1932

Abstract

Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are described, and two different types of mathematical models used for studying metabolism are discussed: kinetic models and genome-scale metabolic models. The use of different omics technologies, including transcriptomics, proteomics, metabolomics, and fluxomics, for studying metabolism is presented. Finally, the application of systems biology for analyzing global regulatory structures, engineering the metabolism of cell factories, and analyzing human diseases is discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-061516-044757
2017-06-20
2024-09-12
Loading full text...

Full text loading...

/deliver/fulltext/biochem/86/1/annurev-biochem-061516-044757.html?itemId=/content/journals/10.1146/annurev-biochem-061516-044757&mimeType=html&fmt=ahah

Literature Cited

  1. Keller MA, Turchyn A, Ralser M. 1.  2014. Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean. Mol. Syst. Biol. 10:725 [Google Scholar]
  2. Herzig S, Raemy E, Montessult S, Veuthey JL, Westermann B. 2.  et al. 2012. Identification and functional expression of the mitochondrial pyruvate carrier. Science 337:93–96 [Google Scholar]
  3. Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A. 3.  et al. 2012. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337:96–100 [Google Scholar]
  4. Nielsen J. 4.  2003. It is all about metabolic fluxes. J. Bacteriol. 185:7031–35 [Google Scholar]
  5. Vidal M. 5.  2009. A unifying view of 21st century systems biology. FEBS Lett 583:3891–94 [Google Scholar]
  6. Kell DB, Oliver SG. 6.  2004. Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. BioEssays 26:99–105 [Google Scholar]
  7. Jewett MC, Nielsen J. 7.  2008. Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Res. 8:122–31 [Google Scholar]
  8. Noble D. 8.  1960. Cardiac action and pacemaker potentials based on the Hodkin-Huxley equations. Nature 188:495–97 [Google Scholar]
  9. Fredrickson AG, Megee RD, Tsuchiya HM. 9.  1970. Mathematical models for fermentation processes. Adv. Appl. Microbiol. 13:419–65 [Google Scholar]
  10. Heinrich R, Rapoport TA. 10.  1974. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem. 42:89–95 [Google Scholar]
  11. Kacser H, Burns JA. 11.  1973. The control of flux. Symp. Soc. Exp. Biol. 27:65–104 [Google Scholar]
  12. Kell DB, van Dam K, Westerhoff HV. 12.  1989. Control analysis of microbial growth and productivity. Symp. Soc. Gen. Microbiol. 44:61–93 [Google Scholar]
  13. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H. 13.  et al. 2000. Gene ontology: tool for the unification of biology. Nat. Genet. 25:25–29 [Google Scholar]
  14. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J. 14.  et al. 2001. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929–34 [Google Scholar]
  15. Ideker T, Galitski T, Hood L. 15.  2001. A new approach to decoding life: systems biology. Annu. Rev. Genom. Hum. Genet. 2:343–72 [Google Scholar]
  16. Kitano H. 16.  2002. Computational systems biology. Nature 420:206–10 [Google Scholar]
  17. Kitano H. 17.  2002. Systems biology: a brief overview. Science 295:1662–64 [Google Scholar]
  18. Domach MM, Leung SK, Cahn RE, Cocks GG, Shuler ML. 18.  1984. Computer model for glucose-limited growth of a single cell of Escherichia coli B/r-A. Biotechnol. Bioeng. 26:203–16 [Google Scholar]
  19. Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y. 19.  et al. 1999. E-CELL: software environment for whole-cell simulation. Bioinformatics 15:72–84 [Google Scholar]
  20. Karr JR, Sanghvi JC, MacKlin DN, Gutschow MV, Jacobs JM. 20.  et al. 2012. A whole-cell computational model predicts phenotype from genotype. Cell 150:389–401 [Google Scholar]
  21. Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D. 21.  et al. 2011. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50:4402–10 [Google Scholar]
