Protein ubiquitination is one of the most powerful posttranslational modifications of proteins, as it regulates a plethora of cellular processes in distinct manners. Simple monoubiquitination events coexist with more complex forms of polyubiquitination, the latter featuring many different chain architectures. Ubiquitin can be subjected to further posttranslational modifications (e.g., phosphorylation and acetylation) and can also be part of mixed polymers with ubiquitin-like modifiers such as SUMO (small ubiquitin-related modifier) or NEDD8 (neural precursor cell expressed, developmentally downregulated 8). Together, cellular ubiquitination events form a sophisticated and versatile ubiquitin code. Deubiquitinases (DUBs) reverse ubiquitin signals with equally high sophistication. In this review, we conceptualize the many layers of specificity that DUBs encompass to control the ubiquitin code and discuss examples in which DUB specificity has been understood at the molecular level. We further discuss the many mechanisms of DUB regulation with a focus on those that modulate catalytic activity. Our review provides a framework to tackle lingering questions in DUB biology.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Hershko A, Ciechanover A. 1.  1998. The ubiquitin system. Annu. Rev. Biochem. 67:425–79 [Google Scholar]
  2. Komander D, Rape M. 2.  2012. The ubiquitin code. Annu. Rev. Biochem. 81:203–29 [Google Scholar]
  3. Yau R, Rape M. 3.  2016. The increasing complexity of the ubiquitin code. Cell Res 18:6579–86 [Google Scholar]
  4. Swatek KN, Komander D. 4.  2016. Ubiquitin modifications. Cell Res 26:4399–422 [Google Scholar]
  5. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J. 5.  et al. 2011. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44:2325–40 [Google Scholar]
  6. Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J. 6.  et al. 2011. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell Proteom. 10:10M111.013284 [Google Scholar]
  7. Elia AEH, Boardman AP, Wang DC, Huttlin EL, Everley RA. 7.  et al. 2015. Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol. Cell 59:5867–81 [Google Scholar]
  8. Meyer H-J, Rape M. 8.  2014. Enhanced protein degradation by branched ubiquitin chains. Cell 157:4910–21 [Google Scholar]
  9. Emmerich CH, Ordureau A, Strickson S, Arthur JSC, Pedrioli PGA. 9.  et al. 2013. Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. PNAS 110:3815247–52 [Google Scholar]
  10. Hospenthal MK, Freund SMV, Komander D. 10.  2013. Assembly, analysis and architecture of atypical ubiquitin chains. Nat. Struct. Mol. Biol. 20:5555–65 [Google Scholar]
  11. Flotho A, Melchior F. 11.  2013. Sumoylation: a regulatory protein modification in health and disease. Annu. Rev. Biochem. 82:357–85 [Google Scholar]
  12. Enchev RI, Schulman BA, Peter M. 12.  2015. Protein neddylation: beyond cullin-RING ligases. Nat. Rev. Mol. Cell Biol. 16:130–44 [Google Scholar]
  13. Hochstrasser M. 13.  2009. Origin and function of ubiquitin-like proteins. Nature 458:7237422–29 [Google Scholar]
  14. Hendriks IA, D'Souza RCJ, Yang B, Verlaan-de Vries M, Mann M, Vertegaal ACO. 14.  2014. Uncovering global SUMOylation signaling networks in a site-specific manner. Nat. Struct. Mol. Biol. 21:10927–36 [Google Scholar]
  15. Geoffroy M-C, Hay RT. 15.  2009. An additional role for SUMO in ubiquitin-mediated proteolysis. Nat. Rev. Mol. Cell Biol. 10:8564–68 [Google Scholar]
  16. Swaney DL, Beltrao P, Starita L, Guo A, Rush J. 16.  et al. 2013. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat. Methods 10:7676–82 [Google Scholar]
  17. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. 17.  2015. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43:D1D512–20 [Google Scholar]
  18. Pickrell AM, Youle RJ. 18.  2015. The Roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85:2257–73 [Google Scholar]
  19. Bingol B, Sheng M. 19.  2016. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radic. Biol. Med. 100:210–22 [Google Scholar]
  20. Ohtake F, Saeki Y, Sakamoto K, Ohtake K, Nishikawa H. 20.  et al. 2015. Ubiquitin acetylation inhibits polyubiquitin chain elongation. EMBO Rep 16:2192–201 [Google Scholar]
  21. Wauer T, Swatek KN, Wagstaff JL, Gladkova C, Pruneda JN. 21.  et al. 2015. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J 34:3307–25 [Google Scholar]
  22. Huguenin-Dezot N, De Cesare V, Peltier J, Knebel A, Kristaryianto YA. 22.  et al. 2016. Synthesis of isomeric phosphoubiquitin chains reveals that phosphorylation controls deubiquitinase activity and specificity. Cell Rep 16:41–32 [Google Scholar]
  23. Schulman BA, Harper JW. 23.  2009. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 10:5319–31 [Google Scholar]
