A wide range of phylogenetically diverse microorganisms couple the reductive dehalogenation of organohalides to energy conservation. Key enzymes of such anaerobic catabolic pathways are corrinoid and Fe–S cluster–containing, membrane-associated reductive dehalogenases. These enzymes catalyze the reductive elimination of a halide and constitute the terminal reductases of a short electron transfer chain. Enzymatic and physiological studies revealed the existence of quinone-dependent and quinone-independent reductive dehalogenases that are distinguishable at the amino acid sequence level, implying different modes of energy conservation in the respective microorganisms. In this review, we summarize current knowledge about catabolic reductive dehalogenases and the electron transfer chain they are part of. We review reaction mechanisms and the role of the corrinoid and Fe–S cluster cofactors and discuss physiological implications.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Schöler HF, Keppler F. 1.  2003. Abiotic formation of organohalogens during early diagenetic processes. Natural Production of Organohalogen Compounds GW Gribble 63–84 Berlin/Heidelberg: Springer [Google Scholar]
  2. Gribble GW. 2.  2003. The diversity of naturally produced organohalogens. Chemosphere 52:2289–97 [Google Scholar]
  3. Ballschmiter K. 3.  2003. Pattern and sources of naturally produced organohalogens in the marine environment: biogenic formation of organohalogens. Chemosphere 52:2313–24 [Google Scholar]
  4. Doherty RE. 4.  2010. A history of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1,1,1-trichloroethane in the United States: Part 2—trichloroethylene and 1,1,1-trichloroethane. Environ. Forensics 1:283–93 [Google Scholar]
  5. Grindstaff M. 5.  1998. Bioremediation of Chlorinated Solvent Contaminated Groundwater Washington, DC: US Environ. Prot. Agency
  6. Squillace PJ, Moran MJ, Lapham WW, Price CV, Clawges RM, Zogorski JS. 6.  1999. Volatile organic compounds in untreated ambient groundwater of the United States, 1985−1995. Environ. Sci. Technol. 33:234176–87 [Google Scholar]
  7. Dolfing J. 7.  2016. Energetic considerations in organohalide respiration. Organohalide-Respiring Bacteria L Adrian, FE Löffler 31–48 Berlin/Heidelberg: Springer [Google Scholar]
  8. Kassenga GR, Pardue JH. 8.  2006. Effect of competitive terminal electron acceptor processes on dechlorination of cis-1,2-dichloroethene and 1,2-dichloroethane in constructed wetland soils. FEMS Microbiol. Ecol. 57:2311–23 [Google Scholar]
  9. Mayer-Blackwell K, Sewell H, Fincker M, Spormann AM. 9.  2016. Comparative physiology of organohalide-respiring bacteria. Organohalide-Respiring Bacteria L Adrian, FE Löffler 259–80 Berlin/Heidelberg: Springer [Google Scholar]
  10. Buckel W, Thauer RK. 10.  2013. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim. Biophys. Acta 1827:294–113 [Google Scholar]
  11. Marzorati M, de Ferra F, Van Raemdonck H, Borin S, Allifranchini E. 11.  et al. 2007. A novel reductive dehalogenase, identified in a contaminated groundwater enrichment culture and in Desulfitobacterium dichloroeliminans strain DCA1, is linked to dehalogenation of 1,2-dichloroethane. Appl. Environ. Microbiol. 73:92990–99 [Google Scholar]
  12. Grostern A, Edwards EA. 12.  2009. Characterization of a Dehalobacter coculture that dechlorinates 1,2-dichloroethane to ethene and identification of the putative reductive dehalogenase gene. Appl. Environ. Microbiol. 75:92684–93 [Google Scholar]
  13. Christiansen N, Ahring BK, Wohlfarth G, Diekert G. 13.  1998. Purification and characterization of the 3‐chloro‐4‐hydroxy‐phenylacetate reductive dehalogenase of Desulfitobacterium hafniense. FEBS Lett. 436:2159–62 [Google Scholar]
