Living organisms sense and respond to light, a crucial environmental factor, using photoreceptors, which rely on bound chromophores such as retinal, flavins, or linear tetrapyrroles for light sensing. The discovery of photoreceptors that sense light using 5′-deoxyadenosylcobalamin, a form of vitamin B that is best known as an enzyme cofactor, has expanded the number of known photoreceptor families and unveiled a new biological role of this vitamin. The prototype of these B-dependent photoreceptors, the transcriptional repressor CarH, is widespread in bacteria and mediates light-dependent gene regulation in a photoprotective cellular response. CarH activity as a transcription factor relies on the modulation of its oligomeric state by 5′-deoxyadenosylcobalamin and light. This review surveys current knowledge about these B-dependent photoreceptors, their distribution and mode of action, and the structural and photochemical basis of how they orchestrate signal transduction and control gene expression.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Croce R, van Amerongen H. 1.  2014. Natural strategies for photosynthetic light harvesting. Nat. Chem. Biol. 10:492–501 [Google Scholar]
  2. Palczewski K. 2.  2012. Chemistry and biology of vision. J. Biol. Chem. 287:1612–19 [Google Scholar]
  3. Wald G. 3.  1968. The molecular basis of visual excitation. Nature 219:800–7 [Google Scholar]
  4. Cohen SE, Golden SS. 4.  2015. Circadian rhythms in cyanobacteria. Microbiol. Mol. Biol. Rev. 79:373–85 [Google Scholar]
  5. Nagel DH, Kay SA. 5.  2012. Complexity in the wiring and regulation of plant circadian networks. Curr. Biol. 22:R648–57 [Google Scholar]
  6. Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T. 6.  et al. 2011. The cryptochromes: blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 62:335–64 [Google Scholar]
  7. Sancar A, Lindsey-Boltz LA, Kang TH, Reardon JT, Lee JH, Ozturk N. 7.  2010. Circadian clock control of the cellular response to DNA damage. FEBS Lett 584:2618–25 [Google Scholar]
  8. Fankhauser C, Christie JM. 8.  2015. Plant phototropic growth. Curr. Biol. 25:R384–89 [Google Scholar]
  9. Ballaré CL. 9.  2014. Light regulation of plant defense. Annu. Rev. Plant Biol. 65:335–63 [Google Scholar]
  10. Swartz TE, Tseng TS, Frederickson MA, Paris G, Comerci DJ. 10.  et al. 2007. Blue-light-activated histidine kinases: two-component sensors in bacteria. Science 317:1090–93 [Google Scholar]
  11. Elías-Arnanz M, Padmanabhan S, Murillo FJ. 11.  2011. Light-dependent gene regulation in nonphototrophic bacteria. Curr. Opin. Microbiol. 14:128–35 [Google Scholar]
  12. Purcell EB, Crosson S. 12.  2008. Photoregulation in prokaryotes. Curr. Opin. Microbiol. 11:168–78 [Google Scholar]
  13. Crane BR, Young MW. 13.  2014. Interactive features of proteins composing eukaryotic circadian clocks. Annu. Rev. Biochem. 83:191–219 [Google Scholar]
  14. Ziegelhoffer EC, Donohue TJ. 14.  2009. Bacterial responses to photo-oxidative stress. Nat. Rev. Microbiol. 7:856–63 [Google Scholar]
  15. Li Z, Wakao S, Fischer BB, Niyogi KK. 15.  2009. Sensing and responding to excess light. Annu. Rev. Plant Biol. 60:239–60 [Google Scholar]
  16. Glaeser J, Nuss AM, Berghoff BA, Klug G. 16.  2011. Singlet oxygen stress in microorganisms. Adv. Microb. Physiol. 58:141–73 [Google Scholar]
  17. Latifi A, Ruiz M, Zhang CC. 17.  2009. Oxidative stress in cyanobacteria. FEMS Microbiol. Rev. 33:258–78 [Google Scholar]
  18. Setlow RB. 18.  1966. Cyclobutane-type pyrimidine dimers in polynucleotides. Science 153:379–86 [Google Scholar]
