashimo M, Agledal L, Dölle C, Kasamatsu A. 97.  et al. 2012. ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose). J. Biol. Chem. 287:16088–102 [Google Scholar]
  98. Feng X, Koh DW. 98.  2013. Roles of poly(ADP-ribose) glycohydrolase in DNA damage and apoptosis. Int. Rev. Cell Mol. Biol. 304:227–81 [Google Scholar]
  99. Nikiforov A, Kulikova V, Ziegler M. 99.  2015. The human NAD metabolome: functions, metabolism and compartmentalization. Crit. Rev. Biochem. Mol. Biol. 50:284–97 [Google Scholar]
  100. Hanai S, Kanai M, Ohashi S, Okamoto K, Yamada M. 100.  et al. 2004. Loss of poly(ADP-ribose) glycohydrolase causes progressive neurodegeneration in Drosophila melanogaster. PNAS 101:82–86 [Google Scholar]
  101. Koh DW, Lawler AM, Poitras MF, Sasaki M, Wattler S. 101.  et al. 2004. Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. PNAS 101:17699–704 [Google Scholar]
  102. Haince JF, Ouellet ME, McDonald D, Hendzel MJ, Poirier GG. 102.  2006. Dynamic relocation of poly(ADP-ribose) glycohydrolase isoforms during radiation-induced DNA damage. Biochim. Biophys. Acta 1763:226–37 [Google Scholar]
  103. Mortusewicz O, Fouquerel E, Ame JC, Leonhardt H, Schreiber V. 103.  2011. PARG is recruited to DNA damage sites through poly(ADP-ribose)- and PCNA-dependent mechanisms. Nucleic Acids Res. 39:5045–56 [Google Scholar]
  104. Cortes U, Tong WM, Coyle DL, Meyer-Ficca ML, Meyer RG. 104.  et al. 2004. Depletion of the 110-kilodalton isoform of poly(ADP-ribose) glycohydrolase increases sensitivity to genotoxic and endotoxic stress in mice. Mol. Cell. Biol. 24:7163–78 [Google Scholar]
  105. Burkle A, Virag L. 105.  2013. Poly(ADP-ribose): PARadigms and PARadoxes. Mol. Aspects Med. 34:1046–65 [Google Scholar]
  106. Cuzzocrea S, Di Paola R, Mazzon E, Cortes U, Genovese T. 106.  et al. 2005. PARG activity mediates intestinal injury induced by splanchnic artery occlusion and reperfusion. FASEB J. 19:558–66 [Google Scholar]
  107. Cuzzocrea S, Wang ZQ. 107.  2005. Role of poly(ADP-ribose) glycohydrolase (PARG) in shock, ischemia and reperfusion. Pharmacol. Res. 52:100–8 [Google Scholar]
  108. Genovese T, Di Paola R, Catalano P, Li JH, Xu W. 108.  et al. 2004. Treatment with a novel poly(ADP-ribose) glycohydrolase inhibitor reduces development of septic shock-like syndrome induced by zymosan in mice. Crit. Care Med. 32:1365–74 [Google Scholar]
  109. Patel NS, Cortes U, Di Poala R, Mazzon E, Mota-Filipe H. 109.  et al. 2005. Mice lacking the 110-kD isoform of poly(ADP-ribose) glycohydrolase are protected against renal ischemia/reperfusion injury. J. Am. Soc. Nephrol. 16:712–19 [Google Scholar]
  110. Burkle A. 110.  2001. Physiology and pathophysiology of poly(ADP-ribosyl)ation. BioEssays 23:795–806 [Google Scholar]
  111. Chiarugi A. 111.  2002. Poly(ADP-ribose) polymerase: Killer or conspirator? The ‘suicide hypothesis’ revisited. Trends Pharmacol. Sci. 23:122–29 [Google Scholar]
  112. Ha HC, Snyder SH. 112.  1999. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. PNAS 96:13978–82 [Google Scholar]
  113. Fonfria E, Marshall IC, Benham CD, Boyfield I, Brown JD. 113.  et al. 2004. TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br. J. Pharmacol. 143:186–92 [Google Scholar]
  114. Dolle C, Niere M, Lohndal E, Ziegler M. 114.  2010. Visualization of subcellular NAD pools and intra-organellar protein localization by poly-ADP-ribose formation. Cell. Mol. Life Sci. 67:433–43 [Google Scholar]
  115. Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P. 115.  et al. 2001. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–99 [Google Scholar]