  14. Scholz-Muramatsu H, Neumann A, Meßmer M, Moore E, Diekert G. 14.  1995. Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch. Microbiol. 163:148–56 [Google Scholar]
  15. Sung Y, Fletcher KE, Ritalahti KM, Apkarian RP, Ramos-Hernández N. 15.  et al. 2006. Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl. Environ. Microbiol. 72:42775–82 [Google Scholar]
  16. DeWeerd KA, Mandelco L, Tanner RS, Woese CR, Suflita JM. 16.  1990. Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch. Microbiol. 154:123–30 [Google Scholar]
  17. Boyle AW, Phelps CD, Young LY. 17.  1999. Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4,6-tribromophenol. Appl. Environ. Microbiol. 65:31133–40 [Google Scholar]
  18. Lohner ST, Spormann AM. 18.  2013. Identification of a reductive tetrachloroethene dehalogenase in Shewanella sediminis. Philos. Trans. R. Soc. B 368:161620120326 [Google Scholar]
  19. Peng X, Zhang Z, Luo W, Jia X. 19.  2013. Biodegradation of tetrabromobisphenol A by a novel Comamonas sp. strain, JXS-2–02, isolated from anaerobic sludge. Bioresour. Technol. 128:173–79 [Google Scholar]
  20. Sanford RA, Cole JR, Tiedje JM. 20.  2002. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl. Environ. Microbiol. 68:2893–900 [Google Scholar]
  21. Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA. 21.  et al. 2013. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 63:2625–35 [Google Scholar]
  22. Moe WM, Yan J, Nobre MF, da Costa MS, Rainey FA. 22.  2009. Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater. Int. J. Syst. Evol. Microbiol. 59:112692–97 [Google Scholar]
  23. Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W. 23.  et al. 1998. Dehalobacterrestrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch. Microbiol. 169:4313–21 [Google Scholar]
  24. Ni S, Fredrickson JK, Xun L. 24.  1995. Purification and characterization of a novel 3-chlorobenzoate-reductive dehalogenase from the cytoplasmic membrane of Desulfomonile tiedjei DCB-1. J. Bacteriol. 177:175135–39 [Google Scholar]
  25. Magnuson JK, Romine MF, Burris DR, Kingsley MT. 25.  2000. Trichloroethene reductive dehalogenase from Dehalococcoidesethenogenes: sequence of tceA and substrate range characterization. Appl. Environ. Microbiol. 66:125141–47 [Google Scholar]
  26. Rupakula A, Kruse T, Boeren S, Holliger C, Smidt H, Maillard J. 26.  2013. The restricted metabolism of the obligate organohalide respiring bacterium Dehalobacter restrictus: lessons from tiered functional genomics. Philos. Trans. R. Soc. B 368:161620120325 [Google Scholar]
  27. Müller JA, Rosner BM, von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM. 27.  2004. Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl. Environ. Microbiol. 70:84880–88 [Google Scholar]
  28. Smidt H, van Leest M, van der Oost J, De Vos WM. 28.  2000. Transcriptional regulation of the cpr gene cluster in ortho-chlorophenol-respiring Desulfitobacterium dehalogenans. J. Bacteriol. 182:205683–91 [Google Scholar]
  29. Morita Y, Futagami T, Goto M, Furukawa K. 29.  2009. Functional characterization of the trigger factor protein PceT of tetrachloroethene-dechlorinating Desulfitobacterium hafniense Y51. Appl. Microbiol. Biotechnol. 83:4775–81 [Google Scholar]
  30. Gábor K, Veríssimo CS, Cyran BC, Horst ter P, Meijer NP. 30.  et al. 2006. Characterization of CprK1, a CRP/FNR-type transcriptional regulator of halorespiration from Desulfitobacterium hafniense. J. Bacteriol. 188:72604–13 [Google Scholar]
  31. Maillard J, Genevaux P, Holliger C. 31.  2011. Redundancy and specificity of multiple trigger factor chaperones in Desulfitobacteria. Microbiology 157:82410–21 [Google Scholar]