  19. Erickson E, Wakao S, Niyogi KK. 19.  2015. Light stress and photoprotection in Chlamydomonas reinhardtii. Plant J. 82:449–65 [Google Scholar]
  20. Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ. 20.  et al. 2012. Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335:1492–96 [Google Scholar]
  21. Wu D, Hu Q, Yan Z, Chen W, Yan C. 21.  et al. 2012. Structural basis of ultraviolet-B perception by UVR8. Nature 484:214–19 [Google Scholar]
  22. Genick UK, Soltis SM, Kuhn P, Canestrelli IL, Getzoff ED. 22.  1998. Structure at 0.85 Å resolution of an early protein photocycle intermediate. Nature 392:206–9 [Google Scholar]
  23. Herrou J, Crosson S. 23.  2011. Function, structure and mechanism of bacterial photosensory LOV proteins. Nat. Rev. Microbiol. 9:713–23 [Google Scholar]
  24. Leverenz RL, Sutter M, Wilson A, Gupta S, Thurotte A. 24.  et al. 2015. A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science 348:1463–66 [Google Scholar]
  25. Losi A, Gärtner W. 25.  2012. The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors. Annu. Rev. Plant Biol. 63:49–72 [Google Scholar]
  26. Masuda S. 26.  2013. Light detection and signal transduction in the BLUF photoreceptors. Plant Cell Physiol 54:171–79 [Google Scholar]
  27. Sancar A. 27.  2003. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 103:2203–37 [Google Scholar]
  28. Wilson A, Punginelli C, Gall A, Bonetti C, Alexandre M. 28.  et al. 2008. A photoactive carotenoid protein acting as light intensity sensor. PNAS 105:12075–80 [Google Scholar]
  29. Anders K, Essen LO. 29.  2015. The family of phytochrome-like photoreceptors: diverse, complex and multi-colored, but very useful. Curr. Opin. Struct. Biol. 35:7–16 [Google Scholar]
  30. Rockwell NC, Su Y-S, Lagarias JC. 30.  2006. Phytochrome structure and signaling mechanisms. Annu. Rev. Plant Biol. 57:837–58 [Google Scholar]
  31. Möglich A, Yang X, Ayers RA, Moffat K. 31.  2010. Structure and function of plant photoreceptors. Annu. Rev. Plant Biol. 61:21–47 [Google Scholar]
  32. Shcherbakova DM, Shemetov AA, Kaberniuk AA, Verkhusha VV. 32.  2015. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu. Rev. Biochem. 84:519–50 [Google Scholar]
  33. Bhattacharyya RP, Reményi A, Yeh BJ, Lim WA. 33.  2006. Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Annu. Rev. Biochem. 75:655–80 [Google Scholar]
  34. Fenno L, Yizhar O, Deisseroth K. 34.  2011. The development and application of optogenetics. Annu. Rev. Neurosci. 34:389–412 [Google Scholar]
  35. Miesenböck G. 35.  2011. Optogenetic control of cells and circuits. Annu. Rev. Cell Dev. Biol. 27:731–58 [Google Scholar]
  36. Zhang K, Cui B. 36.  2015. Optogenetic control of intracellular signaling pathways. Trends Biotechnol 33:92–100 [Google Scholar]
  37. Ortiz-Guerrero JM, Polanco MC, Murillo FJ, Padmanabhan S, Elías-Arnanz M. 37.  2011. Light-dependent gene regulation by a coenzyme B12-based photoreceptor. PNAS 108:7565–70 [Google Scholar]
  38. Jost M, Fernández-Zapata J, Polanco MC, Ortiz-Guerrero JM, Chen PY. 38.  et al. 2015. Structural basis for gene regulation by a B12-dependent photoreceptor. Nature 526:536–41 [Google Scholar]
  39. Jost M, Simpson JH, Drennan CL. 39.  2015. The transcription factor CarH safeguards use of adenosylcobalamin as a light sensor by altering the photolysis products. Biochemistry 54:3231–34 [Google Scholar]
  40. Kutta RJ, Hardman SJ, Johannissen LO, Bellina B, Messiha HL. 40.  et al. 2015. The photochemical mechanism of a B12-dependent photoreceptor protein. Nat. Commun. 6:7907 [Google Scholar]