  22. Nilsson A, Nielsen J. 22.  2016. Metabolic trade-offs in yeast are caused by F1F0-ATP synthase. Sci. Rep. 6:22264 [Google Scholar]
  23. Rizzi M, Baltes M, Theobald U, Reuss M. 23.  1997. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model. Biotechnol. Bioeng. 55:592–608 [Google Scholar]
  24. Chassagnole C, Noissomit-Rizzi N, Schmid JW, Mauch K, Reuss M. 24.  2002. Dynamic modeling of the central carbon metabolism of E. coli. Biotechnol. Bioeng. 79:53–73 [Google Scholar]
  25. Schaff I, Heinisch J, Zimmermann FK. 25.  1989. Overproduction of glycolytic enzymes in yeast. Yeast 5:285–290 [Google Scholar]
  26. Smits HP, Hauf J, Müller S, Hobley TJ, Zimmermann FK. 26.  et al. 2000. Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance fermentative capacity of Saccharomyces cerevisiae. Yeast 16:1325–34 [Google Scholar]
  27. Koebmann BJ, Solem C, Pedersen MB, Nilsson D, Jensen PR. 27.  2002. Expression of genes encoding F1-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis. Appl. Environ. Microbiol. 68:4274–82 [Google Scholar]
  28. Teusink B, Walsch MC, van Dam K, Westerhoff HV. 28.  1998. The danger of metabolic pathways with turbo design. Trends Biochem. Sci. 23:162–69 [Google Scholar]
  29. van de Poll K, Kerkenaar A, Schamhart DHJ. 29.  1974. Isolation of a regulatory mutant of fructose-1,6-diphosphatase in Saccharomyces cerevisiae. J. Bacteriol. 117:965–70 [Google Scholar]
  30. van Heerden JH, Wortel MT, Bruggeman FJ, Heijnen JJ, Bollen YJ. 30.  et al. 2014. Lost in transition: start-up of glycolysis yields subpopulations of non-growing cells. Science 343:1245114 [Google Scholar]
  31. Fraenkel D, Nielsen J. 31.  2016. Trehalose-6-phosphate synthase and stabilization of yeast glycolysis. FEMS Yeast Res 16:fov100 [Google Scholar]
  32. Klipp E, Nordlander B, Krüger R, Gennemark P, Hohmann S. 32.  2005. Integrative model of the response of yeast to osmotic shock. Nat. Biotechnol. 23:975–82 [Google Scholar]
  33. Heinrich R, Neel BG, Rapoport TA. 33.  2002. Mathematical models of protein kinase signal transduction. Mol. Cell 9:957–70 [Google Scholar]
  34. Petelenz-Kurdziel E, Kuehn C, Nordlander B, Klein D, Hong K-K. 34.  et al. 2012. Quantitative analysis of glycerol accumulation, glycolysis and growth under hyper osmotic stress. PLOS Comput. Biol. 9:e1003084 [Google Scholar]
  35. Edwards JS, Palsson BO. 35.  1999. Systems properties of the Haemophilus influenzae Rd metabolic genotype. J. Biol. Chem. 274:17410–16 [Google Scholar]
  36. Edwards JS, Palsson BO. 36.  2001. The Escherichia coli MG1655 in silico metabolic genotype. Its definition, characteristics, and capabilities. PNAS 97:5528–33 [Google Scholar]
  37. Schilling CH, Covert MW, Famili I, Church GM, Edwards JS. 37.  et al. 2002. Genome-scale metabolic model of Helicobacter pylori 26695. J. Bacteriol. 184:4582–93 [Google Scholar]
  38. Förster J, Famili I, Fu P, Palsson BO, Nielsen J. 38.  2003. Genome-scale metabolic reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–53 [Google Scholar]
  39. Famili I, Förster J, Nielsen J, Palsson BO. 39.  2003. Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. PNAS 100:13134–39 [Google Scholar]
  40. Kim TY, Sohn SB, Kim YB, Kim WJ, Lee SY. 40.  2012. Recent advances in reconstruction and applications of genome-scale metabolic models. Curr. Opin. Biotechnol. 23:617–23 [Google Scholar]
  41. Monk J, Nogales J, Palsson BO. 41.  2014. Optimizing genome-scale network reconstructions. Nat. Biotechnol. 32:447–52 [Google Scholar]
  42. Collakova E, Yen JY, Senger RS. 42.  2012. Are we ready for genome-scale modeling in plants?. Plant Sci 191–192:53–70 [Google Scholar]
  43. Orth JB, Conrad TM, Na J, Lerman JA, Nam H. 43.  et al. 2011. A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Mol. Syst. Biol. 7:535 [Google Scholar]