  24. Ye Y, Rape M. 24.  2009. Building ubiquitin chains: E2 enzymes at work. Nat. Rev. Mol. Cell Biol. 10:11755–64 [Google Scholar]
  25. Buetow L, Huang DT. 25.  2016. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 17:626–42 [Google Scholar]
  26. Husnjak K, Dikic I. 26.  2012. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81:291–322 [Google Scholar]
  27. Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbé S. 27.  2013. Deubiquitylases from genes to organism. Physiol. Rev. 93:31289–1315 [Google Scholar]
  28. Komander D, Clague MJ, Urbé S. 28.  2009. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10:8550–63 [Google Scholar]
  29. Reyes-Turcu FE, Ventii KH, Wilkinson KD. 29.  2009. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78:363–97 [Google Scholar]
  30. Rehman SAA, Kristariyanto YA, Choi S-Y, Nkosi PJ, Weidlich S. 30.  et al. 2016. MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol. Cell 63:11–28 [Google Scholar]
  31. Hickey CM, Wilson NR, Hochstrasser M. 31.  2012. Function and regulation of SUMO proteases. Nat. Rev. Mol. Cell Biol. 13:12755–66 [Google Scholar]
  32. Shin EJ, Shin HM, Nam E, Kim WS, Kim J-H. 32.  et al. 2012. DeSUMOylating isopeptidase: a second class of SUMO protease. EMBO Rep 13:4339–46 [Google Scholar]
  33. Clague MJ, Heride C, Urbé S. 33.  2015. The demographics of the ubiquitin system. Trends Cell Biol 25:7417–26 [Google Scholar]
  34. Ronau JA, Beckmann JF, Hochstrasser M. 34.  2016. Substrate specificity of the ubiquitin and Ubl proteases. Cell Res 26:4441–56 [Google Scholar]
  35. Catic A, Fiebiger E, Korbel GA, Blom D, Galardy PJ, Ploegh HL. 35.  2007. Screen for ISG15-crossreactive deubiquitinases. PLOS ONE 2:e679 [Google Scholar]
  36. Ye Y, Akutsu M, Reyes-Turcu F, Enchev RI, Wilkinson KD, Komander D. 36.  2011. Polyubiquitin binding and cross-reactivity in the USP domain deubiquitinase USP21. EMBO Rep 12:4350–57 [Google Scholar]
  37. Johnston SC, Riddle SM, Cohen RE, Hill CP. 37.  1999. Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J 18:143877–87 [Google Scholar]
  38. Cope GA, Suh GSB, Aravind L, Schwarz SE, Zipursky SL. 38.  et al. 2002. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of NEDD8 from CUL1. Science 298:5593608–11 [Google Scholar]
  39. Schulz S, Chachami G, Kozaczkiewicz L, Winter U, Stankovic-Valentin N. 39.  et al. 2012. Ubiquitin-specific protease-like 1 (USPL1) is a SUMO isopeptidase with essential, non-catalytic functions. EMBO Rep 13:10930–38 [Google Scholar]
  40. Malakhov MP, Malakhova OA, Kim KI, Ritchie KJ, Zhang D-E. 40.  2002. UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J. Biol. Chem. 277:129976–81 [Google Scholar]
  41. Basters A, Geurink PP, Röcker A, Witting KF, Tadayon R. 41.  et al. 2017. Structural basis of the specificity of USP18 toward ISG15. Nat. Struct. Mol. Biol. 24:270–78 [Google Scholar]
  42. Pruneda JN, Durkin CH, Geurink PP, Ovaa H, Santhanam B. 42.  et al. 2016. The molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases. Mol. Cell 63:2261–76 [Google Scholar]
  43. Bailey-Elkin BA, van Kasteren PB, Snijder EJ, Kikkert M, Mark BL. 43.  2014. Viral OTU deubiquitinases: a structural and functional comparison. PLOS Pathog 10:3e1003894 [Google Scholar]
  44. Ye Y, Scheel H, Hofmann K, Komander D. 44.  2009. Dissection of USP catalytic domains reveals five common insertion points. Mol. Biosyst. 5:121797–808 [Google Scholar]
  45. Faesen AC, Luna-Vargas MPA, Geurink PP, Clerici M, Merkx R. 45.  et al. 2011. The differential modulation of USP activity by internal regulatory domains, interactors and eight ubiquitin chain types. Chem. Biol. 18:121550–61 [Google Scholar]
  46. Ritorto MS, Ewan R, Perez-Oliva AB, Knebel A, Buhrlage SJ. 46.  et al. 2014. Screening of DUB activity and specificity by MALDI-TOF mass spectrometry. Nat. Commun. 5:4763 [Google Scholar]
  47. Keusekotten K, Elliott PR, Glockner L, Fiil BK, Damgaard RB. 47.  et al. 2013. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 153:61312–26 [Google Scholar]
  48. Rivkin E, Almeida SM, Ceccarelli DF, Juang Y-C, MacLean TA. 48.  et al. 2013. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 498:7454318–24 [Google Scholar]
  49. Mevissen TET, Hospenthal MK, Geurink PP, Elliott PR, Akutsu M. 49.  et al. 2013. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 154:1169–84 [Google Scholar]
  50. Flierman D, van der Heden van Noort GJ, Ekkebus R, Geurink PP, Mevissen TET. 50.  et al. 2016. Non-hydrolyzable diubiquitin probes reveal linkage-specific reactivity of deubiquitylating enzymes mediated by S2 pockets. Cell Chem. Biol. 23:4472–82 [Google Scholar]