  41. Whipple GH, Robscheit-Robbins FS. 41.  1925. Favourable influence of liver, heart and skeletal muscle in diet on blood regeneration in anemia. Am. J. Physiol. 72:408–18 [Google Scholar]
  42. Minot GR, Murphy WP. 42.  1926. Treatment of pernicious anemia by a special diet. J. Am. Med. Assoc 87470–76 [Google Scholar]
  43. Rickes EL, Brink NG, Koniuszy FR, Wood TR, Folkers K. 43.  1948. Crystalline vitamin B12. Science 107:396–97 [Google Scholar]
  44. Smith EL. 44.  1948. Purification of anti-pernicious anaemia factors from liver. Nature 161:638 [Google Scholar]
  45. Hodgkin DC, Kamper J, Mackay M, Pickworth J, Trueblood KN, White JG. 45.  1956. Structure of vitamin B12. Nature 178:64–66 [Google Scholar]
  46. Eschenmoser A, Wintner CE. 46.  1977. Natural product synthesis and vitamin B12. Science 196:1410–20 [Google Scholar]
  47. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. 47.  2005. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93 [Google Scholar]
  48. Roth JR, Lawrence JG, Bobik TA. 48.  1996. Cobalamin (coenzyme B12): synthesis and biological significance. Annu. Rev. Microbiol. 50:137–81 [Google Scholar]
  49. Taga ME, Larsen NA, Howard-Jones AR, Walsh CT, Walker GC. 49.  2007. BluB cannibalizes flavin to form the lower ligand of vitamin B12. Nature 446:449–53 [Google Scholar]
  50. Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC. 50.  2002. The biosynthesis of adenosylcobalamin (vitamin B12). Nat. Prod. Rep. 19:390–412 [Google Scholar]
  51. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. 51.  2003. Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. J. Biol. Chem. 278:41148–59 [Google Scholar]
  52. Zhang Y, Rodionov DA, Gelfand MS, Gladyshev VN. 52.  2009. Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genom 10:78 [Google Scholar]
  53. Degnan PH, Taga ME, Goodman AL. 53.  2014. Vitamin B12 as a modulator of gut microbial ecology. Cell Metab 20:769–78 [Google Scholar]
  54. Banerjee R, Ragsdale SW. 54.  2003. The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Annu. Rev. Biochem. 72:209–47 [Google Scholar]
  55. Ludwig ML, Matthews RG. 55.  1997. Structure-based perspectives on B12-dependent enzymes. Annu. Rev. Biochem. 66:269–313 [Google Scholar]
  56. Lenhert PG, Hodgkin DC. 56.  1961. Structure of the 5,6-dimethyl-benzimidazolylcobamide coenzyme. Nature 192:937–38 [Google Scholar]
  57. Rossi R, Glusker JP, Randaccio L, Summers MF, Toscano PJ, Marzilli LG. 57.  1985. The structure of a B12 coenzyme: methylcobalamin studies by X-ray and NMR methods. J. Am. Chem. Soc. 107:1729–38 [Google Scholar]
  58. Hung RR, Grabowski JJ. 58.  1999. Listening to reactive intermediates: application of photoacoustic calorimetry to vitamin B12 compounds. J. Am. Chem. Soc. 121:1351–64 [Google Scholar]
  59. Hay BP, Finke RG. 59.  1986. Thermolysis of the cobalt-carbon bond of adenosylcobalamin. 2. Products, kinetics, and cobalt-carbon bond dissociation energy in aqueous solution. J. Am. Chem. Soc. 108:4820–29 [Google Scholar]
  60. Randaccio L, Geremia S, Demitri N, Wuerges J. 60.  2010. Vitamin B12: unique metalorganic compounds and the most complex vitamins. Molecules 15:3228–59 [Google Scholar]
  61. Kozlowski PM, Garabato BD, Lodowski P, Jaworska M. 61.  2016. Photolytic properties of cobalamins: a theoretical perspective. Dalton Trans 45:4457–70 [Google Scholar]