  44. Aung HW, Henry SA, Walker LP. 44.  2013. Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism. Ind. Biotechnol. 9:215–29 [Google Scholar]
  45. Andersen MR, Nielsen ML, Nielsen J. 45.  2008. Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger. Mol. Syst. Biol. 4:178 [Google Scholar]
  46. Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I. 46.  et al. 2013. The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLOS Comput. Biol. 9:e1002980 [Google Scholar]
  47. McCloskey D, Palsson BO, Feist AM. 47.  2013. Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol. Syst. Biol. 9:661 [Google Scholar]
  48. Sanchez BJ, Nielsen J. 48.  2015. Genome scale models of yeast: towards standardized evaluation and consistent omic integration. Integr. Biol. 7:846–58 [Google Scholar]
  49. Herrgård MJ, Swainston N, Dobson P, Dunn WB, Arga KY. 49.  et al. 2008. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol. 26:1155–60 [Google Scholar]
  50. Heavner BD, Smallbone K, Price ND, Walker LP. 50.  2013. Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance. Database 2013:bat059 [Google Scholar]
  51. Aiba S, Matsuoka M. 51.  1979. Identification of metabolic model: citrate production from glucose by Candida lipolytica. Biotechnol. Bioeng. 21:1373–86 [Google Scholar]
  52. Fell DA, Small JK. 52.  1986. Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochem. J. 238:781–86 [Google Scholar]
  53. Edwards JS, Ibarra RU, Palsson BO. 53.  2001. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19:125–30 [Google Scholar]
  54. Schuetz R, Kuepfer L, Sauer U. 54.  2007. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3:119 [Google Scholar]
  55. O'Brien EJ, Monk JM, Palsson BO. 55.  2015. Using genome-scale models to predict biological capabilities. Cell 161:971–87 [Google Scholar]
  56. Ibarra RU, Edwards JS, Palsson BO. 56.  2002. Escherichia coli K12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420:186–89 [Google Scholar]
  57. Fischer E, Sauer U. 57.  2005. Large-scale metabolic in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat. Genet. 37:636–40 [Google Scholar]
  58. Chakrabarti A, Miskovic L, Soh KC, Hatzimanikatis V. 58.  2013. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Biotechnol. J. 8:1043–57 [Google Scholar]
  59. Thiele I, Ronan MTF, Que R, Bordbar A, Diep D. 59.  et al. 2012. Multiscale modeling of metabolism and macromolecular synthesis in E.coli and its applications to the evolution of codon usage. PLOS ONE 7:e45635 [Google Scholar]
  60. Chang RL, Andrews K, Kim D, Li Z, Godzik A. 60.  et al. 2013. Structural systems biology evaluation of metabolic thermotolerance of Escherichia coli. Science 340:1220–23 [Google Scholar]
  61. Feizi A, Österlund T, Petranovic D, Bordel S, Nielsen J. 61.  2013. Genome-scale modeling of the protein secretion machinery in yeast. PLOS ONE 8:e63284 [Google Scholar]
  62. Ideker T, Ozier O, Schwikowski B, Siegel AF. 62.  2002. Discovering regulatory and signaling circuits in molecular interaction networks. Bioinformatics 18:S233–40 [Google Scholar]
  63. Patil KR, Nielsen J. 63.  2005. Uncovering transcriptional regulation of metabolism by using metabolic network topology. PNAS 102:2685–89 [Google Scholar]
  64. Oliveira A, Patil KR, Nielsen J. 64.  2008. Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks. BMC Syst. Biol. 2:17 [Google Scholar]
  65. Väremo L, Nielsen J, Nookaew I. 65.  2013. Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypothesis and methods. Nucleic Acids Res 41:4378–91 [Google Scholar]
  66. DeRisi JL, Iyer VR, Brown PO. 66.  1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–86 [Google Scholar]
  67. Åkesson M, Förster J, Nielsen J. 67.  2004. Integration of gene expression data into genome-scale metabolic models. Metab. Eng. 6:285–93 [Google Scholar]
  68. Machado D, Herrgård M. 68.  2014. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLOS Comput. Biol. 10:e1003580 [Google Scholar]
