1932

Abstract

Lipids are produced site-specifically in cells and then distributed nonrandomly among membranes via vesicular and nonvesicular trafficking mechanisms. The latter involves soluble amphitropic proteins extracting specific lipids from source membranes to function as molecular solubilizers that envelope their insoluble cargo before transporting it to destination sites. Lipid-binding and lipid transfer structural motifs range from multi-β-strand barrels, to β-sheet cups and baskets covered by α-helical lids, to multi-α-helical bundles and layers. Here, we focus on how α-helical proteins use amphipathic helical layering and bundling to form modular lipid-binding compartments and discuss the functional consequences. Preformed compartments generally rely on intramolecular disulfide bridging to maintain conformation (e.g., albumins, nonspecific lipid transfer proteins, saposins, nematode polyprotein allergens/antigens). Insights into nonpreformed hydrophobic compartments that expand and adapt to accommodate a lipid occupant are few and provided mostly by the three-layer, α-helical ligand-binding domain of nuclear receptors. The simple but elegant and nearly ubiquitous two-layer, α-helical glycolipid transfer protein (GLTP)-fold now further advances understanding.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-061516-044445
2017-06-20
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/biochem/86/1/annurev-biochem-061516-044445.html?itemId=/content/journals/10.1146/annurev-biochem-061516-044445&mimeType=html&fmt=ahah

Literature Cited

  1. Apodaca G, Brown WJ. 1.  2014. Membrane traffic research: challenges for the next decade. Front. Cell Dev. Biol. 2:e52 [Google Scholar]
  2. Burn P. 2.  1988. Amphitropic proteins: a new class of membrane proteins. Trends Biochem. Sci. 13:79–83 [Google Scholar]
  3. Holthuis JCM, Menon AK. 3.  2014. Lipid landscapes and pipelines in membrane homeostasis. Nature 510:48–57 [Google Scholar]
  4. D'Angelo G, Vicinanza M, De Matteis MA. 4.  2008. Lipid-transfer proteins in biosynthetic pathways. Curr. Opin. Cell Biol. 20:360–70 [Google Scholar]
  5. Voelker DR. 5.  2009. Genetic and biochemical analysis of non-vesicular lipid traffic. Annu. Rev. Biochem. 78:827–56 [Google Scholar]
  6. Prinz WA. 6.  2010. Lipid trafficking sans vesicles: Where, why, how?. Cell 143:870–74 [Google Scholar]
  7. Lev S. 7.  2010. Non-vesicular lipid transport by lipid transfer proteins and beyond. Nat. Rev. Mol. Cell Biol. 11:739–50 [Google Scholar]
  8. Drin G. 8.  2014. Topological regulation of lipid balance in cells. Annu. Rev. Biochem. 83:51–77 [Google Scholar]
  9. Lemmon MA. 9.  2008. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9:99–111 [Google Scholar]
  10. Stahelin RV. 10.  2009. Lipid binding domains: more than simple lipid effectors. J. Lipid Res. 50:S299–304 [Google Scholar]
  11. Stahelin RV, Scott JL, Frick CT. 11.  2014. Cellular and molecular interactions of phosphoinositides and peripheral proteins. Chem. Phys. Lipids 182:3–18 [Google Scholar]
  12. de Saint-Jean M, Defosse V, Douguet D, Chicanne G, Payrastre B. 12.  et al. 2011. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. J. Cell Biol. 195:965–78 [Google Scholar]
  13. Kono N, Ohto U, Hiramatsu T, Urabe M, Uchida Y. 13.  et al. 2013. Impaired α-TTP-PIPs interaction underlies familial vitamin E deficiency. Science 340:1106–10 [Google Scholar]
  14. Maeda K, Anand K, Chiapparino A, Kumar A, Poletto M. 14.  et al. 2013. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature 501:257–61 [Google Scholar]
  15. Mesmin B, Bigay J, von Filseck JM, Lacas-Gervais S, Drin G, Antonny B. 15.  2013. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155:830–43 [Google Scholar]
  16. Ren J, Lin CP-C, Pathak MC, Temple BRS, Nile AH. 16.  et al. 2014. A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis. Mol. Biol. Cell 25:712–27 [Google Scholar]