  62. Rury AS, Wiley TE, Sension RJ. 62.  2015. Energy cascades, excited state dynamics, and photochemistry in cob(III)alamins and ferric porphyrins. Acc. Chem. Res. 48:860–67 [Google Scholar]
  63. Gruber K, Puffer B, Kräutler B. 63.  2011. Vitamin B12-derivatives—enzyme cofactors and ligands of proteins and nucleic acids. Chem. Soc. Rev. 40:4346–63 [Google Scholar]
  64. Drennan CL, Huang S, Drummond JT, Matthews RG, Ludwig ML. 64.  1994. How a protein binds B12: a 3.0 Å X-ray structure of B12-binding domains of methionine synthase. Science 266:1669–74 [Google Scholar]
  65. Liptak MD, Brunold TC. 65.  2006. Spectroscopic and computational studies of Co1+cobalamin: spectral and electronic properties of the “superreduced” B12 cofactor. J. Am. Chem. Soc. 128:9144–56 [Google Scholar]
  66. Stich TA, Brooks AJ, Buan NR, Brunold TC. 66.  2003. Spectroscopic and computational studies of Co3+-corrinoids: spectral and electronic properties of the B12 cofactors and biologically relevant precursors. J. Am. Chem. Soc. 125:5897–914 [Google Scholar]
  67. Stich TA, Buan NR, Brunold TC. 67.  2004. Spectroscopic and computational studies of Co2+corrinoids: spectral and electronic properties of the biologically relevant base-on and base-off forms of Co2+cobalamin. J. Am. Chem. Soc. 126:9735–49 [Google Scholar]
  68. Shell TA, Lawrence DS. 68.  2011. A new trick (hydroxyl radical generation) for an old vitamin (B12). J. Am. Chem. Soc. 133:2148–50 [Google Scholar]
  69. Wiley TE, Miller WR, Miller NA, Sension RJ, Lodowski P. 69.  et al. 2016. Photostability of hydroxocobalamin: ultrafast excited state dynamics and computational studies. J. Phys. Chem. Lett. 7:143–47 [Google Scholar]
  70. Schwartz PA, Frey PA. 70.  2007. 5′-Peroxyadenosine and 5′-peroxyadenosylcobalamin as intermediates in the aerobic photolysis of adenosylcobalamin. Biochemistry 46:7284–92 [Google Scholar]
  71. Hogenkamp HP. 71.  1963. A cyclic nucleoside derived from coenzyme B12. J. Biol. Chem. 238:477–80 [Google Scholar]
  72. Hogenkamp HP. 72.  1966. The photolysis of methylcobalamin. Biochemistry 5:417–22 [Google Scholar]
  73. Law PY, Wood JM. 73.  1973. The photolysis of 5′-deoxyadenosylcobalamin under anaerobic conditions. Biochim. Biophys. Acta 331:451–54 [Google Scholar]
  74. Chen E, Chance MR. 74.  1990. Nanosecond transient absorption spectroscopy of coenzyme B12. Quantum yields and spectral dynamics. J. Biol. Chem. 265:12987–94 [Google Scholar]
  75. Endicott JF, Netzel TL. 75.  1979. Early events and transient chemistry in the photohomolysis of alkylcobalamins. J. Am. Chem. Soc. 101:4000–2 [Google Scholar]
  76. Jones AR, Russell HJ, Greetham GM, Towrie M, Hay S, Scrutton NS. 76.  2012. Ultrafast infrared spectral fingerprints of vitamin B12 and related cobalamins. J. Phys. Chem. A 116:5586–94 [Google Scholar]
  77. Walker LA, Jarett JT, Anderson NA, Pullen SH, Matthews RG, Sension RJ. 77.  1998. Time-resolved spectroscopic studies of B12 coenzymes: the identification of a metastable cob(III)alamin photoproduct in the photolysis of methylcobalamin. J. Am. Chem. Soc. 120:3597–603 [Google Scholar]
  78. Walker LA, Shiang JJ, Anderson NA, Pullen SH, Sension RJ. 78.  1998. Time-resolved spectroscopic studies of B12 coenzymes: the photolysis and geminate recombination of adenosylcobalamin. J. Am. Chem. Soc. 120:7286–92 [Google Scholar]
  79. Stickrath AB, Carroll EC, Dai X, Harris DA, Rury A. 79.  et al. 2009. Solvent-dependent cage dynamics of small nonpolar radicals: lessons from the photodissociation and geminate recombination of alkylcobalamins. J. Phys. Chem. A 113:8513–22 [Google Scholar]