  51. Kristariyanto YA, Abdul Rehman SA, Weidlich S, Knebel A, Kulathu Y. 51.  2017. A single MIU motif of MINDY-1 recognizes K48-linked polyubiquitin chains. EMBO Rep 18:3392–402 [Google Scholar]
  52. Reyes-Turcu FE, Horton JR, Mullally JE, Heroux A, Cheng X, Wilkinson KD. 52.  2006. The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell 124:61197–1208 [Google Scholar]
  53. Reyes-Turcu FE, Shanks JR, Komander D, Wilkinson KD. 53.  2008. Recognition of polyubiquitin isoforms by the multiple ubiquitin binding modules of isopeptidase T. J. Biol. Chem. 283:2819581–92 [Google Scholar]
  54. Nakasone MA, Livnat-Levanon N, Glickman MH, Cohen RE, Fushman D. 54.  2013. Mixed-linkage ubiquitin chains send mixed messages. Structure 21:5727–40 [Google Scholar]
  55. Michel MA, Elliott PR, Swatek KN, Simicek M, Pruneda JN. 55.  et al. 2015. Assembly and specific recognition of k29- and k33-linked polyubiquitin. Mol. Cell 58:195–109 [Google Scholar]
  56. Kristariyanto YA, Abdul Rehman SA, Campbell DG, Morrice NA, Johnson C. 56.  et al. 2015. K29-selective ubiquitin binding domain reveals structural basis of specificity and heterotypic nature of k29 polyubiquitin. Mol. Cell 58:183–94 [Google Scholar]
  57. Mevissen TET, Kulathu Y, Mulder MPC, Geurink PP, Maslen SL. 57.  et al. 2016. Molecular basis of Lys11-polyubiquitin specificity in the deubiquitinase Cezanne. Nature 538:7625402–5 [Google Scholar]
  58. Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE. 58.  et al. 2014. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510:7505370–75 [Google Scholar]
  59. Lecona E, Rodriguez-Acebes S, Specks J, Lopez-Contreras AJ, Ruppen I. 59.  et al. 2016. USP7 is a SUMO deubiquitinase essential for DNA replication. Nat. Struct. Mol. Biol. 23:4270–77 [Google Scholar]
  60. Renatus M, Parrado SG, D'Arcy A, Eidhoff U, Gerhartz B. 60.  et al. 2006. Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Structure 14:81293–1302 [Google Scholar]
  61. Ye Y, Blaser G, Horrocks MH, Ruedas-Rama MJ, Ibrahim S. 61.  et al. 2012. Ubiquitin chain conformation regulates recognition and activity of interacting proteins. Nature 492:7428266–70 [Google Scholar]
  62. Schaefer JB, Morgan DO. 62.  2011. Protein-linked ubiquitin chain structure restricts activity of deubiquitinating enzymes. J. Biol. Chem. 286:5245186–96 [Google Scholar]
  63. Hospenthal MK, Mevissen TET, Komander D. 63.  2015. Deubiquitinase-based analysis of ubiquitin chain architecture using Ubiquitin Chain Restriction (UbiCRest). Nat. Protoc. 10:2349–61 [Google Scholar]
  64. van Tilburg GB, Elhebieshy AF, Ovaa H. 64.  2016. Synthetic and semi-synthetic strategies to study ubiquitin signaling. Curr. Opin. Struct. Biol. 38:92–101 [Google Scholar]
  65. Morgan MT, Haj-Yahya M, Ringel AE, Bandi P, Brik A, Wolberger C. 65.  2016. Structural basis for histone H2B deubiquitination by the SAGA DUB module. Science 351:6274725–28 [Google Scholar]
  66. McCullough J, Clague MJ, Urbé S. 66.  2004. AMSH is an endosome-associated ubiquitin isopeptidase. J. Cell Biol. 166:4487–92 [Google Scholar]
  67. Cooper EM, Cutcliffe C, Kristiansen TZ, Pandey A, Pickart CM, Cohen RE. 67.  2009. K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. EMBO J 28:6621–31 [Google Scholar]
  68. Sato Y, Yoshikawa A, Yamagata A, Mimura H, Yamashita M. 68.  et al. 2008. Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature 455:7211358–62 [Google Scholar]
  69. Komander D, Reyes-Turcu F, Licchesi JDF, Odenwaelder P, Wilkinson KD, Barford D. 69.  2009. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 10:5466–73 [Google Scholar]
  70. Winborn BJ, Travis SM, Todi SV, Scaglione KM, Xu P. 70.  et al. 2008. The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits Lys63 linkages in mixed linkage ubiquitin chains. J. Biol. Chem. 283:3926436–43 [Google Scholar]
  71. Sun S-C. 71.  2010. CYLD: a tumor suppressor deubiquitinase regulating NF-κB activation and diverse biological processes. Cell Death Differ 17:125–34 [Google Scholar]
  72. Komander D, Lord CJ, Scheel H, Swift S, Hofmann K. 72.  et al. 2008. The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Mol. Cell 29:4451–64 [Google Scholar]
  73. Sato Y, Goto E, Shibata Y, Kubota Y, Yamagata A. 73.  et al. 2015. Structures of CYLD USP with Met1- or Lys63-linked diubiquitin reveal mechanisms for dual specificity. Nat. Struct. Mol. Biol. 22:222–29 [Google Scholar]
  74. Cunningham CN, Baughman JM, Phu L, Tea JS, Yu C. 74.  et al. 2015. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol. 17:2160–69 [Google Scholar]
  75. McCullough J, Row PE, Lorenzo O, Doherty M, Beynon R. 75.  et al. 2006. Activation of the endosome-associated ubiquitin isopeptidase AMSH by STAM, a component of the multivesicular body-sorting machinery. Curr. Biol. 16:2160–65 [Google Scholar]
