1932

Abstract

Oxidative stress is two sided: Whereas excessive oxidant challenge causes damage to biomolecules, maintenance of a physiological level of oxidant challenge, termed oxidative eustress, is essential for governing life processes through redox signaling. Recent interest has focused on the intricate ways by which redox signaling integrates these converse properties. Redox balance is maintained by prevention, interception, and repair, and concomitantly the regulatory potential of molecular thiol-driven master switches such as Nrf2/Keap1 or NF-κB/IκB is used for system-wide oxidative stress response. Nonradical species such as hydrogen peroxide (HO) or singlet molecular oxygen, rather than free-radical species, perform major second messenger functions. Chemokine-controlled NADPH oxidases and metabolically controlled mitochondrial sources of HO as well as glutathione- and thioredoxin-related pathways, with powerful enzymatic back-up systems, are responsible for fine-tuning physiological redox signaling. This makes for a rich research field spanning from biochemistry and cell biology into nutritional sciences, environmental medicine, and molecular knowledge-based redox medicine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-061516-045037
2017-06-20
2024-05-27
Loading full text...

Full text loading...

/deliver/fulltext/biochem/86/1/annurev-biochem-061516-045037.html?itemId=/content/journals/10.1146/annurev-biochem-061516-045037&mimeType=html&fmt=ahah

Literature Cited

  1. Jones DP, Sies H. 1.  2015. The redox code. Antioxid. Redox Signal. 23:734–46 [Google Scholar]
  2. Kemp M, Go YM, Jones DP. 2.  2008. Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic. Biol. Med. 44:921–37 [Google Scholar]
  3. Bücher T, Sies H. 3.  1969. Steady state relaxation of enolase in vitro and metabolic throughput in vivo of red and white rabbit muscles. Eur. J. Biochem. 8:273–83 [Google Scholar]
  4. Selye H. 4.  1936. A syndrome produced by diverse nocuous agents. Nature 138:32 [Google Scholar]
  5. Selye H. 5.  1976. Forty years of stress research: principal remaining problems and misconceptions. Can. Med. Assoc. J 115:53–56 [Google Scholar]
  6. McEwen BS. 6.  2016. In pursuit of resilience: stress, epigenetics, and brain plasticity. Ann. N.Y. Acad. Sci. 1373:56–64 [Google Scholar]
  7. Sterling P, Eyer J. 7.  1988. Allostasis: a new paradigm to explain arousal pathology. Handbook of Life Stress, Cognition and Health S Fisher, J Reason 629–49 New York: Wiley [Google Scholar]
  8. Davies KJ. 8.  2016. Adaptive homeostasis. Mol. Asp. Med. 49:1–7 [Google Scholar]
  9. Ore S. 9.  1956. Oxidative stress relaxation of natural rubber vulcanized with di-tertiary-butyl peroxide. Rubber Chem. Technol. 29:1043–46 [Google Scholar]
  10. Paniker NV, Srivastava SK, Beutler E. 10.  1970. Glutathione metabolism of the red cells. Effect of glutathione reductase deficiency on the stimulation of hexose monophosphate shunt under oxidative stress. Biochim. Biophys. Acta 215:456–60 [Google Scholar]
  11. Sies H, Cadenas E. 11.  1985. Oxidative stress: damage to intact cells and organs. Philos. Trans. R. Soc. B 311:617–31 [Google Scholar]
  12. Sies H. 12.  1985. Oxidative stress: introductory remarks. Oxidative Stress H Sies 1–8 London: Academic [Google Scholar]
  13. Sies H. 13.  1986. Biochemistry of oxidative stress. Angew. Chem. Int. Ed. Engl. 25:1058–71 [Google Scholar]
  14. Jones DP. 14.  2006. Redefining oxidative stress. Antioxid. Redox Signal. 8:1865–79 [Google Scholar]
  15. Sies H, Jones DP. 15.  2007. Oxidative stress. Encyclopedia of Stress, Vol. 3 G Fink 45–48 Amsterdam: Elsevier, 2nd ed.. [Google Scholar]