  32. Hug LA, Maphosa F, Leys D, Löffler FE, Smidt H. 32.  et al. 2013. Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philos. Trans. R. Soc. B 368:161620120322 [Google Scholar]
  33. Futagami T, Goto M, Furukawa K. 33.  2008. Biochemical and genetic bases of dehalorespiration. Chem. Rec. 8:11–12 [Google Scholar]
  34. Padilla-Crespo E, Yan J, Swift C, Wagner DD, Chourey K. 34.  et al. 2014. Identification and environmental distribution of dcpA, which encodes the reductive dehalogenase catalyzing the dichloroelimination of 1,2-dichloropropane to propene in organohalide-respiring Chloroflexi. Appl. Environ. Microbiol. 80:3808–18 [Google Scholar]
  35. Neumann A, Wohlfarth G, Diekert G. 35.  1996. Purification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivorans. J. Biol. Chem. 271:2816515–19 [Google Scholar]
  36. van de Pas BA, Smidt H, Hagen WR, van der Oost J, Schraa G. 36.  et al. 1999. Purification and molecular characterization of ortho-chlorophenol reductive dehalogenase, a key enzyme of halorespiration in Desulfitobacterium dehalogenans. J. Biol. Chem. 274:2920287–92 [Google Scholar]
  37. Maillard J, Schumacher W, Vazquez F, Regeard C, Hagen WR, Holliger C. 37.  2003. Characterization of the corrinoid iron–sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus. Appl. Environ. Microbiol. 69:84628–38 [Google Scholar]
  38. Jugder B-E, Ertan H, Lee M, Manefield M, Marquis CP. 38.  2015. Reductive dehalogenases come of age in biological destruction of organohalides. Trends Biotechnol 33:10595–610 [Google Scholar]
  39. Banerjee R, Ragsdale SW. 39.  2003. The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Annu. Rev. Biochem. 72:1209–47 [Google Scholar]
  40. Kräutler B, Golding BT, Arigoni D. 40.  2008. Vitamin B12 and B12-Proteins New York: Wiley
  41. Stubbe J, Nocera DG, Yee CS, Chang MCY. 41.  2003. Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer?. Chem. Rev. 103:62167–202 [Google Scholar]
  42. Gerfen GJ, Licht S, Willems JP, Hoffman BM, Stubbe J. 42.  1996. Electron paramagnetic resonance investigations of a kinetically competent intermediate formed in ribonucleotide reduction: evidence for a thiyl radical–Cob(II)alamin interaction. J. Am. Chem. Soc. 118:358192–97 [Google Scholar]
  43. Miles ZD, McCarty RM, Molnar G, Bandarian V. 43.  2011. Discovery of epoxyqueuosine (oQ) reductase reveals parallels between halorespiration and tRNA modification. PNAS 108:187368–72 [Google Scholar]
  44. Payne KAP, Fisher K, Sjuts H, Dunstan MS, Bellina B. 44.  et al. 2015. Epoxyqueuosine reductase structure suggests a mechanism for cobalamin-dependent tRNA modification. J. Biol. Chem. 290:4627572–81 [Google Scholar]
  45. Gantzer CJ, Wackett LP. 45.  1991. Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environ. Sci. Technol. 25:4715–22 [Google Scholar]
  46. Krone UE, Thauer RK, Hogenkamp HPC. 46.  1989. Reductive dehalogenation of chlorinated C1-hydrocarbons mediated by corrinoids. Biochemistry 28:114908–14 [Google Scholar]
  47. Chen K, Huang L, Xu C, Liu X, He J. 47.  et al. 2013. Molecular characterization of the enzymes involved in the degradation of a brominated aromatic herbicide. Mol. Microbiol. 89:61121–39 [Google Scholar]
  48. Bommer M, Kunze C, Fesseler J, Schubert T, Diekert G, Dobbek H. 48.  2014. Structural basis for organohalide respiration. Science 346:6208455–58 [Google Scholar]
  49. Payne KAP, Quezada CP, Fisher K, Dunstan MS, Collins FA. 49.  et al. 2015. Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature 517:7535513–16 [Google Scholar]