  69. O'Brien EJ, Lerman JA, Chang RL, Hyduke DR, Palsson BO. 69.  2013. Genome-scale models of metabolism and gene expression extend and refine growth phenotype predictions. Mol. Syst. Biol. 9:693 [Google Scholar]
  70. Fendt S-M, Oliveira AP, Christen S, Picotti P, Dechant RC. 70.  et al. 2010. Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast. Mol. Syst. Biol. 6:432 [Google Scholar]
  71. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD. 71.  et al. 2004. Transcriptional regulatory code of a eukaryotic genome. Nature 431:99–104 [Google Scholar]
  72. Hughes TR, de Boer CG. 72.  2013. Mapping yeast transcriptional networks. Genetics 195:9–36 [Google Scholar]
  73. Österlund T, Bordel S, Nielsen J. 73.  2015. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors. Integr. Biol. 7:560–68 [Google Scholar]
  74. Liu G, Bergenholm D, Nielsen J. 74.  2016. Genome-wide mapping of binding sites reveals multiple biological functions of the transcription factor Cst6 in Saccharomyces cerevisiae. mBio 7:e00559–16 [Google Scholar]
  75. Cho B-K, Federowicz S, Park Y-S, Zengler K, Palsson BO. 75.  2011. Deciphering the transcriptional regulatory logic of amino acid metabolism. Nat. Chem. Biol. 8:65–71 [Google Scholar]
  76. Rossell S, van der Weijden CC, Lindenbergh A, van Tuijl A, Francke C. 76.  et al. 2006. Unraveling the complexity of flux regulation: a new method demonstrated for nutrient starvation in Saccharomyces cerevisiae. PNAS 103:2166–71 [Google Scholar]
  77. Chubukov V, Uhr M, Le Chat L, Kleijn RJ, Jules M. 77.  et al. 2013. Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis. Mol. Syst. Biol. 9:709 [Google Scholar]
  78. Gerosa L, Haverkorn van Rijsewijk BRB, Christodoulou D, Kochanowski K, Schmidt TSB. 78.  et al. 2015. Pseudo-transition analysis identifies the key regulators of dynamic metabolic adaptations from steady-state data. Cell Syst 1:270–82 [Google Scholar]
  79. Bordel S, Agren R, Nielsen J. 79.  2010. Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes. PLOS Comput. Biol. 6:e1000859 [Google Scholar]
  80. Marguerat S, Schmidt A, Codlin S, Chen W, Aebershold R. 80.  et al. 2012. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 151:671–83 [Google Scholar]
  81. Schmidt A, Kochanowski K, Vedelaar S, Ahrne E, Volkmer B. 81.  et al. 2016. The quantitative and condition-dependent Escherichia coli proteome. Nat. Biotechnol. 34:104–10 [Google Scholar]
  82. Canelas AB, Harrison N, Fazio A, Zhang J, Pitkänen JP. 82.  et al. 2010. Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. Nat. Commun. 1:145 [Google Scholar]
  83. Hong K-K, Hou J, Shoaie S, Nielsen J, Bordel S. 83.  2012. Dynamic 13C-labeling experiments prove important differences in protein turnover rate between two Saccharomyces cerevisiae strains. FEMS Yeast Res 12:741–47 [Google Scholar]
  84. Kafri MN, Metzi-Raz E, Jona G, Barkai N. 84.  2016. The costs of protein synthesis. Cell Rep 14:1–10 [Google Scholar]
  85. Scott M, Gunderson CW, Mateescu EM, Zhong Z, Hwa T. 85.  2010. Interdependence of cell growth and gene expression: origins and consequences. Science 330:1099–102 [Google Scholar]
  86. Basan M, Hui S, Okano H, Zhang Z, Shen Y. 86.  et al. 2015. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528:99–104 [Google Scholar]
  87. Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M. 87.  1997. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol. Bioeng. 55:305–16 [Google Scholar]
  88. Villas-Boas SG, Højer-Pedersen J, Åkesson M, Smedsgaard J, Nielsen J. 88.  2005. Global metabolite analysis of yeast: evaluation of sample preparation methods. 221155–69
  89. Link H, Fuhrer T, Gerosa L, Zamboni N, Sauer U. 89.  2015. Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat. Methods 12:1091–97 [Google Scholar]