  17. Roulin PS, Lötzerich M, Torta F, Tanner LB, van Kuppeveld FJM. 17.  et al. 2014. Rhinovirus uses a phosphatidylinositol 4-phosphate/cholesterol counter-current for the formation of replication compartments at the ER-Golgi interface. Cell Host Microbe 16:677–90 [Google Scholar]
  18. Hamilton JA. 18.  2004. Fatty acid interactions with proteins: what X-ray crystal and NMR solution structures tell us. Prog. Lipid Res. 43:177–99 [Google Scholar]
  19. Reese AJ, Banaszak LJ. 19.  2004. Specificity determinants for lipids bound to β-barrel proteins. J. Lipid Res. 45:232–43 [Google Scholar]
  20. Wright CS, Zhao Q, Rastinejad F. 20.  2003. Structural analysis of lipid complexes of GM2-activator protein. J. Mol. Biol. 331:951–64 [Google Scholar]
  21. Alpy F, Tomasetto C. 21.  2005. Give lipids a START: the StAR-related lipid transfer (START) domain in mammals. J. Cell Sci. 118:2791–801 [Google Scholar]
  22. Schlehuber S, Skerra A. 22.  2005. Lipocalins in drug discovery: from natural ligand-binding proteins to ‘anticalins. .’ Drug Discov. Today 10:23–33 [Google Scholar]
  23. Grzyb J, Latowski D, Strzalka K. 23.  2006. Lipocalins—a family portrait. J. Plant Physiol. 163:895–915 [Google Scholar]
  24. Storch J, McDermott L. 24.  2009. Structural and functional analysis of fatty acid-binding proteins. J. Lipid Res. 50:S126–31 [Google Scholar]
  25. Thorsell A-G, Lee WH, Persson C, Siponen MI, Nilsson M. 25.  et al. 2011. Comparative structural analysis of lipid binding START domains. PLOS ONE 6:e19521 [Google Scholar]
  26. Zhang YR, Zhao YQ, Huang JF. 26.  2012. Retinoid-binding proteins: Similar protein architectures bind similar ligands via completely different ways. PLOS ONE 7:e36772 [Google Scholar]
  27. Olkkonen VM, Li S. 27.  2013. Oxysterol-binding proteins: sterol and phosphoinositide sensors coordinating transport, signaling and metabolism. Prog. Lipid Res. 52:529–38 [Google Scholar]
  28. Tong JP, Manik MK, Yang H, Im YJ. 28.  2016. Structural insights into nonvesicular lipid transport by the oxysterol binding protein homologue family. Biochim. Biophys. Acta 1861:928–39 [Google Scholar]
  29. Segrest JP, DeLoof H, Dohlman JG, Brouillette CG, Anantharamaiah GM. 29.  1990. Amphipathic helix motif: classes and properties. Proteins 8:103–17 [Google Scholar]
  30. Verboven C, Rabijns A, De Maeyer M, Van Baelen H, Bouillon R, De Ranter C. 30.  2002. A structural basis for the unique binding features of the human vitamin D-binding protein. Nat. Struct. Biol. 9:131–36 [Google Scholar]
  31. Bujacz A. 31.  2012. Structures of bovine, equine and leporine serum albumin. Acta Crystallogr. D 68:1278–89 [Google Scholar]
  32. Curry S, Mandelkow H, Brick P, Franks N. 32.  1998. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat. Struct. Biol. 5:827–35 [Google Scholar]
  33. Curry S. 33.  2009. Lessons from the crystallographic analysis of small molecule binding to human serum albumin. Drug Metab. Pharmacokinet. 24:342–57 [Google Scholar]
  34. Varshney A, Sen P, Ahmad E, Rehan M, Subbarao N, Khan RH. 34.  2010. Ligand binding strategies of human serum albumin: How can the cargo be utilized?. Chirality 22:77–87 [Google Scholar]
  35. Elzoghby AO, Samy WM, Elgindy NA. 35.  2012. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release 157:168–82 [Google Scholar]
  36. Sugio S, Kashima A, Mochisuzki S, Noda M, Kobayashi K. 36.  1999. Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng 12:439–46 [Google Scholar]
  37. Pons J-L, de Lamotte F, Gautier M-F, Delsuc M-A. 37.  2003. Refined solution structure of a liganded type 2 wheat nonspecific lipid transfer protein. J. Biol. Chem. 278:14249–56 [Google Scholar]
  38. Hoh F, Pons J-L, Gautier M-F, de Lamotte F, Dumas C. 38.  2005. Structure of a liganded type 2 non-specific lipid transfer protein from wheat and the molecular basis of lipid binding. Acta Crystallogr. D 61:397–406 [Google Scholar]