  80. Yamada R, Shimizu S, Fukui S. 80.  1966. Factors affecting the anaerobic photolysis of the cobalt-carbon bond of cobalt-methylcobalamin. Biochim. Biophys. Acta 124:195–97 [Google Scholar]
  81. Deery E, Schroeder S, Lawrence AD, Taylor SL, Seyedarabi A. 81.  et al. 2012. An enzyme-trap approach allows isolation of intermediates in cobalamin biosynthesis. Nat. Chem. Biol. 8:933–40 [Google Scholar]
  82. Hazra AB, Han AW, Mehta AP, Mok KC, Osadchiy V. 82.  et al. 2015. Anaerobic biosynthesis of the lower ligand of vitamin B12. PNAS 112:10792–97 [Google Scholar]
  83. Moore SJ, Lawrence AD, Biedendieck R, Deery E, Frank S. 83.  et al. 2013. Elucidation of the anaerobic pathway for the corrin component of cobalamin (vitamin B12). PNAS 110:14906–11 [Google Scholar]
  84. Yin L, Bauer CE. 84.  2013. Controlling the delicate balance of tetrapyrrole biosynthesis. Philos. Trans. R. Soc. B 368:20120262 [Google Scholar]
  85. Banerjee R, Gherasim C, Padovani D. 85.  2009. The tinker, tailor, soldier in intracellular B12 trafficking. Curr. Opin. Chem. Biol. 13:484–91 [Google Scholar]
  86. Cracan V, Banerjee R. 86.  2013. Cobalt and corrinoid transport and biochemistry. Met. Ions Life Sci. 12:333–74 [Google Scholar]
  87. Fedosov SN. 87.  2012. Physiological and molecular aspects of cobalamin transport. Subcell. Biochem. 56:347–67 [Google Scholar]
  88. Nielsen MJ, Rasmussen MR, Andersen CB, Nexø E, Moestrup SK. 88.  2012. Vitamin B12 transport from food to the body's cells—a sophisticated, multistep pathway. Nat. Rev. Gastroenterol. Hepatol. 9:345–54 [Google Scholar]
  89. Yamanishi M, Vlasie M, Banerjee R. 89.  2005. Adenosyltransferase: an enzyme and an escort for coenzyme B12?. Trends Biochem. Sci. 30:304–8 [Google Scholar]
  90. Jost M, Cracan V, Hubbard PA, Banerjee R, Drennan CL. 90.  2015. Visualization of a radical B12 enzyme with its G-protein chaperone. PNAS 112:2419–24 [Google Scholar]
  91. Gherasim C, Lofgren M, Banerjee R. 91.  2013. Navigating the B12 road: assimilation, delivery, and disorders of cobalamin. J. Biol. Chem. 288:13186–93 [Google Scholar]
  92. Johnson CL, Pechonick E, Park SD, Havemann GD, Leal NA, Bobik TA. 92.  2001. Functional genomic, biochemical, and genetic characterization of the Salmonella pduO gene, an ATP:cob(I)alamin adenosyltransferase gene. J. Bacteriol. 183:1577–84 [Google Scholar]
  93. Dowling DP, Croft AK, Drennan CL. 93.  2012. Radical use of Rossmann and TIM barrel architectures for controlling coenzyme B12 chemistry. Annu. Rev. Biophys. 41:403–27 [Google Scholar]
  94. Giedyk M, Goliszewska K, Gryko D. 94.  2015. Vitamin B12 catalysed reactions. Chem. Soc. Rev. 44:3391–404 [Google Scholar]
  95. Ludwig ML, Drennan CL, Matthews RG. 95.  1996. The reactivity of B12 cofactors: The proteins make a difference. Structure 4:505–12 [Google Scholar]
  96. Jones AR, Levy C, Hay S, Scrutton NS. 96.  2013. Relating localized protein motions to the reaction coordinate in coenzyme B12-dependent enzymes. FEBS J 280:2997–3008 [Google Scholar]
  97. Sukumar N. 97.  2013. Crystallographic studies on B12 binding proteins in eukaryotes and prokaryotes. Biochimie 95:976–88 [Google Scholar]
  98. Bommer M, Kunze C, Fesseler J, Schubert T, Diekert G, Dobbek H. 98.  2014. Structural basis for organohalide respiration. Science 346:455–58 [Google Scholar]
  99. Payne KA, Quezada CP, Fisher K, Dunstan MS, Collins FA. 99.  et al. 2015. Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature 517:513–16 [Google Scholar]