  16. Azzi A, Davies KJ, Kelly F. 16.  2004. Free radical biology—terminology and critical thinking. FEBS Lett 558:3–6 [Google Scholar]
  17. Levonen AL, Hill BG, Kansanen E, Zhang J, Darley-Usmar VM. 17.  2014. Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radic. Biol. Med. 71:196–207 [Google Scholar]
  18. Estevam EC, Nasim MJ, Faulstich L, Hakenesch M, Burkholz T, Jacob C. 18.  2015. A historical perspective on oxidative stress and intracellular redox control. Oxidative Stress in Applied Basic Research and Clinical Practice SM Roberts, JP Kehrer, LO Klotz 3–20 Heidelberg: Humana Press [Google Scholar]
  19. Lushchak VI. 19.  2014. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 224C:164–75 [Google Scholar]
  20. Yan LJ. 20.  2014. Positive oxidative stress in aging and aging-related disease tolerance. Redox Biol 2C:165–69 [Google Scholar]
  21. Pickering AM, Vojtovich L, Tower J, Davies KJA. 21.  2013. Oxidative stress adaptation with acute, chronic, and repeated stress. Free Radic. Biol. Med. 55:109–18 [Google Scholar]
  22. Ursini F, Maiorino M, Forman HJ. 22.  2016. Redox homeostasis: the golden mean of healthy living. Redox Biol 8:205–15 [Google Scholar]
  23. Sies H. 23.  2015. Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–83 [Google Scholar]
  24. Lyons TW, Reinhard CT, Planavsky NJ. 24.  2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506:307–15 [Google Scholar]
  25. Del Rio LA. 25.  2015. ROS and RNS in plant physiology: an overview. J. Exp. Bot. 66:2827–37 [Google Scholar]
  26. Giles GI, Tasker KM, Jacob C. 26.  2001. Hypothesis: the role of reactive sulfur species in oxidative stress. Free Radic. Biol. Med. 31:1279–83 [Google Scholar]
  27. DeLeon ER, Gao Y, Huang E, Arif M, Arora N. 27.  et al. 2016. A case of mistaken identity: Are reactive oxygen species actually reactive sulfide species?. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310:R549–60 [Google Scholar]
  28. Poole LB. 28.  2015. The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med. 80:148–57 [Google Scholar]
  29. Labunskyy VM, Hatfield DL, Gladyshev VN. 29.  2014. Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 94:739–77 [Google Scholar]
  30. Kappus H, Sies H. 30.  1981. Toxic drug effects associated with oxygen metabolism: redox cycling and lipid peroxidation. Experientia 37:1233–41 [Google Scholar]
  31. Tonner PD, Pittman AM, Gulli JG, Sharma K, Schmid AK. 31.  2015. A regulatory hierarchy controls the dynamic transcriptional response to extreme oxidative stress in archaea. PLOS Genet 11:e1004912 [Google Scholar]
  32. Mishra S, Imlay J. 32.  2012. Why do bacteria use so many enzymes to scavenge hydrogen peroxide?. Arch. Biochem. Biophys. 525:145–60 [Google Scholar]
  33. Sies H. 33.  1993. Strategies of antioxidant defense. Eur. J. Biochem. 215:213–19 [Google Scholar]
  34. Berndt C, Lillig CH, Flohé L. 34.  2014. Redox regulation by glutathione needs enzymes. Front. Pharmacol. 5:168 [Google Scholar]
  35. Culp BR, Titus BG, Lands WE. 35.  1979. Inhibition of prostaglandin biosynthesis by eicosapentaenoic acid. Prostaglandins Med 3:269–78 [Google Scholar]
  36. Jones DP. 36.  2008. Radical-free biology of oxidative stress. Am. J. Physiol. Cell Physiol. 295:C849–68 [Google Scholar]
  37. Sies H. 37.  1982. Nicotinamide nucleotide compartmentation. Metabolic Compartmentation H Sies 205–31 London: Academic [Google Scholar]
  38. Massudi H, Grant R, Guillemin GJ, Braidy N. 38.  2012. NAD+ metabolism and oxidative stress: the golden nucleotide on a crown of thorns. Redox Rep 17:28–46 [Google Scholar]