  39. Yeats TH, Rose JKC. 39.  2008. The biochemistry and biology of extracellular plant lipid transfer proteins (LTPs). Protein Sci 17:191–98 [Google Scholar]
  40. Ng TB, Cheung RCF, Wong JH, Ye X. 40.  2012. Lipid transfer proteins. Biopolymers 98:268–79 [Google Scholar]
  41. Lopato S, Borisjuk N, Langridge P, Hrmova M. 41.  2014. Endosperm transfer cell-specific genes and proteins: structure, function and applications in biotechnology. Front. Plant Sci. 5:e64 [Google Scholar]
  42. José-Estanyol M, Gomis-Rüth FX, Puigdomènech P. 42.  2004. The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol. Biochem. 42:355–65 [Google Scholar]
  43. Sy D, Le Gravier Y, Goodfellow J, Vovelle F. 43.  2003. Protein stability and plasticity of the hydrophobic cavity in wheat ns-LTP. J. Biomol. Struct. Dyn. 21:15–29 [Google Scholar]
  44. Bruhn H. 44.  2005. A short guided tour through functional and structural features of saposin-like proteins. Biochem. J. 389:249–57 [Google Scholar]
  45. Ballabio A, Gieselmann V. 45.  2009. Lysosomal disorders: from storage to cellular damage. Biochim. Biophys. Acta 1793:684–96 [Google Scholar]
  46. Schulze H, Sandhoff K. 46.  2014. Sphingolipids and lysosomal pathologies. Biochim. Biophys. Acta 1841:799–810 [Google Scholar]
  47. Qi X, Leonova T, Grabowski GA. 47.  1994. Functional human saposins expressed in Escherichia coli. Evidence for binding and activation properties of saposins C with acid β-glucosidase. J. Biol. Chem. 269:16746–53 [Google Scholar]
  48. Alattia JR, Shaw JE, Yip CM, Privé GG. 48.  2006. Direct visualization of saposin remodelling of lipid bilayers. J. Mol. Biol. 362:943–53 [Google Scholar]
  49. Alattia JR, Shaw JE, Yip CM, Privé GG. 49.  2007. Molecular imaging of membrane interfaces reveals mode of β-glucosidase activation by saposin C. PNAS 104:17394–99 [Google Scholar]
  50. Rossmann M, Schultz-Heienbrok R, Behlke J, Remmel N, Alings C. 50.  et al. 2008. Crystal structures of human saposins C and D: implications for lipid recognition and membrane interactions. Structure 16:809–17 [Google Scholar]
  51. Atrian S, López-Viñas E, Gómez-Puertas P, Chabás A, Vilageliu L, Grinberg D. 51.  2008. An evolutionary and structure-based docking model for glucocerebrosidase–saposin C and glucocerebrosidase–substrate interactions—relevance for Gaucher disease. Proteins 70:882–91 [Google Scholar]
  52. Salvioli R, Tatti M, Scarpa S, Moavero SM, Ciaffoni F. 52.  et al. 2005. The N370S (Asn370→Ser) mutation affects the capacity of glucosylceramidase to interact with anionic phospholipid-containing membranes and saposin C. Biochem. J. 390:95–103 [Google Scholar]
  53. Kang SJ, Cresswell P. 53.  2004. Saposins facilitate CD1d-restricted presentation of an exogenous lipid antigen to T cells. Nat. Immunol. 5:175–81 [Google Scholar]
  54. Zhou D, Cantu C, Sagiv Y, Schrantz N, Kulkarni AS. 54.  et al. 2004. Editing of CD1-bound lipid antigens by endosomal lipid transfer proteins. Science 303:523–27 [Google Scholar]
  55. Zhou D, Mattner J, Cantu C, Schrantz N, Yin N. 55.  et al. 2004. Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–89 [Google Scholar]
  56. Yuan W, Qi X, Tsang P, Kang S-J, Illarionov PA. 56.  et al. 2007. Saposin B is the dominant saposin that facilitates lipid binding to human CD1d molecules. PNAS 104:5551–56 [Google Scholar]
  57. León L, Tatituri RVV, Grenha R, Sun Y, Barral DC. 57.  et al. 2012. Saposins utilize two strategies for lipid transfer and CD1 antigen presentation. PNAS 109:4357–64 [Google Scholar]
  58. Gadola SD, Zaccai NR, Harlos K, Shepherd D, Castro-Palomino JC. 58.  et al. 2002. Structure of human CD1b with bound ligands at 2.3 Å, a maze for alkyl chains. Nat. Immunol. 3:721–26 [Google Scholar]
  59. Zajonc DM, Elsliger MA, Teyton L, Wilson IA. 59.  2003. Crystal structure of CD1a in complex with a sulfatide self-antigen at a resolution of 2.15 Å. Nat. Immunol. 4:808–15 [Google Scholar]