  76. Shrestha RK, Ronau JA, Davies CW, Guenette RG, Strieter ER. 76.  et al. 2014. Insights into the mechanism of deubiquitination by JAMM deubiquitinases from cocrystal structures of the enzyme with the substrate and product. Biochemistry 53:193199–217 [Google Scholar]
  77. Bueno AN, Shrestha RK, Ronau JA, Babar A, Sheedlo MJ. 77.  et al. 2015. Dynamics of an active-site flap contributes to catalysis in a JAMM family metallo deubiquitinase. Biochemistry 54:396038–51 [Google Scholar]
  78. Wang T, Yin L, Cooper EM, Lai M-Y, Dickey S. 78.  et al. 2009. Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1. J. Mol. Biol. 386:41011–23 [Google Scholar]
  79. Edelmann MJ, Iphöfer A, Akutsu M, Altun M, di Gleria K. 79.  et al. 2009. Structural basis and specificity of human otubain 1-mediated deubiquitination. Biochem. J. 418:2379–90 [Google Scholar]
  80. Nakada S, Tai I, Panier S, Al-Hakim AK, Iemura S-I. 80.  et al. 2010. Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 466:7309941–46 [Google Scholar]
  81. Juang Y-C, Landry M-C, Sanches M, Vittal V, Leung CCY. 81.  et al. 2012. OTUB1 co-opts Lys48-linked ubiquitin recognition to suppress E2 enzyme function. Mol. Cell 45:3384–97 [Google Scholar]
  82. Wiener R, Zhang X, Wang T, Wolberger C. 82.  2012. The mechanism of OTUB1-mediated inhibition of ubiquitination. Nature 483:7391618–22 [Google Scholar]
  83. Wiener R, DiBello AT, Lombardi PM, Guzzo CM, Zhang X. 83.  et al. 2013. E2 ubiquitin-conjugating enzymes regulate the deubiquitinating activity of OTUB1. Nat. Struct. Mol. Biol. 20:91033–39 [Google Scholar]
  84. Damgaard RB, Walker JA, Marco-Casanova P, Morgan NV, Titheradge HL. 84.  et al. 2016. The deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity. Cell 166:51215–20 [Google Scholar]
  85. Zhou Q, Yu X, Demirkaya E, Deuitch N, Stone D. 85.  et al. 2016. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. PNAS 113:3610127–32 [Google Scholar]
  86. Elliott PR, Komander D. 86.  2016. Regulation of Met1-linked polyubiquitin signalling by the deubiquitinase OTULIN. FEBS J 283:139–53 [Google Scholar]
  87. Elliott PR, Leske D, Hrdinka M, Bagola K, Fiil BK. 87.  et al. 2016. SPATA2 links CYLD to LUBAC, activates CYLD, and controls LUBAC signaling. Mol. Cell 63:6990–1005 [Google Scholar]
  88. Hu H, Brittain GC, Chang J-H, Puebla-Osorio N, Jin J. 88.  et al. 2013. OTUD7B controls non-canonical NF-κB activation through deubiquitination of TRAF3. Nature 494:7437371–74 [Google Scholar]
  89. Bremm A, Moniz S, Mader J, Rocha S, Komander D. 89.  2014. Cezanne (OTUD7B) regulates HIF-1α homeostasis in a proteasome-independent manner. EMBO Rep 15:121268–77 [Google Scholar]
  90. Moniz S, Bandarra D, Biddlestone J, Campbell KJ, Komander D. 90.  et al. 2015. Cezanne regulates E2F1-dependent HIF2α expression. J. Cell Sci. 128:163082–93 [Google Scholar]
  91. Licchesi JDF, Mieszczanek J, Mevissen TET, Rutherford TJ, Akutsu M. 91.  et al. 2012. An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains. Nat. Struct. Mol. Biol. 19:162–71 [Google Scholar]
  92. Davies CW, Paul LN, Das C. 92.  2013. Mechanism of recruitment and activation of the endosome-associated deubiquitinase AMSH. Biochemistry 52:447818–29 [Google Scholar]
  93. Kristariyanto YA, Choi S-Y, Rehman SAA, Ritorto MS, Campbell DG. 93.  et al. 2015. Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations. Biochem. J. 467:2345–52 [Google Scholar]
  94. Verhelst K, Carpentier I, Kreike M, Meloni L, Verstrepen L. 94.  et al. 2012. A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO J 31:193845–55 [Google Scholar]
  95. Tokunaga F, Nishimasu H, Ishitani R, Goto E, Noguchi T. 95.  et al. 2012. Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation. EMBO J 31:193856–70 [Google Scholar]
  96. Wertz IE, Newton K, Seshasayee D, Kusam S, Lam C. 96.  et al. 2015. Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation. Nature 528:7582370–75 [Google Scholar]
  97. Sahtoe DD, Sixma TK. 97.  2015. Layers of DUB regulation. Trends Biochem. Sci. 40:8456–67 [Google Scholar]
  98. Pinto-Fernandez A, Kessler BM. 98.  2016. DUBbing cancer: deubiquitylating enzymes involved in epigenetics, DNA damage and the cell cycle as therapeutic targets. Front. Genet. 7:133 [Google Scholar]
  99. Lopez-Castejon G, Edelmann MJ. 99.  2016. Deubiquitinases: novel therapeutic targets in immune surveillance?. Mediat. Inflamm 2016:3481371 [Google Scholar]
  100. Todi SV, Paulson HL. 100.  2011. Balancing act: deubiquitinating enzymes in the nervous system. Trends Neurosci 34:7370–82 [Google Scholar]
  101. Dixit VM, Green S, Sarma V, Holzman LB, Wolf FW. 101.  et al. 1990. Tumor necrosis factor-α induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J. Biol. Chem. 265:52973–78 [Google Scholar]