  100. Dowling DP, Miles ZD, Kohrer C, Maiocco SJ, Elliott SJ. 100.  et al. 2016. Molecular basis of cobalamin-dependent RNA modification. Nucleic Acids Res 44:9965–76 [Google Scholar]
  101. Payne KA, Fisher K, Sjuts H, Dunstan MS, Bellina B. 101.  et al. 2015. Epoxyqueuosine reductase structure suggests a mechanism for cobalamin-dependent tRNA modification. J. Biol. Chem. 290:27572–81 [Google Scholar]
  102. Goulding CW, Postigo D, Matthews RG. 102.  1997. Cobalamin-dependent methionine synthase is a modular protein with distinct regions for binding homocysteine, methyltetrahydrofolate, cobalamin, and adenosylmethionine. Biochemistry 36:8082–91 [Google Scholar]
  103. Matthews RG, Koutmos M, Datta S. 103.  2008. Cobalamin-dependent and cobamide-dependent methyltransferases. Curr. Opin. Struct. Biol. 18:658–66 [Google Scholar]
  104. Jarrett JT, Drennan CL, Amaratunga M, Scholten JD, Ludwig ML, Matthews RG. 104.  1996. A protein radical cage slows photolysis of methylcobalamin in methionine synthase from Escherichia coli. Bioorg. Med. Chem 41237–46 [Google Scholar]
  105. Mandal M, Breaker RR. 105.  2004. Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol. 5:451–63 [Google Scholar]
  106. Serganov A, Patel DJ. 106.  2012. Metabolite recognition principles and molecular mechanisms underlying riboswitch function. Annu. Rev. Biophys. 41:343–70 [Google Scholar]
  107. Nahvi A, Barrick JE, Breaker RR. 107.  2004. Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res 32:143–50 [Google Scholar]
  108. Johnson JE Jr, Reyes FE, Polaski JT, Batey RT. 108.  2012. B12 cofactors directly stabilize an mRNA regulatory switch. Nature 492:133–37 [Google Scholar]
  109. Peselis A, Serganov A. 109.  2012. Structural insights into ligand binding and gene expression control by an adenosylcobalamin riboswitch. Nat. Struct. Mol. Biol. 19:1182–84 [Google Scholar]
  110. Elías-Arnanz M, Fontes M, Padmanabhan S. 110.  2008. Carotenogenesis in Myxococcus xanthus: a complex regulatory network. Myxobacteria: Multicellularity and Differentiation DE Whitworth 211–25 Washington, DC: ASM Press [Google Scholar]
  111. Armstrong GA. 111.  1997. Genetics of eubacterial carotenoid biosynthesis: a colorful tale. Annu. Rev. Microbiol. 51:629–59 [Google Scholar]
  112. Galbis-Martínez M, Padmanabhan S, Murillo FJ, Elías-Arnanz M. 112.  2012. CarF mediates signaling by singlet oxygen, generated via photoexcited protoporphyrin IX, in Myxococcus xanthus light-induced carotenogenesis. J. Bacteriol. 194:1427–36 [Google Scholar]
  113. Cervantes M, Murillo FJ. 113.  2002. Role for vitamin B12 in light induction of gene expression in the bacterium Myxococcus xanthus. J. Bacteriol. 184:2215–24 [Google Scholar]
  114. Chang CC, Lin LY, Zou XW, Huang CC, Chan NL. 114.  2015. Structural basis of the mercury(II)-mediated conformational switching of the dual-function transcriptional regulator MerR. Nucleic Acids Res 43:7612–23 [Google Scholar]
  115. Heldwein EE, Brennan RG. 115.  2001. Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature 409:378–82 [Google Scholar]
  116. Philips SJ, Canalizo-Hernandez M, Yildirim I, Schatz GC, Mondragón A, O'Halloran TV. 116.  2015. Allosteric transcriptional regulation via changes in the overall topology of the core promoter. Science 349:877–81 [Google Scholar]
  117. Martell DJ, Joshi CP, Gaballa A, Santiago AG, Chen TY. 117.  et al. 2015. Metalloregulator CueR biases RNA polymerase's kinetic sampling of dead-end or open complex to repress or activate transcription. PNAS 112:13467–72 [Google Scholar]