  50. Parthasarathy A, Stich TA, Lohner ST, Lesnefsky A, Britt RD, Spormann AM. 50.  2015. Biochemical and EPR-spectroscopic investigation into heterologously expressed vinyl chloride reductive dehalogenase (VcrA) from Dehalococcoides mccartyi strain VS. J. Am. Chem. Soc. 137:103525–32 [Google Scholar]
  51. Schumacher W, Holliger C, Zehnder AJ, Hagen WR. 51.  1997. Redox chemistry of cobalamin and iron–sulfur cofactors in the tetrachloroethene reductase of Dehalobacter restrictus. FEBS Lett. 409:3421–25 [Google Scholar]
  52. Kräutler B, Fieber W, Ostermann S, Fasching M, Ongania KH. 52.  et al. 2003. The cofactor of tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans is norpseudo-B12, a new type of a natural corrinoid. Helv. Chim. Acta 86:113698–716 [Google Scholar]
  53. Krasotkina J, Walters T, Maruya KA, Ragsdale SW. 53.  2001. Characterization of the B12- and iron–sulfur-containing reductive dehalogenase from Desulfitobacterium chlororespirans. J. Biol. Chem. 276:4440991–97 [Google Scholar]
  54. Lesage S, Brown S, Millar K. 54.  1998. A different mechanism for the reductive dechlorination of chlorinated ethenes: kinetic and spectroscopic evidence. Environ. Sci. Technol. 32:152264–72 [Google Scholar]
  55. McCauley KM, Wilson SRA, van der Donk WA. 55.  2003. Characterization of chlorovinylcobalamin, a putative intermediate in reductive degradation of chlorinated ethylenes. J. Am. Chem. Soc. 125:154410–11 [Google Scholar]
  56. Lexa D, Savéant J-M. 56.  1983. The electrochemistry of vitamin B12. Acc. Chem. Res. 16:7235–43 [Google Scholar]
  57. Banerjee RV, Harder SR, Ragsdale SW. 57.  1990. Mechanism of reductive activation of cobalamin-dependent methionine synthase: an electron paramagnetic resonance spectroelectrochemical study. Biochemistry 29:51129–35 [Google Scholar]
  58. Stich TA, Buan NR, Escalante-Semerena JCA, Brunold TC. 58.  2005. Spectroscopic and computational studies of the ATP:corrinoid adenosyltransferase (CobA) from Salmonella enterica: insights into the mechanism of adenosylcobalamin biosynthesis. J. Am. Chem. Soc. 127:248710–19 [Google Scholar]
  59. McCauley KM, Pratt DA, Wilson SR, Shey J, Burkey ATJ, van der Donk WA. 59.  2005. Properties and reactivity of chlorovinylcobalamin and vinylcobalamin and their implications for vitamin B12-catalyzed reductive dechlorination of chlorinated alkenes. J. Am. Chem. Soc. 127:41126–36 [Google Scholar]
  60. Shey J, van der Donk WA. 60.  2000. Mechanistic studies on the vitamin B12-catalyzed dechlorination of chlorinated alkenes. J. Am. Chem. Soc. 122:4912403–4 [Google Scholar]
  61. Ye L, Schilhabel A, Bartram S, Boland W, Diekert G. 61.  2010. Reductive dehalogenation of brominated ethenes by Sulfurospirillum multivorans and Desulfitobacterium hafniense PCE‐S. Environ. Microbiol. 12:2501–9 [Google Scholar]
  62. Schmitz RPH, Wolf J, Habel A, Neumann A, Ploss K. 62.  et al. 2007. Evidence for a radical mechanism of the dechlorination of chlorinated propenes mediated by the tetrachloroethene reductive dehalogenase of Sulfurospirillum multivorans. Environ. Sci. Technol. 41:217370–75 [Google Scholar]
  63. Cooper M, Wagner A, Wondrousch D, Sonntag F, Sonnabend A. 63.  et al. 2015. Anaerobic microbial transformation of halogenated aromatics and fate prediction using electron density modeling. Environ. Sci. Technol. 49:106018–28 [Google Scholar]
  64. Magnuson JK, Romine MF, Burris DR, Kingsley MT. 64.  2000. Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes: sequence of tceA and substrate range characterization. Appl. Environ. Microbiol. 66:125141–47 [Google Scholar]
  65. Suyama A, Yamashita M, Yoshino S, Furukawa K. 65.  2002. Molecular characterization of the PceA reductive dehalogenase of Desulfitobacterium sp. strain Y51. J. Bacteriol. 184:133419–25 [Google Scholar]
