1932

Abstract

Covalent inhibitors are widely used in drug discovery and chemical biology. Although covalent inhibitors are frequently designed to react with noncatalytic cysteines, many ligand binding sites lack an accessible cysteine. Here, we review recent advances in the chemical biology of lysine-targeted covalent inhibitors and chemoproteomic probes. By analyzing crystal structures of proteins bound to common metabolites and enzyme cofactors, we identify a large set of mostly unexplored lysines that are potentially targetable with covalent inhibitors. In addition, we describe mass spectrometry–based approaches for determining proteome-wide lysine ligandability and lysine-reactive chemoproteomic probes for assessing drug–target engagement. Finally, we discuss the design of amine-reactive inhibitors that form reversible covalent bonds with their protein targets.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-061516-044805
2019-06-20
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/biochem/88/1/annurev-biochem-061516-044805.html?itemId=/content/journals/10.1146/annurev-biochem-061516-044805&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Baillie TA. 2016. Targeted covalent inhibitors for drug design. Angew. Chem. Int. Ed. Engl. 55:13408–21
    [Google Scholar]
  2. 2. 
    Jones LH. 2018. Reactive chemical probes: beyond the kinase cysteinome. Angew. Chem. Int. Ed. Engl. 57:9220–23
    [Google Scholar]
  3. 3. 
    Copeland RA, Pompliano DL, Meek TD 2006. Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug Discov. 5:730–39
    [Google Scholar]
  4. 4. 
    Copeland RA. 2016. The drug-target residence time model: a 10-year retrospective. Nat. Rev. Drug Discov. 15:87–95
    [Google Scholar]
  5. 5. 
    Moellering RE, Cravatt BF. 2012. How chemoproteomics can enable drug discovery and development. Chem. Biol. 19:11–22
    [Google Scholar]
  6. 6. 
    Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM 2013. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503:548–51
    [Google Scholar]
  7. 7. 
    Lito P, Solomon M, Li LS, Hansen R, Rosen N 2016. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science 351:604–8
    [Google Scholar]
  8. 8. 
    Van Neck T, Pannecouque C, Vanstreels E, Stevens M, Dehaen W, Daelemans D 2008. Inhibition of the CRM1-mediated nucleocytoplasmic transport by N-azolylacrylates: structure-activity relationship and mechanism of action. Bioorg. Med. Chem. 16:9487–97
    [Google Scholar]
  9. 9. 
    Neggers JE, Vercruysse T, Jacquemyn M, Vanstreels E, Baloglu E et al. 2015. Identifying drug-target selectivity of small-molecule CRM1/XPO1 inhibitors by CRISPR/Cas9 genome editing. Chem. Biol. 22:107–16
    [Google Scholar]
  10. 10. 
    Patricelli MP, Janes MR, Li L-S, Hansen R, Peters U et al. 2016. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov 6:316–29
    [Google Scholar]
  11. 11. 
    Walker CJ, Oaks JJ, Santhanam R, Neviani P, Harb JG et al. 2013. Preclinical and clinical efficacy of XPO1/CRM1 inhibition by the karyopherin inhibitor KPT-330 in Ph+ leukemias. Blood 122:3034–44
    [Google Scholar]
  12. 12. 
    Lapalombella R, Sun Q, Williams K, Tangeman L, Jha S et al. 2012. Selective inhibitors of nuclear export show that CRM1/XPO1 is a target in chronic lymphocytic leukemia. Blood 120:4621–34
    [Google Scholar]
  13. 13. 
    Miller RM, Taunton J. 2014. Targeting protein kinases with selective and semipromiscuous covalent inhibitors. Methods Enzymol 548:93–116
    [Google Scholar]
  14. 14. 
    Liu Q, Sabnis Y, Zhao Z, Zhang T, Buhrlage SJ et al. 2013. Developing irreversible inhibitors of the protein kinase cysteinome. Chem. Biol. 20:146–59
    [Google Scholar]
  15. 15. 
    Singh J, Petter RC, Kluge AF 2010. Targeted covalent drugs of the kinase family. Curr. Opin. Chem. Biol. 14:475–80
    [Google Scholar]
  16. 16. 
    Barf T, Kaptein A. 2012. Irreversible protein kinase inhibitors: balancing the benefits and risks. J. Med. Chem. 55:6243–62
    [Google Scholar]
  17. 17. 
    Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M et al. 2008. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27:4702–11
    [Google Scholar]
  18. 18. 
    Cross DAE, Ashton SE, Ghiorghiu S, Eberlein C, Nebhan CA et al. 2014. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 4:1046–61
    [Google Scholar]
  19. 19. 
    Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D et al. 2010. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. PNAS 107:13075–80
    [Google Scholar]
  20. 20. 
    Rabindran SK, Discafani CM, Rosfjord EC, Baxter M, Floyd MB et al. 2004. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res 64:3958–65
    [Google Scholar]
  21. 21. 
    Byrd JC, Harrington B, O'Brien S, Jones JA, Schuh A et al. 2016. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 374:323–32
    [Google Scholar]
  22. 22. 
    Grimster NP, Connelly S, Baranczak A, Dong J, Krasnova LB et al. 2013. Aromatic sulfonyl fluorides covalently kinetically stabilize transthyretin to prevent amyloidogenesis while affording a fluorescent conjugate. J. Am. Chem. Soc. 135:5656–68
    [Google Scholar]
  23. 23. 
    Hoppmann C, Wang L. 2016. Proximity-enabled bioreactivity to generate covalent peptide inhibitors of p53–Mdm4. Chem. Commun. 52:5140–43
    [Google Scholar]
  24. 24. 
    Zhao Q, Ouyang X, Wan X, Gajiwala KS, Kath JC et al. 2017. Broad-spectrum kinase profiling in live cells with lysine-targeted sulfonyl fluoride probes. J. Am. Chem. Soc. 139:680–85
    [Google Scholar]
  25. 25. 
    Gushwa NN, Kang S, Chen J, Taunton J 2012. Selective targeting of distinct active site nucleophiles by irreversible SRC-family kinase inhibitors. J. Am. Chem. Soc. 134:20214–17
    [Google Scholar]
  26. 26. 
    Baranczak A, Liu Y, Connelly S, Du W-GH, Greiner ER et al. 2015. A fluorogenic aryl fluorosulfate for intraorganellar transthyretin imaging in living cells and in Caenorhabditis elegans. J. Am. Chem. . Soc 137:7404–14
    [Google Scholar]
  27. 27. 
    Mortenson DE, Brighty GJ, Plate L, Bare G, Chen W et al. 2018. “Inverse drug discovery” strategy to identify proteins that are targeted by latent electrophiles as exemplified by aryl fluorosulfates. J. Am. Chem. Soc. 140:200–10
    [Google Scholar]
  28. 28. 
    Ihle NT, Williams R, Chow S, Chew W, Berggren MI et al. 2004. Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling. Mol. Cancer Ther. 3:763–72
    [Google Scholar]
  29. 29. 
    Anscombe E, Meschini E, Mora-Vidal R, Martin MP, Staunton D et al. 2015. Identification and characterization of an irreversible inhibitor of CDK2. Chem. Biol. 22:1–6
    [Google Scholar]
  30. 30. 
    Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM et al. 2012. Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 485:321–26
    [Google Scholar]
  31. 31. 
    Suh EH, Liu Y, Connelly S, Genereux JC, Wilson IA, Kelly JW 2013. Stilbene vinyl sulfonamides as fluorogenic sensors of and traceless covalent kinetic stabilizers of transthyretin that prevent amyloidogenesis. J. Am. Chem. Soc. 135:17869–80
    [Google Scholar]
  32. 32. 
    Pettinger J, Le Bihan YV, Widya M, van Montfort RLM, Jones K, Cheeseman MD 2017. An irreversible inhibitor of HSP72 that unexpectedly targets lysine-56. Angew. Chem. Int. Ed. Engl. 56:3536–40
    [Google Scholar]
  33. 33. 
    Mohamed MS, Larson DL, Takemori AE, Portoghese PS 1986. Activity of N-methyl-α- and -β-funaltrexamine at opioid receptors. J. Med. Chem. 29:1551–53
    [Google Scholar]
  34. 34. 
    Shannon DA, Banerjee R, Webster ER, Bak DW, Wang C, Weerapana E 2014. Investigating the proteome reactivity and selectivity of aryl halides. J. Am. Chem. Soc. 136:3330–33
    [Google Scholar]
  35. 35. 
    Choi S, Connelly S, Reixach N, Wilson IA, Kelly JW 2010. Chemoselective small molecules that covalently modify one lysine in a non-enzyme protein in plasma. Nat. Chem. Biol. 6:133–39
    [Google Scholar]
  36. 36. 
    Tamura T, Ueda T, Goto T, Tsukidate T, Shapira Y et al. 2018. Rapid labelling and covalent inhibition of intracellular native proteins using ligand-directed N-acyl-N-alkyl sulfonamide. Nat. Commun. 9:1–12
    [Google Scholar]
  37. 37. 