  60. Moody DB, Zajonc DM, Wilson IA. 60.  2005. Anatomy of CD1-lipid antigen complexes. Nat. Rev. Immunol. 5:387–99 [Google Scholar]
  61. Silk JD, Salio M, Brown J, Jones EY, Cerundolo V. 61.  2008. Structural and functional aspects of lipid binding by CD1 molecules. Annu. Rev. Cell Dev. Biol. 24:369–95 [Google Scholar]
  62. Wang J, Li Y, Kinjo Y, Mac T-T, Gibson D. 62.  et al. 2010. Lipid binding orientation within CD1d affects recognition of Borrelia burgorferi antigens by NKT cells. PNAS 107:1535–40 [Google Scholar]
  63. López-Sagaseta J, Sibener LV, Kung JE, Gumperz J, Adams EJ. 63.  2012. Lysophospholipid presentation by CD1d and recognition by a human Natural Killer T-cell receptor. EMBO J 31:2047–59 [Google Scholar]
  64. Hawkins CA, de Alba E, Tjandra N. 64.  2005. Solution structure of human saposin C in a detergent environment. J. Mol. Biol. 346:1381–92 [Google Scholar]
  65. John M, Wendeler M, Heller M, Sandhoff K, Kessler H. 65.  2006. Characterization of human saposins by NMR spectroscopy. Biochemistry 45:5206–16 [Google Scholar]
  66. Ahn VE, Leyko P, Alattia JR, Chen L, Privé GG. 66.  2006. Crystal structures of saposins A and C. Protein Sci 15:1849–57 [Google Scholar]
  67. Popovic K, Privé GG. 67.  2008. Structures of the human ceramide activator protein saposin D. Acta Crystallogr. D 64:589–94 [Google Scholar]
  68. Lieberman RL. 68.  2011. A guided tour of the structural biology of Gaucher disease: acid-β-glucosidase and saposin C. Enzyme Res 2011:e973231 [Google Scholar]
  69. de Alba E, Weiler S, Tjandra N. 69.  2003. Solution structure of human saposin C: pH-dependent interaction with phospholipid vesicles. Biochemistry 42:14729–40 [Google Scholar]
  70. Olmeda B, Garcıá-Alvarez B, Pérez-Gil J. 70.  2013. Structure–function correlations of pulmonary surfactant protein SP-B and the saposin-like family of proteins. Eur. Biophys. J. 42:209–22 [Google Scholar]
  71. Ahn VE, Faull KF, Whiteledge JP, Fluharty AL, Privé GG. 71.  2003. Crystal structure of saposin B reveals a dimeric shell for lipid binding. PNAS 100:38–43 [Google Scholar]
  72. Ciaffoni F, Tatti M, Boe A, Salvioli R, Fluharty A. 72.  et al. 2006. Saposin B binds and transfers phospholipids. J. Lipid Res. 47:1045–53 [Google Scholar]
  73. Hecht O, van Nuland NA, Schleinkofer K, Dingley AJ, Bruhn H. 73.  et al. 2004. Solution structure of the pore-forming protein of Entamoeba histolytica. J. Biol. Chem. 279:17834–41 [Google Scholar]
  74. Liepinsh E, Andersson M, Ruysschaert J-M, Otting G. 74.  1997. Saposin fold revealed by the NMR structure of NK-lysin. Nat. Struct. Biol. 4:793–95 [Google Scholar]
  75. Kolter T, Winau F, Schaible UE, Leippe M, Sandhoff K. 75.  2005. Lipid-binding proteins in membrane digestion, antigen presentation, and antimicrobial defense. J. Biol. Chem. 280:41125–28 [Google Scholar]
  76. Popovic K, Holyoake J, Pomès R, Privé GG. 76.  2012. Structure of saposin A lipoprotein discs. PNAS 109:2908–12 [Google Scholar]
  77. Kennedy MW. 77.  2000. The polyprotein lipid binding proteins of nematodes. Biochim. Biophys. Acta 1476:149–64 [Google Scholar]
  78. Jordanova R, Radoslavov G, Fischer P, Liebau E, Walter RD. 78.  et al. 2005. Conformational and functional analysis of the lipid binding protein Ag-NPA-1 from the parasitic nematode Ascaridia galli. FEBS J. 272:180–89 [Google Scholar]
  79. Kennedy MW, Corsico B, Cooper A, Smith BO. 79.  2013. The unusual lipid-binding proteins of nematodes: NPAs, nemFABPs and FARs. Parasitic Nematodes: Molecular Biology, Biochemistry and Immunology MW Kennedy, W Harnett 397–412 Wallingford, UK: CABI Press, 2nd ed.. [Google Scholar]
  80. Barrett J, Saghir N, Timanova A, Clarke K, Brophy PM. 80.  1997. Characterisation and properties of an intracellular lipid-binding protein from the tapeworm Moniezia expansa. Eur. J. Biochem. 250:269–75 [Google Scholar]