  90. Cakir T, Patil KR, Önsan ZI, Ülgen , Kirdar B. 90.  et al. 2006. Integration of metabolome data with metabolic networks reveals reporter reactions. Mol. Syst. Biol. 2:50 [Google Scholar]
  91. Nielsen J, Oliver S. 91.  2005. The next wave in metabolome analysis. Trends Biotechnol 23:544–46 [Google Scholar]
  92. Wiechert W. 92.  2001. 13C metabolic flux analysis. Metab. Eng. 3:195–206 [Google Scholar]
  93. Zamboni N. 93.  2011. 13C metabolic flux analysis in complex systems. Curr. Opin. Biotechnol. 22:103–8 [Google Scholar]
  94. Nöh K, Grönke K, Luo B, Takors R, Oldiges M. 94.  et al. 2007. Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. J. Biotechnol. 129:249–67 [Google Scholar]
  95. Leighty RW, Antoniewicz MR. 95.  2011. Dynamic metabolic flux analysis (DMFA): a framework for determining fluxes at metabolic non-steady state. Metab. Eng. 13:745–55 [Google Scholar]
  96. Maier K, Hofmann U, Bauer A, Niebel A, Vacun G. 96.  et al. 2009. Quantification of statin effects on hepatic cholesterol synthesis by transient 13C-flux analysis. Metab. Eng. 11:292–309 [Google Scholar]
  97. Metallo CM, Gemeiro PA, Bell EL, Mattaini KR, Yang J. 97.  et al. 2012. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380–84 [Google Scholar]
  98. Fendt S-M, Bell EL, Keibler MA, Davidson SM, Wirth GJ. 98.  et al. 2013. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism. Cancer Res 73:4429–38 [Google Scholar]
  99. Ying W. 99.  2008. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid. Redox Signal. 10:179–206 [Google Scholar]
  100. Nissen T, Kielland-Brandt MC, Nielsen J, Villadsen J. 100.  2000. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab. Eng. 2:69–77 [Google Scholar]
  101. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L. 101.  et al. 2009. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–60 [Google Scholar]
  102. Lim J-H, Lee Y-M, Chun Y-S, Chen J, Kim J-E. 102.  et al. 2010. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α. Mol. Cell 38:864–78 [Google Scholar]
  103. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S. 103.  et al. 2003. Small molecular activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–96 [Google Scholar]
  104. Canto C, Auwerx J. 104.  2009. Calorie restriction, SIRT1 and longevity. Trends. Endocrinol. Metab. 20:325–31 [Google Scholar]
  105. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C. 105.  et al. 2006. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–42 [Google Scholar]
  106. Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T. 106.  et al. 2011. Calorie restriction-like effects of 30 days or resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14:612–22 [Google Scholar]
  107. Beher D, Wu J, Cumine S, Kim KW, Lu S-C. 107.  et al. 2009. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem. Biol. Drug Des. 74:619–24 [Google Scholar]
  108. Ehninger D, Neff F, Xie K. 108.  2014. Longevity, aging and rapamycin. Cell. Mol. Life Sci. 71:4325–46 [Google Scholar]
  109. Diaz-Troya S, Perez-Perez ME, Florencio FJ, Crespo JL. 109.  2008. The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 4:851–65 [Google Scholar]
  110. Madeo F, Eisenberg T, Büttner T, Ruckenstuhl C, Kroemer G. 110.  2010. Spermidine: a novel autophagy inducer and longevity elixir. Autophagy 6:160–62 [Google Scholar]
  111. Usaite R, Jewett MC, Oliveira AP, Yates JR III, Olsson L, Nielsen J. 111.  et al. 2009. Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator. Mol. Syst. Biol. 5:319 [Google Scholar]
  112. Zhang J, Vaga S, Chumnanpuen P, Kumar R, Vemuri GN. 112.  et al. 2011. Mapping the interactions of Snf1 with TORC1 in Saccharomyces cerevisiae. Mol. Syst. Biol. 7:545 [Google Scholar]
  113. Garcia-Salcedo R, Lubitz T, Beltran G, Elbing K, Tian Y. 113.  et al. 2014. Glucose de-repression by yeast AMP-activated protein kinase SNF1 is controlled via at least two independent steps. FEBS J 281:1901–17 [Google Scholar]