  39. Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D. 39.  et al. 2013. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154:430–41 [Google Scholar]
  40. Canto C, Menzies KJ, Auwerx J. 40.  2015. NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 22:31–53 [Google Scholar]
  41. Nickel AG, von Hardenberg A, Hohl M, Löffler JR, Kohlhaas M. 41.  et al. 2015. Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab 22:472–84 [Google Scholar]
  42. Warburg OH. 42.  1928. Über die katalytischen Wirkungen der lebendigen Substanz [On the catalytic actions of the living substance] Berlin: Julius Springer
  43. Sies H. 43.  2014. Role of metabolic H2O2 generation: redox signaling and oxidative stress. J. Biol. Chem. 289:8735–41 [Google Scholar]
  44. Bücher T, Klingenberg M. 44.  1958. Wege des Wasserstoffs in der lebendigen Organisation. [Pathways of hydrogen in the living organization]. Angew. Chem. 70:552–70 [Google Scholar]
  45. Bücher T, Brauser B, Conze A, Klein F, Langguth O, Sies H. 45.  1972. State of oxidation-reduction and state of binding in the cytosolic NADH-system as disclosed by equilibration with extracellular lactate-pyruvate in hemoglobin-free perfused rat liver. Eur. J. Biochem. 27:301–17 [Google Scholar]
  46. Williamson DH, Lund P, Krebs HA. 46.  1967. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103:514–27 [Google Scholar]
  47. Sies H, Chance B. 47.  1970. The steady state level of catalase compound I in isolated hemoglobin-free perfused rat liver. FEBS Lett 11:172–76 [Google Scholar]
  48. Maulucci G, Bacic G, Bridal L, Schmidt HH, Tavitian B. 48.  et al. 2016. Imaging ROS-induced modifications in living systems. Antioxid. Redox Signal. 24:939–58 [Google Scholar]
  49. Hawkins CL, Davies MJ. 49.  2014. Detection and characterisation of radicals in biological materials using EPR methodology. Biochim. Biophys. Acta 1840:708–21 [Google Scholar]
  50. Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS. 50.  et al. 2006. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3:281–86 [Google Scholar]
  51. Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA. 51.  et al. 2004. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J. Biol. Chem. 279:13044–53 [Google Scholar]
  52. Gutscher M, Pauleau AL, Marty L, Brach T, Wabnitz GH. 52.  et al. 2008. Real-time imaging of the intracellular glutathione redox potential. Nat. Methods 5:553–59 [Google Scholar]
  53. Morgan B, Van LK, Owusu TN, Ezerina D, Pastor-Flores D. 53.  et al. 2016. Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. Nat. Chem. Biol. 12:437–43 [Google Scholar]
  54. Wagener KC, Kolbrink B, Dietrich K, Kizina KM, Terwitte LS. 54.  et al. 2016. Redox indicator mice stably expressing genetically encoded neuronal roGFP: versatile tools to decipher subcellular redox dynamics in neuropathophysiology. Antioxid. Redox Signal. 25:41–58 [Google Scholar]
  55. Brewer TF, Garcia FJ, Onak CS, Carroll KS, Chang CJ. 55.  2015. Chemical approaches to discovery and study of sources and targets of hydrogen peroxide redox signaling through NADPH oxidase proteins. Annu. Rev. Biochem. 84:765–90 [Google Scholar]
  56. Logan A, Cocheme HM, Li Pun PB, Apostolova N, Smith RA. 56.  et al. 2013. Using exomarkers to assess mitochondrial reactive species in vivo. Biochim. Biophys. Acta 1840:923–30 [Google Scholar]
  57. Winterbourn CC. 57.  2014. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim. Biophys. Acta 1840:730–38 [Google Scholar]
  58. Karlsson M, Kurz T, Brunk UT, Nilsson SE, Frennesson CI. 58.  2010. What does the commonly used DCF test for oxidative stress really show?. Biochem. J. 428:183–90 [Google Scholar]
  59. Flohé L. 59.  2016. The impact of thiol peroxidases on redox regulation. Free Radic. Res. 50:126–42 [Google Scholar]