  81. Jordanova R, Radoslavov G, Fischer P, Torda A, Lottspeich F. 81.  et al. 2005. The highly abundant protein Ag-lbp55 from Ascaridia galli represents a novel type of lipid-binding proteins. J. Biol. Chem. 280:41429–38 [Google Scholar]
  82. Meenan NAG, Ball G, Bromek K, Uhrin D, Cooper A. 82.  et al. 2011. Solution structure of a repeated unit of the ABA-1 nematode polyprotein allergen of Ascaris reveals a novel fold and two discrete lipid-binding sites. PLOS Negl. Trop. Dis. 5:e1040 [Google Scholar]
  83. Moras D, Gronemeyert H. 83.  1998. The nuclear receptor ligand-binding domain: structure and function. Curr. Opin. Cell Biol. 10:384–91 [Google Scholar]
  84. Bourguet W, Germain P, Gronemeyer H. 84.  2000. Nuclear receptor ligand-binding domains: three-dimensional structures, molecular interactions and pharmacological implications. Trends Pharmacol. Sci. 21:381–88 [Google Scholar]
  85. Gronemeyer H, Gustafsson J-Å, Laude V. 85.  2004. Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug Discov. 3:950–64 [Google Scholar]
  86. Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT. 86.  2007. Nuclear receptor structure: implications for function. Annu. Rev. Physiol. 69:201–20 [Google Scholar]
  87. Harmon GS, Lam MT, Glass CK. 87.  2011. PPARs and lipid ligands in inflammation and metabolism. Chem. Rev. 111:6321–40 [Google Scholar]
  88. Huang P, Chandra V, Rastinejad F. 88.  2010. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol. 72:247–72 [Google Scholar]
  89. Evans RM, Mangelsdorf DJ. 89.  2014. Nuclear receptors, RXR, and the big bang. Cell 157:255–66 [Google Scholar]
  90. Gallastegui N, Mackinnon JAG, Fletterick RJ, Estébanez-Perpiňá E. 90.  2015. Advances in our structural understanding of orphan nuclear receptors. Trends Biochem. Sci. 40:25–35 [Google Scholar]
  91. Huang P, Chandra V, Rastinejad F. 91.  2014. Retinoic acid actions through mammalian nuclear receptors. Chem. Rev. 114:233–54 [Google Scholar]
  92. Rastinejad F, Ollendorff V, Polikarpov I. 92.  2015. Nuclear receptor full-length architectures: confronting myth and illusion with high resolution. Trends Biochem. Sci. 40:16–24 [Google Scholar]
  93. Moras D, Billas IML, Rochel N, Klaholz BP. 93.  2015. Structure-function relationships in nuclear receptors: the facts. Trends Biochem. Sci. 40:287–90 [Google Scholar]
  94. Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D. 94.  1995. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α.. Nature 375:377–82 [Google Scholar]
  95. Renaud J, Rochelle N, Ruff M, Vivat V, Chambon P. 95.  et al. 1995. Crystal structure of the RAR-γ ligand-binding domain bound to all-trans retinoic acid. Nature 378:681–89 [Google Scholar]
  96. Johnson BA, Wilson EM, Li Y, Moller DE, Smith RG, Zhou G. 96.  2000. Ligand-induced stabilization of PPARγ monitored by NMR spectroscopy: implications for nuclear receptor activation. J. Mol. Biol. 298:187–94 [Google Scholar]
  97. Kallenberger BC, Love JD, Chatterjee KK, Schwabe JWR. 97.  2003. A dynamic mechanism of nuclear receptor activation and its perturbation in a human disease. Nat. Struct. Biol. 10:136–40 [Google Scholar]
  98. Figueira ACM, Saidernberg DM, Souza PCT, Martínez PCT, Scanlan TS. 98.  et al. 2011. Analysis of agonist and antagonist effects on thyroid hormone receptor conformation by hydrogen/deuterium exchange. Mol. Endocrinol. 25:15–31 [Google Scholar]
  99. Zoete V, Grosdidier A, Michielin O. 99.  2007. Peroxisome proliferator-activated receptor structures: ligand specificity, molecular switch and interactions with regulators. Biochim. Biophys. Acta 1771:915–25 [Google Scholar]
  100. Wahli W, Michalik L. 100.  2012. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol. Metab. 23:351–63 [Google Scholar]
  101. Armstrong EH, Goswami D, Griffin PR, Noy N, Orthlund EA. 101.  2014. Structural basis for ligand regulation of the fatty acid-binding protein 5, peroxisome proliferator-activated receptor β/δ (FABP5-PPARβ/δ) signaling pathway. J. Biol. Chem. 289:14941–54 [Google Scholar]