  66. van de Pas BA, Gerritse J, De Vos WM, Schraa G, Stams AJ. 66.  2001. Two distinct enzyme systems are responsible for tetrachloroethene and chlorophenol reductive dehalogenation in Desulfitobacterium strain PCE1. Arch. Microbiol. 176:3165–69 [Google Scholar]
  67. Tang S, Edwards EA. 67.  2013. Identification of Dehalobacter reductive dehalogenases that catalyse dechlorination of chloroform, 1,1,1-trichloroethane and 1,1-dichloroethane. Philos. Trans. R. Soc. B 368:161620120318 [Google Scholar]
  68. Wong YK, Holland SI, Ertan H, Manefield M, Lee M. 68.  2016. Isolation and characterization of Dehalobacter sp. strain UNSWDHB capable of chloroform and chlorinated ethane respiration. Environ. Microbiol. 18:93092–3105 [Google Scholar]
  69. Thibodeau J, Gauthier A, Duguay M, Villemur R, Lépine F. 69.  et al. 2004. Purification, cloning, and sequencing of a 3,5-dichlorophenol reductive dehalogenase from Desulfitobacterium frappieri PCP-1. Appl. Environ. Microbiol. 70:84532–37 [Google Scholar]
  70. Adrian L, Rahnenführer J, Gobom J, Hölscher T. 70.  2007. Identification of a chlorobenzene reductive dehalogenase in Dehalococcoides sp. strain CBDB1. Appl. Environ. Microbiol. 73:237717–24 [Google Scholar]
  71. Tiedt O, Mergelsberg M, Boll K, Müller M, Adrian L. 71.  et al. 2016. ATP-Dependent C–F bond cleavage allows the complete degradation of 4-fluoroaromatics without oxygen. mBio 7:4e00990–16 [Google Scholar]
  72. Magnuson JK, Stern RV, Gossett JM, Zinder SH, Burris DR. 72.  1998. Reductive dechlorination of tetrachloroethene to ethene by a two-component enzyme pathway. Appl. Environ. Microbiol. 64:41270–75 [Google Scholar]
  73. Miller E, Wohlfarth G, Diekert G. 73.  1998. Purification and characterization of the tetrachloroethene reductive dehalogenase of strain PCE-S. Arch. Microbiol. 169:6497–502 [Google Scholar]
  74. Krajmalnik-Brown R, Hölscher T, Thomson IN, Saunders FM, Ritalahti KM, Löffler FE. 74.  2004. Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. Appl. Environ. Microbiol. 70:106347–51 [Google Scholar]
  75. Molenda O, Quaile AT, Edwards EA. 75.  2016. Dehalogenimonas sp. strain WBC-2 genome and identification of its trans-dichloroethene reductive dehalogenase, TdrA. Appl. Environ. Microbiol. 82:140–50 [Google Scholar]
  76. Mac Nelly A, Kai M, Svatoš A, Diekert G, Schubert T. 76.  2014. Functional heterologous production of reductive dehalogenases from Desulfitobacterium hafniense strains. Appl. Environ. Microbiol. 80:144313–22 [Google Scholar]
  77. Roth JR, Lawrence JG, Bobik T. 77.  1996. Cobalamin (coenzyme B12): synthesis and biological significance. Annu. Rev. Microbiol. 50:1137–81 [Google Scholar]
  78. Martens JH, Barg H, Warren M, Jahn D. 78.  2002. Microbial production of vitamin B12. Appl. Microbiol. Biotechnol. 58:3275–85 [Google Scholar]
  79. Yi S, Seth EC, Men Y-J, Stabler SP, Allen RH. 79.  et al. 2012. Versatility in corrinoid salvaging and remodeling pathways supports corrinoid-dependent metabolism in Dehalococcoides mccartyi. Appl. Environ. Microbiol. 78:217745–52 [Google Scholar]
  80. Yan J, Im J, Yang Y, Löffler FE. 80.  2013. Guided cobalamin biosynthesis supports Dehalococcoides mccartyi reductive dechlorination activity. Philos. Trans. R. Soc. B 368:161620120320 [Google Scholar]
  81. Men Y, Seth EC, Yi S, Crofts TS, Allen RH. 81.  et al. 2015. Identification of specific corrinoids reveals corrinoid modification in dechlorinating microbial communities. Environ. Microbiol. 17:124873–84 [Google Scholar]
  82. Nonaka H, Keresztes G, Shinoda Y, Ikenaga Y, Abe M. 82.  et al. 2006. Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195. J. Bacteriol. 188:62262–74 [Google Scholar]