  114. Oliveira AP, Ludwig C, Zampieri M, Weisser H, Aebershold R. 114.  et al. 2015. Dynamic phosphoproteomics reveals TORC1-dependent regulation of yeast nucleotide and amino acid biosynthesis. Sci. Signal. 8:1–15 [Google Scholar]
  115. Bailey JE. 115.  1991. Toward a science of metabolic engineering. Science 252:1668–74 [Google Scholar]
  116. Stephanopoulos G, Vallino JJ. 116.  1991. Network rigidity and metabolic engineering in metabolite overproduction. Science 252:1675–81 [Google Scholar]
  117. Nielsen J. 117.  2001. Metabolic engineering. Appl. Microbiol. Biotechnol. 55:263–83 [Google Scholar]
  118. Nielsen J, Keasling JD. 118.  2016. Engineering cellular metabolism. Cell 164:1185–97 [Google Scholar]
  119. Choi YJ, Lee SY. 119.  2013. Microbial production of short-chain alkanes. Nature 502:571–74 [Google Scholar]
  120. Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V. 120.  et al. 2016. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat. Commun. 7:11709 [Google Scholar]
  121. Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A. 121.  et al. 2010. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–62 [Google Scholar]
  122. Nakamura CE, Whited GM. 122.  2003. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14:454–59 [Google Scholar]
  123. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A. 123.  et al. 2011. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol. 7:445–52 [Google Scholar]
  124. Becker J, Zelder O, Häfner S, Schröder H, Wittmann C. 124.  2011. From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab. Eng. 13:159–68 [Google Scholar]
  125. Park JH, Lee KH, Kim TY, Lee SY. 125.  2007. Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation. PNAS 104:7797–802 [Google Scholar]
  126. Scalcinati G, Knuf C, Partow S, Chen Y, Maury J. 126.  et al. 2012. Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquiterpene α-santalene in a fed-batch mode. Metab. Eng. 14:91–103 [Google Scholar]
  127. Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL. 127.  et al. 2006. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–43 [Google Scholar]
  128. Szczebara FM, Chandeller C, Villeret C, Masurel A, Dupont C. 128.  et al. 2003. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat. Biotechnol. 21:143–49 [Google Scholar]
  129. Galanie S, Thodey K, Tenchard IJ, Interrante MF, Smolke CD. 129.  2015. Complete biosynthesis of opioids in yeast. Science 349:1095–100 [Google Scholar]
  130. Li M, Kildegaard KR, Rodriguez A, Borodina I, Nielsen J. 130.  2015. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab. Eng. 32:1–11 [Google Scholar]
  131. Hong K-K, Nielsen J. 131.  2012. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell. Mol. Life Sci. 69:2671–90 [Google Scholar]
  132. Nielsen J. 132.  2015. Yeast cell factories on the horizon. Science 349:1050–51 [Google Scholar]
  133. Burgard AP, Maranas CD. 133.  2001. Probing the performance limits of the Escherichia coli metabolic network subject to gene additions or deletions. Biotechnol. Bioeng. 74:364–75 [Google Scholar]
  134. Patil KR, Rocha I, Förster J, Nielsen J. 134.  2005. Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinform 6:308 [Google Scholar]
  135. Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR. 135.  et al. 2005. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol. Bioeng. 91:643–48 [Google Scholar]
  136. Bro C, Regenberg B, Förster J, Nielsen J. 136.  2006. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng. 8:102–11 [Google Scholar]
  137. Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L. 137.  et al. 2013. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLOS ONE 8:e54144 [Google Scholar]
  138. Hadadi N, Hatzimanikatis V. 138.  2015. Design of computational retrobiosynthesis tools for the design of de novo synthetic pathways. Curr. Opin. Chem. Biol. 28:99–104 [Google Scholar]