  60. Abate C, Patel L, Rauscher FJ III, Curran T. 60.  1990. Redox regulation of fos and jun DNA-binding activity in vitro. Science 249:1157–61 [Google Scholar]
  61. Klotz LO, Sanchez-Ramos C, Prieto-Arroyo I, Urbanek P, Steinbrenner H, Monsalve M. 61.  2015. Redox regulation of FoxO transcription factors. Redox Biol 6:51–72 [Google Scholar]
  62. Corcoran A, Cotter TG. 62.  2013. Redox regulation of protein kinases. FEBS J 280:1944–65 [Google Scholar]
  63. Davies MJ. 63.  2016. Protein oxidation and peroxidation. Biochem. J. 473:805–25 [Google Scholar]
  64. Bindoli A, Rigobello MP. 64.  2013. Principles in redox signaling: from chemistry to functional significance. Antioxid. Redox Signal. 18:1557–93 [Google Scholar]
  65. D'Autreaux B, Toledano MB. 65.  2007. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8:813–24 [Google Scholar]
  66. Czech MP, Lawrence JC Jr., Lynn WS. 66.  1974. Evidence for the involvement of sulfhydryl oxidation in the regulation of fat cell hexose transport by insulin. PNAS 71:4173–77 [Google Scholar]
  67. Buchanan BB, Balmer Y. 67.  2005. Redox regulation: a broadening horizon. Annu. Rev. Plant Biol. 56:187–220 [Google Scholar]
  68. Mieyal JJ, Chock PB. 68.  2012. Posttranslational modification of cysteine in redox signaling and oxidative stress: focus on S-glutathionylation. Antioxid. Redox Signal. 16:471–75 [Google Scholar]
  69. Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. 69.  2013. Thioredoxins, glutaredoxins, and peroxiredoxins—molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid. Redox Signal. 19:1539–605 [Google Scholar]
  70. Bräutigam L, Schutte LD, Godoy JR, Prozorovski T, Gellert M. 70.  et al. 2011. Vertebrate-specific glutaredoxin is essential for brain development. PNAS 108:20532–37 [Google Scholar]
  71. Ullevig SL, Kim HS, Short JD, Tavakoli S, Weintraub ST. 71.  et al. 2016. Protein S-glutathionylation mediates macrophage responses to metabolic cues from the extracellular environment. Antioxid. Redox Signal. 25:836–51 [Google Scholar]
  72. Forman HJ, Maiorino M, Ursini F. 72.  2010. Signaling functions of reactive oxygen species. Biochemistry 49:835–42 [Google Scholar]
  73. Marinho HS, Real C, Cyrne L, Soares H, Antunes F. 73.  2014. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2:535–62 [Google Scholar]
  74. Sies H. 74.  2017. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol 11:613–619 [Google Scholar]
  75. Winterbourn CC. 75.  2013. The biological chemistry of hydrogen peroxide. Methods Enzymol 528:3–25 [Google Scholar]
  76. Reczek CR, Chandel NS. 76.  2015. ROS-dependent signal transduction. Curr. Opin. Cell Biol. 33:8–13 [Google Scholar]
  77. Sobotta MC, Liou W, Stocker S, Talwar D, Oehler M. 77.  et al. 2015. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol. 11:64–70 [Google Scholar]
  78. Karplus PA. 78.  2015. A primer on peroxiredoxin biochemistry. Free Radic. Biol. Med. 80:183–90 [Google Scholar]
  79. Jeong W, Bae SH, Toledano MB, Rhee SG. 79.  2012. Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression. Free Radic. Biol. Med. 53:447–56 [Google Scholar]
  80. Chance B, Sies H, Boveris A. 80.  1979. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59:527–605 [Google Scholar]
  81. Oshino N, Chance B, Sies H, Bücher T. 81.  1973. The role of H2O2 generation in perfused rat liver and the reaction of catalase compound I and hydrogen donors. Arch. Biochem. Biophys. 154:117–31 [Google Scholar]
  82. Henzler T, Steudle E. 82.  2000. Transport and metabolic degradation of hydrogen peroxide in Chara corallina: Model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J. Exp. Bot. 51:2053–66 [Google Scholar]