  102. Hymowitz SG, Wertz IE. 102.  2010. A20: from ubiquitin editing to tumour suppression. Nat. Rev. Cancer 10:5332–41 [Google Scholar]
  103. Coornaert B, Baens M, Heyninck K, Bekaert T, Haegman M. 103.  et al. 2008. T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-κB inhibitor A20. Nat. Immunol. 9:3263–71 [Google Scholar]
  104. Staal J, Driege Y, Bekaert T, Demeyer A, Muyllaert D. 104.  et al. 2011. T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J 30:91742–52 [Google Scholar]
  105. O'Donnell MA, Perez-Jimenez E, Oberst A, Ng A, Massoumi R. 105.  et al. 2011. Caspase 8 inhibits programmed necrosis by processing CYLD. Cell Res 13:121437–42 [Google Scholar]
  106. Legarda D, Justus SJ, Ang RL, Rikhi N, Li W. 106.  et al. 2016. CYLD proteolysis protects macrophages from TNF-mediated auto-necroptosis induced by LPS and licensed by type I IFN. Cell Rep 15:112449–61 [Google Scholar]
  107. Sriram SM, Kim BY, Kwon YT. 107.  2011. The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat. Rev. Mol. Cell Biol. 12:11735–47 [Google Scholar]
  108. Huang TT, Nijman SMB, Mirchandani KD, Galardy PJ, Cohn MA. 108.  et al. 2006. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat. Cell Biol. 8:4339–47 [Google Scholar]
  109. Urbé S, Liu H, Hayes SD, Heride C, Rigden DJ, Clague MJ. 109.  2012. Systematic survey of deubiquitinase localization identifies USP21 as a regulator of centrosome- and microtubule-associated functions. Mol. Biol. Cell 23:61095–103 [Google Scholar]
  110. Herhaus L, Perez-Oliva AB, Cozza G, Gourlay R, Weidlich S. 110.  et al. 2015. Casein kinase 2 (CK2) phosphorylates the deubiquitylase OTUB1 at Ser16 to trigger its nuclear localization. Sci. Signal. 8:372ra35 [Google Scholar]
  111. Mueller T, Breuer P, Schmitt I, Walter J, Evert BO, Wüllner U. 111.  2009. CK2-dependent phosphorylation determines cellular localization and stability of ataxin-3. Hum. Mol. Genet. 18:173334–43 [Google Scholar]
  112. Yuan J, Luo K, Zhang L, Cheville JC, Lou Z. 112.  2010. USP10 regulates p53 localization and stability by deubiquitinating p53. Cell 140:3384–96 [Google Scholar]
  113. Zhang L, Zhou F, Drabsch Y, Gao R, Snaar-Jagalska BE. 113.  et al. 2012. USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor. Cell Res 14:7717–26 [Google Scholar]
  114. Mashtalir N, Daou S, Barbour H, Sen NN, Gagnon J. 114.  et al. 2014. Autodeubiquitination protects the tumor suppressor BAP1 from cytoplasmic sequestration mediated by the atypical ubiquitin ligase UBE2O. Mol. Cell 54:3392–406 [Google Scholar]
  115. Scholz CC, Rodriguez J, Pickel C, Burr S, Fabrizio J-A. 115.  et al. 2016. FIH regulates cellular metabolism through hydroxylation of the deubiquitinase OTUB1. PLOS Biol 14:1e1002347 [Google Scholar]
  116. Wijnhoven P, Konietzny R, Blackford AN, Travers J, Kessler BM. 116.  et al. 2015. USP4 auto-deubiquity-lation promotes homologous recombination. Mol. Cell 60:3362–73 [Google Scholar]
  117. Elliott PR, Nielsen SV, Marco-Casanova P, Fiil BK, Keusekotten K. 117.  et al. 2014. Molecular basis and regulation of OTULIN-LUBAC interaction. Mol. Cell 54:3335–48 [Google Scholar]
  118. Schaeffer V, Akutsu M, Olma MH, Gomes LC, Kawasaki M, Dikic I. 118.  2014. Binding of OTULIN to the PUB domain of HOIP controls NF-κB signaling. Mol. Cell 54:349–61 [Google Scholar]
  119. Mizuno E, Kitamura N, Komada M. 119.  2007. 14-3-3-dependent inhibition of the deubiquitinating activity of UBPY and its cancellation in the M phase. Exp. Cell Res. 313:163624–34 [Google Scholar]
  120. Reincke M, Sbiera S, Hayakawa A, Theodoropoulou M, Osswald A. 120.  et al. 2015. Mutations in the deubiquitinase gene USP8 cause Cushing's disease. Nat. Genet. 47:131–38 [Google Scholar]
  121. Zhang X, Wang Y. 121.  2015. Cell cycle regulation of VCIP135 deubiquitinase activity and function in p97/p47-mediated Golgi reassembly. Mol. Biol. Cell 26:122242–51 [Google Scholar]
  122. Reiley W, Zhang M, Wu X, Granger E, Sun S-C. 122.  2005. Regulation of the deubiquitinating enzyme CYLD by IκB kinase gamma-dependent phosphorylation. Mol. Cell Biol. 25:103886–95 [Google Scholar]
  123. Hutti JE, Shen RR, Abbott DW, Zhou AY, Sprott KM. 123.  et al. 2009. Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKKε promotes cell transformation. Mol. Cell 34:4461–72 [Google Scholar]
  124. Thein S, Pham A, Bayer KU, Tao-Cheng J-H, Dosemeci A. 124.  2014. IKK regulates the deubiquitinase CYLD at the postsynaptic density. Biochem. Biophys. Res. Commun. 450:1550–54 [Google Scholar]
  125. Hutti JE, Turk BE, Asara JM, Ma A, Cantley LC, Abbott DW. 125.  2007. IκB kinase β phosphorylates the K63 deubiquitinase A20 to cause feedback inhibition of the NF-κB pathway. Mol. Cell Biol. 27:217451–61 [Google Scholar]