  102. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH. 102.  et al. 1998. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ.. Nature 395:137–43 [Google Scholar]
  103. Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG. 103.  et al. 1999. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol. Cell 3:397–403 [Google Scholar]
  104. Itoh T, Fairall L, Amin K, Inaba Y, Szanto A. 104.  et al. 2008. Structural basis for the activation of PPARγ by oxidized fatty acids. Nat. Struct. Mol. Biol. 15:924–31 [Google Scholar]
  105. Waku T, Shiraki T, Oyama T, Fujijmoto Y, Meabera K. 105.  et al. 2009. Structural insight into PPARγ activation through covalent modification with endogenous fatty acids. J. Mol. Biol. 385:188–99 [Google Scholar]
  106. Batista FAH, Trivella DBB, Bernardes A, Gratieri J, Oliveira PSL. 106.  et al. 2012. Structural insights into human peroxisome proliferator activated receptor λ (PPAR-λ) selective ligand binding. PLOS ONE 7:e33643 [Google Scholar]
  107. Boerma LJ, Xia G, Qui C, Cox BD, Chalmers MJ. 107.  et al. 2014. Defining the communication between agonist and coactivator binding in the retinoid X receptor α ligand binding domain. J. Biol. Chem. 289:814–26 [Google Scholar]
  108. Duvic M, Martin AG, Kim Y, Olsen E, Wood GS. 108.  et al. 2001. Phase 2 and 3 clinical trial of oral bexarotene (Targretin capsules) for the treatment of refractory or persistent early-stage cutaneous T-cell lymphoma. Arch. Dermatol. 137:581–93 [Google Scholar]
  109. Lippert WP, Burschka C, Götz K, Kaupp M, Ivanova D. 109.  et al. 2009. Silicon analogues of the RXR-selective retinoid agonist SR11237 (BMS649): chemistry and biology. ChemMedChem 4:1143–52 [Google Scholar]
  110. Kolesar JM, Hoel R, Pomplun M, Havighurst T, Stublaski J. 110.  et al. 2010. A pilot, first-in-human, pharmacokinetic study of 9cUAB30 in healthy volunteers. Cancer Prev. Res. 3:1565–70 [Google Scholar]
  111. Krylova IN, Sablin EP, Moore J, Xu RX, Waitt GM. 111.  et al. 2005. Structural analyses reveal phosphatidyl inositols as ligands for the NR5 orphan receptors SF-1 and LRH-1. Cell 120:343–55 [Google Scholar]
  112. Li Y, Choi M, Cavey G, Dautherty J, Suino K. 112.  et al. 2005. Crystallographic identification and functional characterization of phospholipids as ligands for the orphan nuclear receptor steroidogenic factor-1. Mol. Cell 17:491–502 [Google Scholar]
  113. Blind RD, Sablin EP, Kuchenbecker KM, Chiu H-J, Deacon AM. 113.  et al. 2014. The signaling phospholipid PIP3 creates a new interaction surface on the nuclear receptor SF-1. PNAS 111:15054–59 [Google Scholar]
  114. Färnegårdh M, Bonn T, Sun S, Ljunggren J, Ahola H. 114.  et al. 2003. The three-dimensional structure of the liver X receptor β reveals a flexible ligand-binding pocket that can accommodate fundamentally different ligands. J. Biol. Chem. 278:38821–28 [Google Scholar]
  115. Billas IML, Iwema T, Garnier J-M, Mitschler A, Rochel N, Moras D. 115.  2003. Structural adaptability in the ligand-binding pocket of the ecdysone hormone receptor. Nature 426:91–96 [Google Scholar]
  116. Metz RJ, Radin NS. 116.  1982. Purification and properties of a cerebroside transfer protein. J. Biol. Chem. 257:12901–7 [Google Scholar]
  117. Abe A, Sasaki T. 117.  1985. Purification and some properties of the glycolipid transfer protein from pig brain. J. Biol. Chem. 260:11231–39 [Google Scholar]
  118. Brown RE, Stephenson FA, Markello T, Barenholz Y, Thompson TE. 118.  1985. Properties of a specific glycolipid transfer protein from bovine brain. Chem. Phys. Lipids 38:79–93 [Google Scholar]
  119. Yamada K, Abe A, Sasaki T. 119.  1985. Specificity of the glycolipid transfer protein from pig brain. J. Biol. Chem. 260:4615–21 [Google Scholar]