  116. Tóth B, Iordanov I, Csanády L. 116.  2015. Ruling out pyridine dinucleotides as true TRPM2 channel activators reveals novel direct agonist ADP-ribose-2′-phosphate. J. Gen. Physiol. 145:419–30 [Google Scholar]
  117. Formentini L, Macchiarulo A, Cipriani G, Camaioni E, Rapizzi E. 117.  et al. 2009. Poly(ADP-ribose) catabolism triggers AMP-dependent mitochondrial energy failure. J. Biol. Chem. 284:17668–76 [Google Scholar]
  118. Lin S, Gasmi L, Xie Y, Ying K, Gu S. 118.  et al. 2002. Cloning, expression and characterisation of a human Nudix hydrolase specific for adenosine 5′-diphosphoribose (ADP-ribose). Biochim. Biophys. Acta 1594:127–35 [Google Scholar]
  119. Nordlund S, Hogbom M. 119.  2013. ADP-ribosylation, a mechanism regulating nitrogenase activity. FEBS J. 280:3484–90 [Google Scholar]
  120. Eastman D, Dworkin M. 120.  1994. Endogenous ADP-ribosylation during development of the prokaryote Myxococcus xanthus. Microbiology 140:Pt 113167–76 [Google Scholar]
  121. Penyige A, Keseru J, Fazakas F, Schmelczer I, Szirak K. 121.  et al. 2009. Analysis and identification of ADP-ribosylated proteins of Streptomyces coelicolor M145. J. Microbiol. 47:549–56 [Google Scholar]
  122. Spalding MD, Prigge ST. 122.  2010. Lipoic acid metabolism in microbial pathogens. Microbiol. Mol. Biol. Rev. 74:200–28 [Google Scholar]
  123. Enjalbert B, Rachini A, Vediyappan G, Pietrella D, Spaccapelo R. 123.  et al. 2009. A multifunctional, synthetic Gaussia princeps luciferase reporter for live imaging of Candida albicans infections. Infect. Immun. 77:4847–58 [Google Scholar]
  124. Surmann K, Michalik S, Hildebrandt P, Gierok P, Depke M. 124.  et al. 2014. Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells. Front. Microbiol. 5:392 [Google Scholar]
  125. Sberro H, Leavitt A, Kiro R, Koh E, Peleg Y. 125.  et al. 2013. Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Mol. Cell 50:136–48 [Google Scholar]
  126. Fehr AR, Athmer J, Channappanavar R, Phillips JM, Meyerholz DK, Perlman S. 126.  2015. The nsp3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis. J. Virol. 89:1523–36 [Google Scholar]
  127. Kuri T, Eriksson KK, Putics A, Zust R, Snijder EJ. 127.  et al. 2011. The ADP-ribose-1″-monophosphatase domains of severe acute respiratory syndrome coronavirus and human coronavirus 229E mediate resistance to antiviral interferon responses. J. Gen. Virol. 92:1899–905 [Google Scholar]
  128. Basta HA, Cleveland SB, Clinton RA, Dimitrov AG, McClure MA. 128.  2009. Evolution of teleost fish retroviruses: characterization of new retroviruses with cellular genes. J. Virol. 83:10152–62 [Google Scholar]
  129. Malet H, Coutard B, Jamal S, Dutartre H, Papageorgiou N. 129.  et al. 2009. The crystal structures of Chikungunya and Venezuelan equine encephalitis virus nsP3 macro domains define a conserved adenosine binding pocket. J. Virol. 83:6534–45 [Google Scholar]
  130. Malet H, Dalle K, Bremond N, Tocque F, Blangy S. 130.  et al. 2006. Expression, purification and crystallization of the SARS-CoV macro domain. Acta Crystallogr. Sect. F 62:405–8 [Google Scholar]
  131. Putics A, Slaby J, Filipowicz W, Gorbalenya AE, Ziebuhr J. 131.  2006. ADP-ribose-1″ phosphatase activities of the human coronavirus 229E and SARS coronavirus X domains. Adv. Exp. Med. Biol. 581:93–96 [Google Scholar]
  132. Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. 132.  2006. Nidovirales: evolving the largest RNA virus genome. Virus Res. 117:17–37 [Google Scholar]
  133. LaStarza MW, Lemm JA, Rice CM. 133.  1994. Genetic analysis of the nsP3 region of Sindbis virus: evidence for roles in minus-strand and subgenomic RNA synthesis. J. Virol. 68:5781–91 [Google Scholar]