  126. Komander D, Barford D. 126.  2008. Structure of the A20 OTU domain and mechanistic insights into deubiquitination. Biochem. J. 409:177–85 [Google Scholar]
  127. Huang X, Summers MK, Pham V, Lill JR, Liu J. 127.  et al. 2011. Deubiquitinase USP37 is activated by CDK2 to antagonize APC(CDH1) and promote S phase entry. Mol. Cell 42:4511–23 [Google Scholar]
  128. Xu D, Shan B, Lee B-H, Zhu K, Zhang T. 128.  et al. 2015. Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system. eLife 4:e10510 [Google Scholar]
  129. Rutz S, Kayagaki N, Phung QT, Eidenschenk C, Noubade R. 129.  et al. 2015. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature 518:7539417–21 [Google Scholar]
  130. Huang OW, Ma X, Yin J, Flinders J, Maurer T. 130.  et al. 2012. Phosphorylation-dependent activity of the deubiquitinase DUBA. Nat. Struct. Mol. Biol. 19:2171–75 [Google Scholar]
  131. Meray RK, Lansbury PT. 131.  2007. Reversible monoubiquitination regulates the Parkinson disease-associated ubiquitin hydrolase UCH-L1. J. Biol. Chem. 282:1410567–75 [Google Scholar]
  132. Todi SV, Winborn BJ, Scaglione KM, Blount JR, Travis SM, Paulson HL. 132.  2009. Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3. EMBO J 28:4372–82 [Google Scholar]
  133. Todi SV, Scaglione KM, Blount JR, Basrur V, Conlon KP. 133.  et al. 2010. Activity and cellular functions of the deubiquitinating enzyme and polyglutamine disease protein ataxin-3 are regulated by ubiquitination at lysine 117. J. Biol. Chem. 285:5039303–13 [Google Scholar]
  134. Faggiano S, Menon RP, Kelly GP, Todi SV, Scaglione KM. 134.  et al. 2015. Allosteric regulation of deubiquitylase activity through ubiquitination. Front. Mol. Biosci. 2:463155 [Google Scholar]
  135. Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R. 135.  et al. 2007. The ubiquitin-specific protease USP28 is required for MYC stability. Nat. Cell Biol. 9:7765–74 [Google Scholar]
  136. Lin D, Zhang M, Zhang M-X, Ren Y, Jin J. 136.  et al. 2015. Induction of USP25 by viral infection promotes innate antiviral responses by mediating the stabilization of TRAF3 and TRAF6. PNAS 112:3611324–29 [Google Scholar]
  137. Zhong B, Liu X, Wang X, Liu X, Li H. 137.  et al. 2013. Ubiquitin-specific protease 25 regulates TLR4-dependent innate immune responses through deubiquitination of the adaptor protein TRAF3. Sci. Signal. 6:275ra35 [Google Scholar]
  138. Zhong B, Liu X, Wang X, Chang SH, Liu X. 138.  et al. 2012. Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. Nat. Immunol. 13:111110–17 [Google Scholar]
  139. Meulmeester E, Kunze M, Hsiao HH, Urlaub H, Melchior F. 139.  2008. Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Mol. Cell 30:5610–19 [Google Scholar]
  140. Zhen Y, Knobel PA, Stracker TH, Reverter D. 140.  2014. Regulation of USP28 deubiquitinating activity by SUMO conjugation. J. Biol. Chem. 289:5034838–50 [Google Scholar]
  141. Denuc A, Bosch-Comas A, Gonzàlez-Duarte R, Marfany G. 141.  2009. The UBA-UIM domains of the USP25 regulate the enzyme ubiquitination state and modulate substrate recognition. PLOS ONE 4:5e5571 [Google Scholar]
  142. Kobayashi T, Masoumi KC, Massoumi R. 142.  2015. Deubiquitinating activity of CYLD is impaired by SUMOylation in neuroblastoma cells. Oncogene 34:172251–60 [Google Scholar]
  143. Cotto-Rios XM, Békés M, Chapman J, Ueberheide B, Huang TT. 143.  2012. Deubiquitinases as a signaling target of oxidative stress. Cell Rep 2:61475–84 [Google Scholar]
  144. Kulathu Y, Garcia FJ, Mevissen TET, Busch M, Arnaudo N. 144.  et al. 2013. Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Nat. Commun. 4:1569 [Google Scholar]
  145. Lee J-G, Baek K, Soetandyo N, Ye Y. 145.  2013. Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells. Nat. Commun. 4:1568 [Google Scholar]
  146. Avvakumov GV, Walker JR, Xue S, Allali-Hassani A, Asinas A. 146.  et al. 2012. Two ZnF-UBP domains in isopeptidase T (USP5). Biochemistry 51:61188–98 [Google Scholar]
  147. Faesen AC, Dirac AMG, Shanmugham A, Ovaa H, Perrakis A, Sixma TK. 147.  2011. Mechanism of USP7/HAUSP activation by its C-terminal ubiquitin-like domain and allosteric regulation by GMP-synthetase. Mol. Cell 44:1147–59 [Google Scholar]
  148. Rouge L, Bainbridge TW, Kwok M, Tong R, Di Lello P. 148.  et al. 2016. Molecular understanding of USP7 substrate recognition and C-terminal activation. Structure 24:81335–45 [Google Scholar]
  149. Kim RQ, van Dijk WJ, Sixma TK. 149.  2016. Structure of USP7 catalytic domain and three Ubl-domains reveals a connector α-helix with regulatory role. J. Struct. Biol. 195:111–18 [Google Scholar]