  120. Brown RE, Mattjus P. 120.  2007. Glycolipid transfer proteins. Biochim. Biophys. Acta 1771:746–60 [Google Scholar]
  121. Zou X, Chung T, Lin X, Malakhova ML, Pike HM, Brown RE. 121.  2008. Human glycolipid transfer protein (GLTP) genes: organization, transcriptional status, and evolution. BMC Genom 9:e72 [Google Scholar]
  122. Lin X, Mattjus P, Pike HM, Windebank AJ, Brown RE. 122.  2000. Cloning and expression of glycolipid transfer protein from bovine and porcine brain. J. Biol. Chem. 275:5104–10 [Google Scholar]
  123. West G, Viitanen L, Alm C, Mattjus P, Salminen TA, Edqvist J. 123.  2008. Identification of a glycosphingolipid transfer protein GLTP1 in Arabidopsis thaliana. FEBS J. 275:3421–37 [Google Scholar]
  124. Mattjus P. 124.  2009. Glycolipid transfer proteins and membrane interaction. Biochim. Biophys. Acta 1788:267–72 [Google Scholar]
  125. Malinina L, Simanshu DK, Zhai X, Samygina VR, Kamlekar RK. 125.  et al. 2015. Sphingolipid transfer proteins defined by the GLTP-fold. Q. Rev. Biophys. 48:281–322 [Google Scholar]
  126. Malinina L, Malakhova ML, Teplov A, Brown RE, Patel DJ. 126.  2004. Structural basis for glycosphingolipid transfer specificity. Nature 430:1048–53 [Google Scholar]
  127. Malinina L, Malakhova ML, Kanak AT, Lu M, Abagyan R. 127.  et al. 2006. The liganding of glycolipid transfer protein is controlled by glycolipid acyl structure. PLOS Biol 4:e362 [Google Scholar]
  128. Airenne TT, Kidron H, Nymalm Y, Nylund M, West GP. 128.  et al. 2006. Structural evidence for adaptive ligand binding of glycolipid transfer protein. J. Mol. Biol. 355:224–36 [Google Scholar]
  129. Kamlekar RK, Gao YG, Kenoth R, Molotkovsky JG, Prendergast FG. 129.  et al. 2010. Human GLTP: three distinct functions for the three tryptophans in a novel peripheral amphitropic fold. Biophys. J. 99:2626–35 [Google Scholar]
  130. Gough J, Chothia C. 130.  2002. SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments. Nucleic Acids Res 30:268–72 [Google Scholar]
  131. Andreeva A, Howorth D, Chothia C, Kulesha E, Murzin A. 131.  2014. SCOP2 prototype: a new approach to protein structure mining. Nucleic Acids Res 42:D310–14 [Google Scholar]
  132. West G, Nylund M, Slotte JP, Mattjus P. 132.  2006. Membrane interaction and activity of the glycolipid transfer protein. Biochim. Biophys. Acta 1758:1732–42 [Google Scholar]
  133. Zhai X, Malakhova M, Pike HM, Benson LM, Bergen HR III. 133.  et al. 2009. Glycolipid acquisition by human glycolipid transfer protein dramatically alters intrinsic tryptophan fluorescence: insights into glycolipid binding affinity. J. Biol. Chem. 284:13620–28 [Google Scholar]
  134. Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M. 134.  et al. 2003. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426:803–9 [Google Scholar]
  135. Kudo N, Kumagai K, Tomishige N, Yamaji T, Wakatsuki S. 135.  et al. 2008. Structural basis for specific lipid recognition by CERT responsible for nonvesicular trafficking of ceramide. PNAS 105:488–93 [Google Scholar]
  136. Airola MV, Allen WJ, Pulkoski-Gross MJ, Obeid LM, Rizzo RC, Hannun YA. 136.  2015. Structural basis for ceramide recognition and hydrolysis by human neutral ceramidase. Structure 23:1482–91 [Google Scholar]
  137. Samygina VR, Popov AN, Cabo-Bilbao A, Ochoa-Lizarralde B, Goni-de-Cerio F. 137.  et al. 2011. Enhanced selectivity for sulfatide by engineered human glycolipid transfer protein. Structure 19:1644–54 [Google Scholar]
  138. Samygina VR, Ochoa-Lizarralde B, Popov AN, Cabo-Bilbao A, Goni-de-Cerio F. 138.  et al. 2013. Structural insights into lipid-dependent reversible dimerization of human GLTP. Acta Crystallogr. D 69:603–16 [Google Scholar]
  139. Ohvo-Rekilä H, Mattjus P. 139.  2011. Monitoring glycolipid transfer protein activity and membrane interaction with the surface plasmon resonance technique. Biochim. Biophys. Acta 1808:47–54 [Google Scholar]