  118. Botella JA, Murillo FJ, Ruiz-Vázquez R. 118.  1995. A cluster of structural and regulatory genes for light-induced carotenogenesis in Myxococcus xanthus. Eur. J. Biochem. 233:238–48 [Google Scholar]
  119. Navarro-Avilés G, Jiménez MA, Pérez-Marín MC, González C, Rico M. 119.  et al. 2007. Structural basis for operator and antirepressor recognition by Myxococcus xanthus CarA repressor. Mol. Microbiol. 63:980–94 [Google Scholar]
  120. Pérez-Marín MC, López-Rubio JJ, Murillo FJ, Elías-Arnanz M, Padmanabhan S. 120.  2004. The N terminus of Myxococcus xanthus CarA repressor is an autonomously folding domain that mediates physical and functional interactions with both operator DNA and antirepressor protein. J. Biol. Chem. 279:33093–103 [Google Scholar]
  121. Pérez-Marín MC, Padmanabhan S, Polanco MC, Murillo FJ, Elías-Arnanz M. 121.  2008. Vitamin B12 partners the CarH repressor to downregulate a photoinducible promoter in Myxococcus xanthus. Mol. Microbiol. 67:804–19 [Google Scholar]
  122. López-Rubio JJ, Elías-Arnanz M, Padmanabhan S, Murillo FJ. 122.  2002. A repressor-antirepressor pair links two loci controlling light-induced carotenogenesis in Myxococcus xanthus. J. Biol. Chem. 277:7262–70 [Google Scholar]
  123. López-Rubio JJ, Padmanabhan S, Lázaro JM, Salas M, Murillo FJ, Elías-Arnanz M. 123.  2004. Operator design and mechanism for CarA repressor-mediated down-regulation of the photoinducible carB operon in Myxococcus xanthus. J. Biol. Chem. 279:28945–53 [Google Scholar]
  124. Whitworth DE, Hodgson DA. 124.  2001. Light-induced carotenogenesis in Myxococcus xanthus: evidence that CarS acts as an anti-repressor of CarA. Mol. Microbiol. 42:809–19 [Google Scholar]
  125. León E, Navarro-Avilés G, Santiveri CM, Flores-Flores C, Rico M. 125.  et al. 2010. A bacterial antirepressor with SH3 domain topology mimics operator DNA in sequestering the repressor DNA recognition helix. Nucleic Acids Res 38:5226–41 [Google Scholar]
  126. Takano H, Obitsu S, Beppu T, Ueda K. 126.  2005. Light-induced carotenogenesis in Streptomyces coelicolor A3(2): identification of an extracytoplasmic function sigma factor that directs photodependent transcription of the carotenoid biosynthesis gene cluster. J. Bacteriol. 187:1825–32 [Google Scholar]
  127. Díez AI, Ortiz-Guerrero JM, Ortega A, Elías-Arnanz M, Padmanabhan S, García de la Torre J. 127.  2013. Analytical ultracentrifugation studies of oligomerization and DNA-binding of TtCarH, a Thermus thermophilus coenzyme B12-based photosensory regulator. Eur. Biophys. J. 42:463–76 [Google Scholar]
  128. Takano H, Kondo M, Usui N, Usui T, Ohzeki H. 128.  et al. 2011. Involvement of CarA/LitR and CRP/FNR family transcriptional regulators in light-induced carotenoid production in Thermus thermophilus. J. Bacteriol. 193:2451–59 [Google Scholar]
  129. Takano H, Mise K, Hagiwara K, Hirata N, Watanabe S. 129.  et al. 2015. Role and function of LitR, an adenosyl B12-bound light-sensitive regulator of Bacillus megaterium QM B1551, in regulation of carotenoid production. J. Bacteriol. 197:2301–15 [Google Scholar]
  130. Cheng Z, Li K, Hammad LA, Karty JA, Bauer CE. 130.  2014. Vitamin B12 regulates photosystem gene expression via the CrtJ antirepressor AerR in Rhodobacter capsulatus. Mol. Microbiol. 91:649–64 [Google Scholar]
  131. Vermeulen AJ, Bauer CE. 131.  2015. Members of the PpaA/AerR antirepressor family bind cobalamin. J. Bacteriol. 197:2694–703 [Google Scholar]