  150. van der Knaap JA, Kumar BRP, Moshkin YM, Langenberg K, Krijgsveld J. 150.  et al. 2005. GMP synthetase stimulates histone H2B deubiquitylation by the epigenetic silencer USP7. Mol. Cell 17:5695–707 [Google Scholar]
  151. Sowa ME, Bennett EJ, Gygi SP, Harper JW. 151.  2009. Defining the human deubiquitinating enzyme interaction landscape. Cell 138:2389–403 [Google Scholar]
  152. Cohn MA, Kowal P, Yang K, Haas W, Huang TT. 152.  et al. 2007. A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. Mol. Cell 28:5786–97 [Google Scholar]
  153. Cohn MA, Kee Y, Haas W, Gygi SP, D'Andrea AD. 153.  2009. UAF1 is a subunit of multiple deubiquitinating enzyme complexes. J. Biol. Chem. 284:85343–51 [Google Scholar]
  154. Kee Y, Yang K, Cohn MA, Haas W, Gygi SP, D'Andrea AD. 154.  2010. WDR20 regulates activity of the USP12·UAF1 deubiquitinating enzyme complex. J. Biol. Chem. 285:1511252–57 [Google Scholar]
  155. Nijman SMB, Huang TT, Dirac AMG, Brummelkamp TR, Kerkhoven RM. 155.  et al. 2005. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol. Cell 17:3331–39 [Google Scholar]
  156. Yang K, Moldovan G-L, Vinciguerra P, Murai J, Takeda S, D'Andrea AD. 156.  2011. Regulation of the Fanconi anemia pathway by a SUMO-like delivery network. Genes Dev 25:171847–58 [Google Scholar]
  157. Yin J, Schoeffler AJ, Wickliffe K, Newton K, Starovasnik MA. 157.  et al. 2015. Structural insights into WD-repeat 48 activation of ubiquitin-specific protease 46. Structure 23:112043–54 [Google Scholar]
  158. Li H, Lim KS, Kim H, Hinds TR, Jo U. 158.  et al. 2016. Allosteric activation of ubiquitin-specific proteases by β-propeller proteins UAF1 and WDR20. Mol. Cell 63:2249–60 [Google Scholar]
  159. Dharadhar S, Clerici M, van Dijk WJ, Fish A, Sixma TK. 159.  2016. A conserved two-step binding for the UAF1 regulator to the USP12 deubiquitinating enzyme. J. Struct. Biol. 196:3437–47 [Google Scholar]
  160. Liang Q, Dexheimer TS, Zhang P, Rosenthal AS, Villamil MA. 160.  et al. 2014. A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses. Nat. Chem. Biol. 10:4298–304 [Google Scholar]
  161. Schlicher L, Wissler M, Preiss F, Schubert PB, Jakob C. 161.  et al. 2016. SPATA2 promotes CYLD activity and regulates TNF‐induced NF‐κB signaling and cell death. EMBO Rep 17:101485–97 [Google Scholar]
  162. Wagner SA, Satpathy S, Beli P, Choudhary C. 162.  2016. SPATA2 links CYLD to the TNF-α receptor signaling complex and modulates the receptor signaling outcomes. EMBO J 35:171845–955 [Google Scholar]
  163. Kupka S, de Miguel D, Draber P, Martino L, Surinova S. 163.  et al. 2016. SPATA2-mediated binding of CYLD to HOIP enables CYLD recruitment to signaling complexes. Cell Rep 16:91–11 [Google Scholar]
  164. Yao T, Song L, Xu W, DeMartino GN, Florens L. 164.  et al. 2006. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat. Cell Biol. 8:9994–1002 [Google Scholar]
  165. Yao T, Song L, Jin J, Cai Y, Takahashi H. 165.  et al. 2008. Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. Mol. Cell 31:6909–17 [Google Scholar]
  166. Sanchez-Pulido L, Kong L, Ponting CP. 166.  2012. A common ancestry for BAP1 and Uch37 regulators. Bioinformatics 28:151953–56 [Google Scholar]
  167. Sahtoe DD, van Dijk WJ, Oualid El F, Ekkebus R, Ovaa H, Sixma TK. 167.  2015. Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G. Mol. Cell 57:5887–900 [Google Scholar]
  168. VanderLinden RT, Hemmis CW, Schmitt B, Ndoja A, Whitby FG. 168.  et al. 2015. Structural basis for the activation and inhibition of the UCH37 deubiquitylase. Mol. Cell 57:5901–11 [Google Scholar]
  169. Sahtoe DD, van Dijk WJ, Ekkebus R, Ovaa H, Sixma TK. 169.  2016. BAP1/ASXL1 recruitment and activation for H2A deubiquitination. Nat. Commun. 7:10292 [Google Scholar]
  170. Lee B-H, Lu Y, Prado MA, Shi Y, Tian G. 170.  et al. 2016. USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites. Nature 532:7599398–401 [Google Scholar]
  171. Hu M, Li P, Song L, Jeffrey PD, Chenova TA. 171.  et al. 2005. Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J 24:213747–56 [Google Scholar]
  172. Hanna J, Hathaway NA, Tone Y, Crosas B, Elsasser S. 172.  et al. 2006. Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127:199–111 [Google Scholar]
  173. Lee B-H, Lee MJ, Park S, Oh D-C, Elsasser S. 173.  et al. 2010. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467:7312179–84 [Google Scholar]
  174. Bashore C, Dambacher CM, Goodall EA, Matyskiela ME, Lander GC, Martin A. 174.  2015. Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome. Nat. Struct. Mol. Biol. 22:9712–19 [Google Scholar]
  175. Aufderheide A, Beck F, Stengel F, Hartwig M, Schweitzer A. 175.  et al. 2015. Structural characterization of the interaction of Ubp6 with the 26S proteasome. PNAS 112:288626–31 [Google Scholar]