    Dalton SE, Dittus L, Thomas DA, Convery MA, Nunes J et al. 2018. Selectively targeting the kinome-conserved lysine of PI3Kδ as a general approach to covalent kinase inhibition. J. Am. Chem. Soc. 140:932–39
    [Google Scholar]
  38. 38. 
    Yasueda Y, Tamura T, Fujisawa A, Kuwata K, Tsukiji S et al. 2016. A set of organelle-localizable reactive molecules for mitochondrial chemical proteomics in living cells and brain tissues. J. Am. Chem. Soc. 138:7592–602
    [Google Scholar]
  39. 39. 
    Patricelli MP, Szardenings AK, Liyanage M, Nomanbhoy TK, Wu M et al. 2007. Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry 46:350–58
    [Google Scholar]
  40. 40. 
    Patricelli MP, Nomanbhoy TK, Wu J, Brown H, Zhou D et al. 2011. In situ kinase profiling reveals functionally relevant properties of native kinases. Chem. Biol. 18:699–710
    [Google Scholar]
  41. 41. 
    Hacker SM, Backus KM, Lazear MR, Forli S, Correia BE, Cravatt BF 2017. Global profiling of lysine reactivity and ligandability in the human proteome. Nat. Chem. 9:1181–90
    [Google Scholar]
  42. 42. 
    Ward CC, Kleinman JI, Nomura DK 2017. NHS-esters as versatile reactivity-based probes for mapping proteome-wide ligandable hotspots. ACS Chem. Biol. 12:1478–83
    [Google Scholar]
  43. 43. 
    Metcalf B, Chuang C, Dufu K, Patel MP, Silva-Garcia A et al. 2017. Discovery of GBT440, an orally bioavailable R-state stabilizer of sickle cell hemoglobin. ACS Med. Chem. Lett. 8:321–26
    [Google Scholar]
  44. 44. 
    Cross BCS, Bond PJ, Sadowski PG, Jha BK, Zak J et al. 2012. The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. PNAS 109:E869–78
    [Google Scholar]
  45. 45. 
    Sanches M, Duffy NM, Talukdar M, Thevakumaran N, Chiovitti D et al. 2014. Structure and mechanism of action of the hydroxy-aryl-aldehyde class of IRE1 endoribonuclease inhibitors. Nat. Commun. 5:1–16
    [Google Scholar]
  46. 46. 
    Cal PMSD, Vicente JB, Pires E, Coelho AV, Veiros LF et al. 2012. Iminoboronates: a new strategy for reversible protein modification. J. Am. Chem. Soc. 134:10299–305
    [Google Scholar]
  47. 47. 
    Akçay G, Belmonte MA, Aquila B, Chuaqui C, Hird AW et al. 2016. Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain. Nat. Chem. Biol. 12:931–36
    [Google Scholar]
  48. 48. 
    Pettinger J, Jones K, Cheeseman MD 2017. Lysine-targeting covalent inhibitors. Agnew. Chem. Int. Ed. Eng. 56:15200–9
    [Google Scholar]
  49. 49. 
    Aksnes H, Drazic A, Marie M, Arnesen T 2016. First things first: vital protein marks by N-terminal acetyltransferases. Trends Biochem. Sci. 41:746–60
    [Google Scholar]
  50. 50. 
    Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D et al. 2017. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med. 23:1369–76
    [Google Scholar]
  51. 51. 
    Wang X, Feng J, Xue Y, Guan Z, Zhang D et al. 2016. Structural basis of N6-adenosine methylation by the METTL3–METTL14 complex. Nature 534:575–78
    [Google Scholar]
  52. 52. 
    Isom DG, Castañeda CA, Cannon BR, García-Moreno E B 2011. Large shifts in pKa values of lysine residues buried inside a protein. PNAS 108:5260–65
    [Google Scholar]
  53. 53. 
    Baeza J, Smallegan MJ, Denu JM 2015. Site-specific reactivity of nonenzymatic lysine acetylation. ACS Chem. Biol. 10:122–28
    [Google Scholar]
  54. 54. 
    Cardote TAF, Gadd MS, Ciulli A 2017. Crystal structure of the Cul2-Rbx1-EloBC-VHL ubiquitin ligase complex. Structure 25:901–11
    [Google Scholar]
  55. 55. 
    Schneekloth JS, Fonseca FN, Koldobskiy M, Mandal A, Deshaies R et al. 2004. Chemical genetic control of protein levels: selective in vivo targeted degradation. J. Am. Chem. Soc. 126:3748–54
    [Google Scholar]
  56. 56. 
    Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ 2001. Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. PNAS 98:8554–59
    [Google Scholar]
  57. 57. 
    Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A et al. 2015. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348:1376–81
    [Google Scholar]
  58. 58. 
    Lai AC, Crews CM. 2016. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16:101–14
    [Google Scholar]
  59. 59. 
    Smith GA, Uchida K, Weiss A, Taunton J 2016. Essential biphasic role for JAK3 catalytic activity in IL-2 receptor signaling. Nat. Chem. Biol. 12:373–79
    [Google Scholar]
  60. 60. 
    Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M et al. 2007. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol. 25:1035–44
    [Google Scholar]
  61. 61. 
    Savitski MM, Reinhard FBM, Franken H, Werner T, Savitski MF et al. 2014. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346:1255784
    [Google Scholar]
  62. 62. 
    Xie T, Lim SM, Westover KD, Dodge ME, Ercan D et al. 2014. Pharmacological targeting of the pseudokinase Her3. Nat. Chem. Biol. 10:1006–12
    [Google Scholar]
  63. 63. 
    Zhang T, Kwiatkowski N, Olson CM, Dixon-Clarke SE, Abraham BJ et al. 2016. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nat. Chem. Biol. 12:876–84
    [Google Scholar]
  64. 64. 
    Kwiatkowski N, Zhang T, Rahl PB, Abraham BJ, Reddy J et al. 2014. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511:616–20
    [Google Scholar]
  65. 65. 
    Tan L, Nomanbhoy T, Gurbani D, Patricelli M, Hunter J et al. 2015. Discovery of type II inhibitors of TGFβ-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase kinase kinase 2 (MAP4K2). J. Med. Chem. 58:183–96
    [Google Scholar]
  66. 66. 
    Matthews JM, Bhatt S, Patricelli MP, Nomanbhoy TK, Jiang X et al. 2016. Pathophysiological significance and therapeutic targeting of germinal center kinase in diffuse large B-cell lymphoma. Blood 128:239–48
    [Google Scholar]
  67. 67. 
    Yang Q, Deng X, Lu B, Cameron M, Fearns C et al. 2010. Pharmacological inhibition of BMK1 suppresses tumor growth through promyelocytic leukemia protein. Cancer Cell 18:258–67
    [Google Scholar]
  68. 68. 
    Ronan B, Flamand O, Vescovi L, Dureuil C, Durand L et al. 2014. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat. Chem. Biol. 10:1013–19
    [Google Scholar]
  69. 69. 
    Xiao Y, Guo L, Wang Y 2014. A targeted quantitative proteomics strategy for global kinome profiling of cancer cells and tissues. Mol. Cell. Proteom. 13:1065–75
    [Google Scholar]
  70. 70. 
    Worboys JD, Sinclair J, Yuan Y, Jørgensen C 2014. Systematic evaluation of quantotypic peptides for targeted analysis of the human kinome. Nat. Methods 11:1041–44
    [Google Scholar]
  71. 71. 
    McAllister FE, Niepel M, Haas W, Huttlin E, Sorger PK, Gygi SP 2013. Mass spectrometry based method to increase throughput for kinome analyses using ATP probes. Anal. Chem. 85:4666–74
    [Google Scholar]
  72. 72. 
    Nordin BE, Liu Y, Aban A, Brown HE, Wu J et al. 2015. ATP acyl phosphate reactivity reveals native conformations of Hsp90 paralogs and inhibitor target engagement. Biochemistry 54:3024–36
    [Google Scholar]
  73. 73. 
    Gardner Swain C, Scott CB 1953. Rates of solvolysis of some alkyl fluorides and chlorides. J. Am. Chem. Soc. 75:246–48
    [Google Scholar]
  74. 74. 
    Dong J, Krasnova L, Finn MG, Sharpless KB 2014. Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry. Angew. Chem. Int. Ed. Engl. 53:9430–48
    [Google Scholar]
  75. 75. 
    Narayanan A, Jones LH. 2015. Sulfonyl fluorides as privileged warheads in chemical biology. Chem. Sci. 6:2650–59
    [Google Scholar]
  76. 76. 
    Ciuffarin E, Senatore L, Isola M 1972. Nucleophilic substitution at four coordinate sulphur. Mobility of the leaving group. J. Chem. Soc. Perkin Trans. 2 0:468–71
    [Google Scholar]
  77. 77. 
    Aberlin ME, Bunton CA. 1970. The spontaneous hydrolysis of sulfonyl fluorides. J. Org. Chem. 35:1825–28
    [Google Scholar]
  78. 78. 