  134. Neuman BW, Joseph JS, Saikatendu KS, Serrano P, Chatterjee A. 134.  et al. 2008. Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3. J. Virol. 82:5279–94 [Google Scholar]
  135. Neuvonen M, Kazlauskas A, Martikainen M, Hinkkanen A, Ahola T, Saksela K. 135.  2011. SH3 domain–mediated recruitment of host cell amphiphysins by alphavirus nsP3 promotes viral RNA replication. PLOS Pathog. 7:e1002383 [Google Scholar]
  136. Park E, Griffin DE. 136.  2009. The nsP3 macro domain is important for Sindbis virus replication in neurons and neurovirulence in mice. Virology 388:305–14 [Google Scholar]
  137. Putics A, Filipowicz W, Hall J, Gorbalenya AE, Ziebuhr J. 137.  2005. ADP-ribose-1″-monophosphatase: a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture. J. Virol. 79:12721–31 [Google Scholar]
  138. Atasheva S, Akhrymuk M, Frolova EI, Frolov I. 138.  2012. New PARP gene with an anti-alphavirus function. J. Virol. 86:8147–60 [Google Scholar]
  139. Atasheva S, Frolova EI, Frolov I. 139.  2014. Interferon-stimulated poly(ADP-Ribose) polymerases are potent inhibitors of cellular translation and virus replication. J. Virol. 88:2116–30 [Google Scholar]
  140. Bertoletti A, Maini MK. 140.  2000. Protection or damage: A dual role for the virus-specific cytotoxic T lymphocyte response in hepatitis B and C infection?. Curr. Opin. Microbiol. 3:387–92 [Google Scholar]
  141. Gu J, Korteweg C. 141.  2007. Pathology and pathogenesis of severe acute respiratory syndrome. Am. J. Pathol. 170:1136–47 [Google Scholar]
  142. Kusov Y, Tan J, Alvarez E, Enjuanes L, Hilgenfeld R. 142.  2015. A G-quadruplex-binding macrodomain within the “SARS-unique domain” is essential for the activity of the SARS-coronavirus replication-transcription complex. Virology 484:313–22 [Google Scholar]
  143. Fathers C, Drayton RM, Solovieva S, Bryant HE. 143.  2012. Inhibition of poly(ADP-ribose) glycohydrolase (PARG) specifically kills BRCA2-deficient tumor cells. Cell Cycle 11:990–97 [Google Scholar]
  144. Feng FY, de Bono JS, Rubin MA, Knudsen KE. 144.  2015. Chromatin to clinic: the molecular rationale for PARP1 inhibitor function. Mol. Cell 58:925–34 [Google Scholar]
  145. Min W, Wang ZQ. 145.  2009. Poly (ADP-ribose) glycohydrolase (PARG) and its therapeutic potential. Front. Biosci. 14:1619–26 [Google Scholar]
  146. Finch KE, Knezevic CE, Nottbohm AC, Partlow KC, Hergenrother PJ. 146.  2012. Selective small molecule inhibition of poly(ADP-ribose) glycohydrolase (PARG). ACS Chem. Biol. 7:563–70 [Google Scholar]
  147. Islam R, Koizumi F, Kodera Y, Inoue K, Okawara T, Masutani M. 147.  2014. Design and synthesis of phenolic hydrazide hydrazones as potent poly(ADP-ribose) glycohydrolase (PARG) inhibitors. Bioorg. Med. Chem. Lett. 24:3802–6 [Google Scholar]
  148. Tanaka Y, Matsunami N, Itaya A, Yoshihara K. 148.  1981. Histone-dependent ADP-ribosylation of low molecular nucleotide by poly(ADP-ribose) polymerase. J. Biochem. 90:1131–39 [Google Scholar]
  149. Baltzinger M, Ebel JP, Remy P. 149.  1986. Accumulation of dinucleoside polyphosphates in Saccharomyces cerevisiae under stress conditions. High levels are associated with cell death. Biochimie 68:1231–36 [Google Scholar]
  150. Marriott AS, Copeland NA, Cunningham R, Wilkinson MC, McLennan AG, Jones NJ. 150.  2015. Diadenosine 5′, 5″′ -P1,P4-tetraphosphate (Ap4A) is synthesized in response to DNA damage and inhibits the initiation of DNA replication. DNA Repair 33:90–100 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060815-014935
Loading
/content/journals/10.1146/annurev-biochem-060815-014935
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error