  83. Reinhold A, Westermann M, Seifert J, von Bergen M, Schubert T, Diekert G. 83.  2012. Impact of vitamin B12 on formation of the tetrachloroethene reductive dehalogenase in Desulfitobacterium hafniense strain Y51. Appl. Environ. Microbiol. 78:228025–32 [Google Scholar]
  84. Yan J, Ritalahti KM, Wagner DD, Löffler FE. 84.  2012. Unexpected specificity of interspecies cobamide transfer from Geobacter spp. to organohalide-respiring Dehalococcoides mccartyi strains. Appl. Environ. Microbiol. 78:186630–36 [Google Scholar]
  85. Wagner DD, Hug LA, Hatt JK, Spitzmiller MR, Padilla-Crespo E. 85.  et al. 2012. Genomic determinants of organohalide-respiration in Geobacter lovleyi, an unusual member of the Geobacteraceae. BMC Genom 13:1200 [Google Scholar]
  86. Yan J, Şimşir B, Farmer AT, Bi M, Yang Y. 86.  et al. 2016. The corrinoid cofactor of reductive dehalogenases affects dechlorination rates and extents in organohalide-respiring Dehalococcoides mccartyi. ISME J 10:51092–101 [Google Scholar]
  87. Rupakula A, Lu Y, Kruse T, Boeren S, Holliger C. 87.  et al. 2015. Functional genomics of corrinoid starvation in the organohalide-respiring bacterium Dehalobacter restrictus strain PER-K23. Front. Microbiol. 5:403 [Google Scholar]
  88. Keller S, Ruetz M, Kunze C, Kräutler B, Diekert G, Schubert T. 88.  2014. Exogenous 5,6‐dimethylbenzimidazole caused production of a non‐functional tetrachloroethene reductive dehalogenase in Sulfurospirillum multivorans. Environ. Microbiol. 16:113361–69 [Google Scholar]
  89. Simon J, van Spanning RJM, Richardson DJ. 89.  2008. The organisation of proton motive and non-proton motive redox loops in prokaryotic respiratory systems. Biochim. Biophys. Acta 1777:121480–90 [Google Scholar]
  90. van de Pas BA, Jansen S, Dijkema C, Schraa G, De Vos WM, Stams AJ. 90.  2001. Energy yield of respiration on chloroaromatic compounds in Desulfitobacterium dehalogenans. Appl. Environ. Microbiol. 67:93958–63 [Google Scholar]
  91. Schumacher W, Holliger C. 91.  1996. The proton/electron ratio of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in “Dehalobacter restrictus.”. J. Bacteriol. 178:82328–33 [Google Scholar]
  92. Jayachandran G, Görisch H, Adrian L. 92.  2004. Studies on hydrogenase activity and chlorobenzene respiration in Dehalococcoides sp. strain CBDB1. Arch. Microbiol. 182:6498–504 [Google Scholar]
  93. Mansfeldt CB, Rowe AR, Heavner GLW, Zinder SH, Richardson RE. 93.  2014. Meta-analyses of Dehalococcoides mccartyi strain 195 transcriptomic profiles identify a respiration rate–related gene expression transition point and interoperon recruitment of a key oxidoreductase subunit. Appl. Environ. Microbiol. 80:196062–72 [Google Scholar]
  94. Seshadri R, Adrian L, Fouts DE, Eisen JA, Phillippy AM. 94.  et al. 2005. Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science 307:5706105–8 [Google Scholar]
  95. John M, Schmitz RPH, Westermann M, Richter W, Diekert G. 95.  2006. Growth substrate dependent localization of tetrachloroethene reductive dehalogenase in Sulfurospirillum multivorans. Arch. Microbiol. 186:299–106 [Google Scholar]
  96. Louie TM, Mohn WW. 96.  1999. Evidence for a chemiosmotic model of dehalorespiration in Desulfomonile tiedjei DCB-1. J. Bacteriol. 181:140–46 [Google Scholar]
  97. Kruse T, van de Pas BA, Atteia A, Krab K, Hagen WR. 97.  et al. 2015. Genomic, proteomic, and biochemical analysis of the organohalide respiratory pathway in Desulfitobacterium dehalogenans. J. Bacteriol. 197:5893–904 [Google Scholar]
  98. Miller E, Wohlfarth G, Diekert G. 98.  1996. Studies on tetrachloroethene respiration in Dehalospirillum multivorans. Arch. Microbiol. 166:6379–87 [Google Scholar]