  132. Ponnampalam SN, Bauer CE. 132.  1997. DNA binding characteristics of CrtJ. A redox-responding repressor of bacteriochlorophyll, carotenoid, and light harvesting-II gene expression in Rhodobacter capsulatus. J. Biol. Chem. 272:18391–96 [Google Scholar]
  133. Ponnampalam SN, Buggy JJ, Bauer CE. 133.  1995. Characterization of an aerobic repressor that coordinately regulates bacteriochlorophyll, carotenoid, and light harvesting-II expression in Rhodobacter capsulatus. J. Bacteriol. 177:2990–97 [Google Scholar]
  134. Edayathumangalam R, Wu R, Garcia R, Wang Y, Wang W. 134.  et al. 2013. Crystal structure of Bacillussubtilis GabR, an autorepressor and transcriptional activator of gabT. PNAS 110:17820–25 [Google Scholar]
  135. Al-Zyoud WA, Hynson RM, Ganuelas LA, Coster AC, Duff AP. 135.  et al. 2016. Binding of transcription factor GabR to DNA requires recognition of DNA shape at a location distinct from its cognate binding site. Nucleic Acids Res 44:1411–20 [Google Scholar]
  136. Ohlendorf R, Schumacher CH, Richter F, Möglich A. 136.  2016. Library-aided probing of linker determinants in hybrid photoreceptors. ACS Synth. Biol. 5:1117–26 [Google Scholar]
  137. Katz RN, Vickrey TM, Schrauzer GN. 137.  1976. Detection of 4′,5′-anhydroadenosine as the cleavage product of coenzyme B12 in functional holoenzymes. Angew. Chem. Int. Ed. Engl. 15:542–43 [Google Scholar]
  138. Krouwer JS, Schultz RM, Babior BM. 138.  1978. The mechanism of action of ethanolamine ammonia-lyase, an adenosylcobalamin-dependent enzyme. Reaction of the enzyme cofactor complex with 2-aminoacetaldehyde. J. Biol. Chem. 253:1041–47 [Google Scholar]
  139. Garr CD, Finke RG. 139.  1993. Adocobalamin (AdoCbl or coenzyme B12) cobalt-carbon bond homolysis radical-cage effects: product, kinetic, mechanistic, and cage efficiency factor (Fc) studies, plus the possibility that coenzyme B12-dependent enzymes function as “ultimate radical cages” and “ultimate radical traps.”. Inorg. Chem. 32:4414–21 [Google Scholar]
  140. Sension RJ, Cole AG, Harris AD, Fox CC, Woodbury NW. 140.  et al. 2004. Photolysis and recombination of adenosylcobalamin bound to glutamate mutase. J. Am. Chem. Soc. 126:1598–99 [Google Scholar]
  141. Sension RJ, Harris DA, Stickrath A, Cole AG, Fox CC, Marsh EN. 141.  2005. Time-resolved measurements of the photolysis and recombination of adenosylcobalamin bound to glutamate mutase. J. Phys. Chem. B 109:18146–52 [Google Scholar]
  142. Gruber K, Kräutler B. 142.  2016. Coenzyme B12 repurposed for photoregulation of gene expression. Angew. Chem. Int. Ed. Engl. 55:5638–40 [Google Scholar]
  143. Cheng Z, Yamamoto H, Bauer CE. 143.  2016. Cobalamin's (vitamin B12) surprising function as a photoreceptor. Trends Biochem. Sci. 41:647–50 [Google Scholar]
  144. Martinkova M, Kitanishi K, Shimizu T. 144.  2013. Heme-based globin-coupled oxygen sensors: linking oxygen binding to functional regulation of diguanylate cyclase, histidine kinase, and methyl-accepting chemotaxis. J. Biol. Chem. 288:27702–11 [Google Scholar]
  145. García-Moreno D, Polanco MC, Navarro-Avilés G, Murillo FJ, Padmanabhan S, Elías-Arnanz M. 145.  2009. A vitamin B12-based system for conditional expression reveals dksA to be an essential gene in Myxococcus xanthus. J. Bacteriol. 191:3108–19 [Google Scholar]
  146. Kainrath S, Stadler M, Reichhart E, Distel M, Janovjak H. 146.  2017. Green-light-induced inactivation of receptor signaling using cobalamin-binding domains. Angew. Chem. Int. Ed. Engl. 56:4608–11 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error