    Mukherjee H, Debreczeni J, Breed J, Tentarelli S, Aquila B et al. 2017. A study of the reactivity of S(VI)-F containing warheads with nucleophilic amino-acid side chains under physiological conditions. Org. Biomol. Chem. 15:9685–95
    [Google Scholar]
  79. 79. 
    Zoller MJ, Taylor SS. 1979. Affinity labeling of the nucleotide binding site of the catalytic subunit of cAMP-dependent protein kinase site using p-fluorosulfonyl-[14C]benzoyl 5′-adenosine. J. Biol. Chem. 254:8363–68
    [Google Scholar]
  80. 80. 
    Hett EC, Xu H, Geoghegan KF, Gopalsamy A, Kyne RE et al. 2015. Rational targeting of active-site tyrosine residues using sulfonyl fluoride probes. ACS Chem. Biol. 10:1094–98
    [Google Scholar]
  81. 81. 
    Serafimova IM, Pufall MA, Krishnan S, Duda K, Cohen MS et al. 2012. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Nat. Chem. Biol. 8:471–76
    [Google Scholar]
  82. 82. 
    Miller RM, Paavilainen VO, Krishnan S, Serafimova IM, Taunton J 2013. Electrophilic fragment-based design of reversible covalent kinase inhibitors. J. Am. Chem. Soc. 135:5298–301
    [Google Scholar]
  83. 83. 
    Krishnan S, Miller RM, Tian B, Mullins RD, Jacobson MP, Taunton J 2014. Design of reversible, cysteine-targeted Michael acceptors guided by kinetic and computational analysis. J. Am. Chem. Soc. 136:12624–30
    [Google Scholar]
  84. 84. 
    Bradshaw JM, McFarland JM, Paavilainen VO, Bisconte A, Tam D et al. 2015. Prolonged and tunable residence time using reversible covalent kinase inhibitors. Nat. Chem. Biol. 11:525–31
    [Google Scholar]
  85. 85. 
    Oksenberg D, Dufu K, Patel MP, Chuang C, Li Z et al. 2016. GBT440 increases haemoglobin oxygen affinity, reduces sickling and prolongs RBC half-life in a murine model of sickle cell disease. Br. J. Haematol. 175:141–53
    [Google Scholar]
  86. 86. 
    Bruyneel W, Charette JJ, De Hoffmann E 1966. Kinetics of hydrolysis of hydroxy and methoxy derivatives of N-benzylidene-2-aminopropane. J. Am. Chem. Soc. 88:3808–13
    [Google Scholar]
  87. 87. 
    Kovaříček P, Lehn JM. 2012. Merging constitutional and motional covalent dynamics in reversible imine formation and exchange processes. J. Am. Chem. Soc. 134:9446–55
    [Google Scholar]
  88. 88. 
    Wireko FC, Abraham DJ. 1991. X-ray diffraction study of the binding of the antisickling agent 12C79 to human hemoglobin. PNAS 88:2209–11
    [Google Scholar]
  89. 89. 
    Safo MK, Abdulmalik O, Danso-Danquah R, Burnett JC, Nokuri S et al. 2004. Structural basis for the potent antisickling effect of a novel class of five-membered heterocyclic aldehydic compounds. J. Med. Chem. 47:4665–76
    [Google Scholar]
  90. 90. 
    Abdulmalik O, Ghatge MS, Musayev FN, Parikh A, Chen Q et al. 2011. Crystallographic analysis of human hemoglobin elucidates the structural basis of the potent and dual antisickling activity of pyridyl derivatives of vanillin. Acta Crystallogr. Sect. D D67:920–28
    [Google Scholar]
  91. 91. 
    Papandreou I, Denko NC, Olson M, Van Melckebeke H, Lust S et al. 2011. Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 117:1311–14
    [Google Scholar]
  92. 92. 
    Volkmann K, Lucas JL, Vuga D, Wang X, Brumm D et al. 2011. Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease. J. Biol. Chem. 286:12743–55
    [Google Scholar]
  93. 93. 
    Tomasio SM, Harding HP, Ron D, Cross BCS, Bond PJ 2013. Selective inhibition of the unfolded protein response: targeting catalytic sites for Schiff base modification. Mol. Biosyst. 9:2408–16
    [Google Scholar]
  94. 94. 
    Gutiérrez-Moreno NJ, Medrano F, Yatsimirsky AK 2012. Schiff base formation and recognition of amino sugars, aminoglycosides and biological polyamines by 2-formyl phenylboronic acid in aqueous solution. Org. Biomol. Chem. 10:6960–72
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-061516-044805
Loading
/content/journals/10.1146/annurev-biochem-061516-044805
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error