  99. Simon J, Klotz MG. 99.  2013. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. Biochim. Biophys. Acta 1827:2114–35 [Google Scholar]
  100. Edgren T, Nordlund S. 100.  2004. The fixABCX genes in Rhodospirillum rubrum encode a putative membrane complex participating in electron transfer to nitrogenase. J. Bacteriol. 186:72052–60 [Google Scholar]
  101. Peng X, Yamamoto S, Vertès AA, Keresztes G, Inatomi K-I. 101.  et al. 2012. Global transcriptome analysis of the tetrachloroethene-dechlorinating bacterium Desulfitobacterium hafniense Y51 in the presence of various electron donors and terminal electron acceptors. J. Ind. Microbiol. Biotechnol. 39:2255–68 [Google Scholar]
  102. Prat L, Maillard J, Grimaud R, Holliger C. 102.  2011. Physiological adaptation of Desulfitobacterium hafniense strain TCE1 to tetrachloroethene respiration. Appl. Environ. Microbiol. 77:113853–59 [Google Scholar]
  103. Goris T, Schubert T, Gadkari J, Wubet T, Tarkka M. 103.  et al. 2014. Insights into organohalide respiration and the versatile catabolism of Sulfurospirillum multivorans gained from comparative genomics and physiological studies. Environ. Microbiol. 16:113562–80 [Google Scholar]
  104. Schipp CJ, Marco-Urrea E, Kublik A, Seifert J, Adrian L. 104.  2013. Organic cofactors in the metabolism of Dehalococcoides mccartyi strains. Philos. Trans. R. Soc. B 368:161620120321 [Google Scholar]
  105. Nijenhuis I, Zinder SH. 105.  2005. Characterization of hydrogenase and reductive dehalogenase activities of Dehalococcoides ethenogenes strain 195. Appl. Environ. Microbiol. 71:31664–67 [Google Scholar]
  106. White DC, Geyer R, Peacock AD, Hedrick DB, Koenigsberg SS. 106.  et al. 2005. Phospholipid furan fatty acids and ubiquinone-8: lipid biomarkers that may protect Dehalococcoides strains from free radicals. Appl. Environ. Microbiol. 71:128426–33 [Google Scholar]
  107. Hedrick DB, White DC. 107.  1986. Microbial respiratory quinones in the environment: I. A sensitive liquid chromatographic method. J. Microbiol. Methods 5:5–6243–54 [Google Scholar]
  108. Kublik A, Deobald D, Hartwig S, Schiffmann CL, Andrades A. 108.  et al. 2016. Identification of a multi-protein reductive dehalogenase complex in Dehalococcoides mccartyi strain CBDB1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement. Environ. Microbiol. 18:93044–56 [Google Scholar]
  109. Rothery RA, Workun GJ, Weiner JH. 109.  2008. The prokaryotic complex iron–sulfur molybdoenzyme family. Biochim. Biophys. Acta 1778:91897–929 [Google Scholar]
  110. Morris RM, Sowell S, Barofsky D, Zinder S, Richardson R. 110.  2006. Transcription and mass‐spectroscopic proteomic studies of electron transport oxidoreductases in Dehalococcoides ethenogenes. Environ. Microbiol. 8:91499–509 [Google Scholar]
  111. Schiffmann C, Hansen R, Baumann S, Kublik A, Nielsen PH. 111.  et al. 2014. Comparison of targeted peptide quantification assays for reductive dehalogenases by selective reaction monitoring (SRM) and precursor reaction monitoring (PRM). Anal. Bioanal. Chem. 406:1283–91 [Google Scholar]
  112. Zinder SH. 112.  2016. Dehalococcoides has a dehalogenation complex. Environ. Microbiol. 18:92773–75 [Google Scholar]
  113. Pinske C, Jaroschinsky M, Linek S, Kelly CL, Sargent F, Sawers RG. 113.  2015. Physiology and bioenergetics of [NiFe]-hydrogenase 2-catalyzed H2-consuming and H2-producing reactions in Escherichia coli. J. Bacteriol. 197:2296–306 [Google Scholar]
  114. McMurdie PJ, Hug LA, Edwards EA, Holmes S, Spormann AM. 114.  2011. Site-specific mobilization of vinyl chloride respiration islands by a mechanism common in Dehalococcoides. BMC Genom. 12:11 [Google Scholar]