  140. Zhai X, Momsen WE, Malakhov DA, Boldyrev IA, Momsen MM. 140.  et al. 2013. GLTP-fold interaction with planar phosphatidylcholine surfaces is synergistically stimulated by phosphatidic acid and phosphatidylethanolamine. J. Lipid Res. 54:1103–13 [Google Scholar]
  141. Tuuf J, Mattjus P. 141.  2014. Membranes and mammalian glycolipid transferring proteins. Chem. Phys. Lipids 178:27–37 [Google Scholar]
  142. Rao CS, Chung T, Pike HM, Brown RE. 142.  2005. Glycolipid transfer protein interaction with bilayer vesicles: modulation by changing lipid composition. Biophys. J. 89:4017–28 [Google Scholar]
  143. Nylund M, Fortelius C, Palonen EK, Molotkovsky JG, Mattjus P. 143.  2007. Membrane curvature effects on glycolipid transfer protein activity. Langmuir 23:11726–33 [Google Scholar]
  144. Malakhova ML, Malinina L, Pike HM, Kanack AT, Patel DJ, Brown RE. 144.  2005. Point mutational analysis of the liganding site in human glycolipid transfer protein: functionality of the complex. J. Biol. Chem. 280:26312–20 [Google Scholar]
  145. Kenoth R, Simanshu DK, Kamlekar RK, Pike HM, Molotkovsky JG. 145.  et al. 2010. Structural determination and tryptophan fluorescence of heterokaryon incompatibility C2 protein (HET-C2), a fungal glycolipid transfer protein (GLTP), provide novel insights into glycolipid specificity and membrane interaction by the GLTP fold. J. Biol. Chem. 285:13066–78 [Google Scholar]
  146. Kenoth R, Kamlekar R-K, Simanshu DK, Gao Y, Malinina L. 146.  et al. 2011. Conformational folding and stability of the HET-C2 glycolipid transfer protein fold: Does a molten globule-like state regulate activity?. Biochemistry 50:5163–71 [Google Scholar]
  147. Brodersen P, Petersen M, Pike HM, Olszak B, Skov S. 147.  et al. 2002. Knockout of Arabidopsis accelerated-cell-death 11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev 16:490–502 [Google Scholar]
  148. Petersen NH, McKinney LV, Pike H, Hofius D, Zakaria A. 148.  et al. 2008. Human GLTP and mutant forms of ACD11 suppress cell death in the Arabidopsis acd11 mutant. FEBS J 275:4378–88 [Google Scholar]
  149. Simanshu DK, Zhai X, Munch D, Hofius D, Markham JE. 149.  et al. 2014. Arabidopsis accelerated cell death 11, ACD11, is a ceramide-1-phosphate transfer protein and intermediary regulator of phytoceramide levels. Cell Rep 6:388–99 [Google Scholar]
  150. D'Angelo G, Polishchuk E, Di Tullio G, Santoro M, Di Campli A. 150.  et al. 2007. Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449:62–67 [Google Scholar]
  151. Kamlekar RK, Simanshu DK, Gao YG, Kenoth R, Pike HM. 151.  et al. 2013. The glycolipid transfer protein (GLTP) domain of phosphoinositol 4-phosphate adaptor protein-2 (FAPP2): Structure drives preference for simple neutral glycosphingolipids. Biochim. Biophys. Acta 1831:417–27 [Google Scholar]
  152. D'Angelo G, Uemura T, Chuang C-C, Polishchuk E, Santoro M. 152.  et al. 2013. Vesicular and non-vesicular transport feed distinct glycosylation pathways in the Golgi. Nature 501:116–21 [Google Scholar]
  153. Simanshu DK, Kamlekar RK, Wijesinghe DS, Zou X, Zhai X. 153.  et al. 2013. Non-vesicular trafficking by a ceramide-1-phosphate transfer protein regulates eicosanoids. Nature 500:463–68 [Google Scholar]
  154. Stahelin RV, Subramanian P, Vora M, Cho W, Chalfant CE. 154.  2007. Ceramide-1-phosphate binds Group IVA cytosolic phospholipase A2 via a novel site in the C2 domain. J. Biol. Chem. 287:20467–74 [Google Scholar]
  155. Lamour NF, Subramanian P, Wijesinghe DS, Stahelin RV, Bonventre JV, Chalfant CE. 155.  2009. Ceramide 1-phosphate is required for the translocation of group IVA cytosolic phospholipase A2 and prostaglandin synthesis. J. Biol. Chem. 284:26897–907 [Google Scholar]
/content/journals/10.1146/annurev-biochem-061516-044445
Loading
/content/journals/10.1146/annurev-biochem-061516-044445
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error