  139. Brunk E, George KW, Alonso-Gutierrez J, Thompson M, Baldoo E. 139.  et al. 2016. Characterizing strain variation in engineered E. coli using a multi-omics-based workflow. Cell Syst 2:335–46 [Google Scholar]
  140. Hong K-K, Vongsangnak W, Vemuri GN, Nielsen J. 140.  2011. Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. PNAS 108:12179–84S [Google Scholar]
  141. Ostergaard S, Olsson L, Johnston M, Nielsen J. 141.  2000. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat. Biotechnol 18:1283–86 [Google Scholar]
  142. Bro C, Knudsen S, Regenberg B, Olsson L, Nielsen J. 142.  2005. Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl. Environ. Microbiol. 71:6465–72 [Google Scholar]
  143. de Jongh WA, Bro C, Ostergaard S, Regenberg B, Olsson L. 143.  et al. 2008. The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae. Biotechnol. Bioeng 101:317–26 [Google Scholar]
  144. Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S. 144.  et al. 2014. Altered sterol composition renders yeast thermotolerant. Science 346:75–78 [Google Scholar]
  145. Vander Heiden MG, Cantley LC, Thompson CB. 145.  2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–33 [Google Scholar]
  146. Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzle ED. 146.  et al. 2011. Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477:225–28 [Google Scholar]
  147. Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A. 147.  et al. 2015. Vitamin C selectively kills KRAS and. BRAF mutant colorectal cancer cells by targeting GADPH. Science 350:1391–96 [Google Scholar]
  148. Mardinoglu A, Nielsen J. 148.  2015. New paradigms for metabolic modeling of human cells. Curr. Opin. Biotechnol. 34:91–97 [Google Scholar]
  149. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML. 149.  et al. 2007. Global reconstruction of the human metabolic network based on genomic and bibliome data. PNAS 104:1777–82 [Google Scholar]
  150. Ma H, Sorokin A, Mazein A, Selkov A, Selkov E. 150.  et al. 2007. The Edinburgh human metabolic network reconstruction and its functional analysis. Mol. Syst. Biol. 3:135 [Google Scholar]
  151. Thiele I, Swainston N, Fleming RMT, Hoppe A, Sahoo S. 151.  et al. 2013. A community-driven global reconstruction of human metabolism. Nat. Biotechnol. 31:419–25 [Google Scholar]
  152. Agren R, Mardinoglu A, Asplund A, Kampf C, Uhlen M. 152.  et al. 2014. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol. Syst. Biol. 10:721 [Google Scholar]
  153. Mardinoglu A, Agren R, Kampf C, Asplund A, Uhlen M. 153.  et al. 2013. Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol. Syst. Biol. 9:949 [Google Scholar]
  154. Mardinoglu A, Aagren R, Kampf C, Asplund A, Uhlen M. 154.  et al. 2014. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat. Commun. 5:3083 [Google Scholar]
  155. Väremo L, Scheele C, Broholm C, Mardinoglu A, Kampf C. 155.  et al. 2015. Proteome- and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes. Cell Rep 11:1–13 [Google Scholar]
  156. Mardinoglu A, Bjornson E, Zhang C, Klevstig M, Söderlund S. 156.  et al. 2017. Personal model-assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD. Mol. Syst. Biol. 13:916 [Google Scholar]
  157. Shlomi T, Cabili MN, Herrgård MJ, Palsson BO, Ruppin E. 157.  2008. Network-based prediction of human tissue-specific metabolism. Nat. Biotechnol. 26:1003–10 [Google Scholar]
  158. Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I. 158.  et al. 2012. Reconstruction of genome-scale active metabolic networks for 60 human cell types and 16 cancer types using INIT. PLOS Comput. Biol. 8:e1002518 [Google Scholar]
  159. Uhlen M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P. 159.  et al. 2015. Tissue-based map of the human proteome. Science 347:1260419 [Google Scholar]