  176. Huang X, Luan B, Wu J, Shi Y. 176.  2016. An atomic structure of the human 26S proteasome. Nat. Struct. Mol. Biol. 23:9778–85 [Google Scholar]
  177. Verma R, Aravind L, Oania R, McDonald WH, Yates JR. 177.  et al. 2002. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298:5593611–15 [Google Scholar]
  178. Yao T, Cohen RE. 178.  2002. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419:6905403–7 [Google Scholar]
  179. Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A. 179.  2012. Complete subunit architecture of the proteasome regulatory particle. Nature 482:7384186–91 [Google Scholar]
  180. Matyskiela ME, Lander GC, Martin A. 180.  2013. Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol. 20:7781–88 [Google Scholar]
  181. Worden EJ, Padovani C, Martin A. 181.  2014. Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat. Struct. Mol. Biol. 21:3220–27 [Google Scholar]
  182. Pathare GR, Nagy I, Sledź P, Anderson DJ, Zhou H-J. 182.  et al. 2014. Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11. PNAS 111:82984–89 [Google Scholar]
  183. Dambacher CM, Worden EJ, Herzik MA, Martin A, Lander GC. 183.  2016. Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. eLife 5:e13027 [Google Scholar]
  184. Echalier A, Pan Y, Birol M, Tavernier N, Pintard L. 184.  et al. 2013. Insights into the regulation of the human COP9 signalosome catalytic subunit, CSN5/Jab1. PNAS 110:41273–78 [Google Scholar]
  185. Birol M, Enchev RI, Padilla A, Stengel F, Aebersold R. 185.  et al. 2014. Structural and biochemical characterization of the Cop9 signalosome CSN5/CSN6 heterodimer. PLOS ONE 9:8e105688 [Google Scholar]
  186. Lingaraju GM, Bunker RD, Cavadini S, Hess D, Hassiepen U. 186.  et al. 2014. Crystal structure of the human COP9 signalosome. Nature 512:7513161–65 [Google Scholar]
  187. Mosadeghi R, Reichermeier KM, Winkler M, Schreiber A, Reitsma JM. 187.  et al. 2016. Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle. eLife 5:E2 [Google Scholar]
  188. Cavadini S, Fischer ES, Bunker RD, Potenza A, Lingaraju GM. 188.  et al. 2016. Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome. Nature 531:7596598–603 [Google Scholar]
  189. Yan K, Li L, Wang X, Hong R, Zhang Y. 189.  et al. 2015. The deubiquitinating enzyme complex BRISC is required for proper mitotic spindle assembly in mammalian cells. J. Cell Biol. 210:2209–24 [Google Scholar]
  190. Sobhian B, Shao G, Lilli DR, Culhane AC, Moreau LA. 190.  et al. 2007. RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316:58281198–1202 [Google Scholar]
  191. Zeqiraj E, Tian L, Piggott CA, Pillon MC, Duffy NM. 191.  et al. 2015. Higher-order assembly of BRCC36-KIAA0157 is required for DUB activity and biological function. Mol. Cell 59:6970–83 [Google Scholar]
  192. Kyrieleis OJ, McIntosh PB, Webb SR, Calder LJ, Lloyd J. 192.  et al. 2016. Three-dimensional architecture of the human BRCA1-A histone deubiquitinase core complex. Cell Rep 17:123099–3106 [Google Scholar]
  193. Henry KW, Wyce A, Lo W-S, Duggan LJ, Emre NCT. 193.  et al. 2003. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev 17:212648–63 [Google Scholar]
  194. Daniel JA, Torok MS, Sun Z-W, Schieltz D, Allis CD. 194.  et al. 2004. Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription. J. Biol. Chem. 279:31867–71 [Google Scholar]
  195. Lee KK, Florens L, Swanson SK, Washburn MP, Workman JL. 195.  2005. The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex. Mol. Cell Biol. 25:31173–82 [Google Scholar]
  196. Samara NL, Datta AB, Berndsen CE, Zhang X, Yao T. 196.  et al. 2010. Structural insights into the assembly and function of the SAGA deubiquitinating module. Science 328:59811025–29 [Google Scholar]
  197. Köhler A, Zimmerman E, Schneider M, Hurt E, Zheng N. 197.  2010. Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module. Cell 141:4606–17 [Google Scholar]
  198. Bremm A, Freund SMV, Komander D. 198.  2010. Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat. Struct. Mol. Biol. 17:8939–47 [Google Scholar]
  199. Sims JJ, Scavone F, Cooper EM, Kane LA, Youle RJ. 199.  et al. 2012. Polyubiquitin-sensor proteins reveal localization and linkage-type dependence of cellular ubiquitin signaling. Nat. Methods 9:3303–9 [Google Scholar]
  200. van Wijk SJL, Fiskin E, Putyrski M, Pampaloni F, Hou J. 200.  et al. 2012. Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. Mol. Cell 47:5797–809 [Google Scholar]
  201. Nishio K, Kim S-W, Kawai K, Mizushima T, Yamane T. 201.  et al. 2009. Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain. Biochem. Biophys. Res. Commun. 390:3855–60 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error