  115. Wang S, Zhang W, Yang K-L, He J. 115.  2014. Isolation and characterization of a novel Dehalobacter species strain TCP1 that reductively dechlorinates 2,4,6-trichlorophenol. Biodegradation 25:2313–23 [Google Scholar]
  116. Tang S, Chan WWM, Fletcher KE, Seifert J, Liang X. 116.  et al. 2013. Functional characterization of reductive dehalogenases by using blue native polyacrylamide gel electrophoresis. Appl. Environ. Microbiol. 79:3974–81 [Google Scholar]
  117. Fung JM, Morris RM, Adrian L, Zinder SH. 117.  2007. Expression of reductive dehalogenase genes in Dehalococcoides ethenogenes strain 195 growing on tetrachloroethene, trichloroethene, or 2,3-dichlorophenol. Appl. Environ. Microbiol. 73:144439–45 [Google Scholar]
  118. Chow WL, Cheng D, Wang S, He J. 118.  2010. Identification and transcriptional analysis of trans-DCE-producing reductive dehalogenases in Dehalococcoides species. ISME J. 4:81020–30 [Google Scholar]
  119. Bisaillon A, Beaudet R, Lépine F, Déziel E, Villemur R. 119.  2010. Identification and characterization of a novel CprA reductive dehalogenase specific to highly chlorinated phenols from Desulfitobacterium hafniense strain PCP-1. Appl. Environ. Microbiol. 76:227536–40 [Google Scholar]
  120. Boyer A, Rachel P-B, Saucier M, Villemur R, Lépine F. 120.  et al. 2003. Purification, cloning and sequencing of an enzyme mediating the reductive dechlorination of 2,4,6-trichlorophenol from Desulfitobacterium frappieri PCP-1. Biochem. J. 373:1297–303 [Google Scholar]
  121. Maillard J, Regeard C, Holliger C. 121.  2005. Isolation and characterization of Tn-Dha1, a transposon containing the tetrachloroethene reductive dehalogenase of Desulfitobacterium hafniense strain TCE1. Environ. Microbiol. 7:1107–17 [Google Scholar]
  122. Tsukagoshi N, Ezaki S, Uenaka T, Suzuki N, Kurane R. 122.  2006. Isolation and transcriptional analysis of novel tetrachloroethene reductive dehalogenase gene from Desulfitobacterium sp. strain KBC1. Appl. Microbiol. Biotechnol. 69:5543–53 [Google Scholar]
  123. Zhao S, Ding C, He J. 123.  2015. Detoxification of 1,1,2-trichloroethane to ethene by Desulfitobacterium and identification of its functional reductase gene. PLOS ONE 10:4e0119507 [Google Scholar]
  124. Buttet GF, Holliger C, Maillard J. 124.  2013. Functional genotyping of Sulfurospirillum spp. in mixed cultures allowed the identification of a new tetrachloroethene reductive dehalogenase. Appl. Environ. Microbiol. 79:226941–47 [Google Scholar]
  125. Kimoto H, Suye S-I, Makishima H, Arai J-I, Yamaguchi S. 125.  et al. 2010. Cloning of a novel dehalogenase from environmental DNA. Biosci. Biotechnol. Biochem. 74:61290–92 [Google Scholar]
  126. Kumar S, Stecher G, Tamura K. 126.  2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:71870–74 [Google Scholar]
  127. Hug LA, Edwards EA. 127.  2013. Diversity of reductive dehalogenase genes from environmental samples and enrichment cultures identified with degenerate primer PCR screens. Front. Microbiol. 4:341 [Google Scholar]
  128. Futagami T, Morono Y, Terada T, Kaksonen AH, Inagaki F. 128.  2009. Dehalogenation activities and distribution of reductive dehalogenase homologous genes in marine subsurface sediments. Appl. Environ. Microbiol. 75:216905–9 [Google Scholar]
  129. He J, Sung Y, Krajmalnik-Brown R, Ritalahti KM, Löffler FE. 129.  2005. Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environ. Microbiol. 7:91442–50 [Google Scholar]
  130. Biderre-Petit C, Dugat-Bony E, Mege M, Parisot N, Adrian L. 130.  et al. 2016. Distribution of Dehalococcoidia in the anaerobic deep water of a remote meromictic crater lake and detection of Dehalococcoidia-derived reductive dehalogenase homologous genes. PLOS ONE 11:1e0145558 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error