  160. Liu Y, Beyer A, Aebershold R. 160.  2016. On the dependency of cellular protein levels on mRNA abundance. Cell 165:535–50 [Google Scholar]
  161. Lundberg E, Fagerberg L, Klevebring D, Matic I, Geiger T. 161.  et al. 2010. Defining the transcriptome and proteome in three functionally different human cell lines. Mol. Syst. Biol. 6:450 [Google Scholar]
  162. Uhlen M, Hallström BM, Lindskog C, Mardinoglu A, Ponten F. 162.  et al. 2016. Transcriptomics resources of human tissues and organs. Mol. Syst. Biol. 12:862 [Google Scholar]
  163. Yizhak K, Chaneton B, Gottlieb E, Ruppin E. 163.  2015. Modeling cancer metabolism on a genome scale. Mol. Syst. Biol. 11:817 [Google Scholar]
  164. Jerby-Arnon L, Pfetzer N, Waldman YY, McGarry L, James D. 164.  et al. 2014. Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell 158:1199–209 [Google Scholar]
  165. Shlomi T, Benyamini T, Gottlieb E, Sharan R, Ruppin E. 165.  2011. Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect. PLOS Comput. Biol. 7:e1002018 [Google Scholar]
  166. Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E. 166.  et al. 2011. Predicting selective drug targets in cancer through metabolic networks. Mol. Syst. Biol. 7:501 [Google Scholar]
  167. Rabinovich S, Adler L, Yizhak K, Sarver A, Silberman A. 167.  et al. 2015. Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature 527:379–83 [Google Scholar]
  168. Gatto F, Nookaew I, Nielsen J. 168.  2014. Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma. PNAS 111:E866–75 [Google Scholar]
  169. Gatto F, Volpi N, Nilsson H, Nookaew I, Maruzzo M. 169.  et al. 2016. Glycosaminoglycan profiling in patients’ plasma and urine predicts the occurrence of metastatic clear cell renal cell carcinoma. Cell Rep 15:1–15 [Google Scholar]
  170. Tremaroli V, Bäckhed F. 170.  2012. Functional interactions between the gut microbiota and host metabolism. Nature 489:242–49 [Google Scholar]
  171. Qin J, Li R, Raes J, Arumigam M, Burgdorf KS. 171.  et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65 [Google Scholar]
  172. Qin J, Li Y, Cai Z, Li S, Zhu J. 172.  et al. 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60 [Google Scholar]
  173. Karlsson F, Tremaroli V, Nookaew I, Bergström G, Behre CJ. 173.  et al. 2013. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103 [Google Scholar]
  174. Karlsson F, Tremaroli V, Nielsen J, Bäckhed F. 174.  2013. Assessing the human gut microbiota in metabolic diseases. Diabetes 62:3341–49 [Google Scholar]
  175. Karlsson F, Fåk F, Nookaew I, Tremaroli V, Fagerberg B. 175.  et al. 2012. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3:1245 [Google Scholar]
  176. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE. 176.  et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–63 [Google Scholar]
  177. Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P. 177.  et al. 2015. Metabolic dependencies drive species co-occurrence in diverse microbial communities. PNAS 112:6449–54 [Google Scholar]
  178. Shoaie S, Karlsson F, Mardinoglu A, Nookaew I, Bordel S. 178.  et al. 2013. Understanding the interactions between bacteria in the human gut through metabolic modeling. Sci. Rep. 3:2532 [Google Scholar]
  179. Shoaie S, Ghaffari P, Kovatcheva-Datchary P, Mardinoglu A, Sen P. 179.  et al. 2015. Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab 22:320–31 [Google Scholar]
  180. Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N. 180.  et al. 2015. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350:1079–84 [Google Scholar]
  181. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K. 181.  et al. 2015. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–89 [Google Scholar]
/content/journals/10.1146/annurev-biochem-061516-044757
Loading
/content/journals/10.1146/annurev-biochem-061516-044757
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error