  83. Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM. 83.  et al. 2007. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282:1183–92 [Google Scholar]
  84. Marchissio MJ, Frances DE, Carnovale CE, Marinelli RA. 84.  2012. Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability. Toxicol. Appl. Pharmacol. 264:246–54 [Google Scholar]
  85. Medrano-Fernandez I, Bestetti S, Bertolotti M, Bienert GP, Bottino C. 85.  et al. 2016. Stress regulates aquaporin-8 permeability to impact cell growth and survival. Antioxid. Redox Signal. 24:1031–44 [Google Scholar]
  86. Hara-Chikuma M, Satooka H, Watanabe S, Honda T, Miyachi Y. 86.  et al. 2015. Aquaporin-3-mediated hydrogen peroxide transport is required for NF-κB signalling in keratinocytes and development of psoriasis. Nat. Commun. 6:7454 [Google Scholar]
  87. Bienert GP, Chaumont F. 87.  2014. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim. Biophys. Acta 1840:1596–604 [Google Scholar]
  88. Babior BM, Kipnes RS, Curnutte JT. 88.  1973. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J. Clin. Investig. 52:741–44 [Google Scholar]
  89. Meier B, Radeke HH, Selle S, Younes M, Sies H. 89.  et al. 1989. Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-α.. Biochem. J. 263:539–45 [Google Scholar]
  90. Nauseef WM. 90.  2014. Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases. Biochim. Biophys. Acta 1840:757–67 [Google Scholar]
  91. Lassegue B, San MA, Griendling KK. 91.  2012. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ. Res. 110:1364–90 [Google Scholar]
  92. Schröder K, Zhang M, Benkhoff S, Mieth A, Pliquett R. 92.  et al. 2012. Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ. Res. 110:1217–25 [Google Scholar]
  93. Santos CX, Hafstad AD, Beretta M, Zhang M, Molenaar C. 93.  et al. 2016. Targeted redox inhibition of protein phosphatase 1 by Nox4 regulates eIF2α-mediated stress signaling. EMBO J 35:319–34 [Google Scholar]
  94. Zhang Y, Shimizu H, Siu KL, Mahajan A, Chen JN, Cai H. 94.  2014. NADPH oxidase 4 induces cardiac arrhythmic phenotype in zebrafish. J. Biol. Chem. 289:23200–8 [Google Scholar]
  95. Oakley FD, Abbott D, Li Q, Engelhardt JF. 95.  2009. Signaling components of redox active endosomes: the redoxosomes. Antioxid. Redox Signal. 11:1313–33 [Google Scholar]
  96. Spencer NY, Engelhardt JF. 96.  2014. The basic biology of redoxosomes in cytokine-mediated signal transduction and implications for disease-specific therapies. Biochemistry 53:1551–64 [Google Scholar]
  97. Boveris A, Oshino N, Chance B. 97.  1972. The cellular production of hydrogen peroxide. Biochem. J. 128:617–30 [Google Scholar]
  98. Loschen G, Flohé L, Chance B. 98.  1971. Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett 18:261–64 [Google Scholar]
  99. Bleier L, Wittig I, Heide H, Steger M, Brandt U, Dröse S. 99.  2015. Generator-specific targets of mitochondrial reactive oxygen species. Free Radic. Biol. Med. 78:1–10 [Google Scholar]
  100. Murphy MP. 100.  2009. How mitochondria produce reactive oxygen species. Biochem. J. 417:1–13 [Google Scholar]
  101. Goncalves RL, Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Brand MD. 101.  2015. Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J. Biol. Chem. 290:209–27 [Google Scholar]
  102. Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE. 102.  et al. 2004. Mitochondrial α-ketoglutarate dehydrogenase complex generates reactive oxygen species. J. Neurosci. 24:7779–88 [Google Scholar]
  103. Mailloux RJ. 103.  2015. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol 4:381–98 [Google Scholar]
  104. Go YM, Chandler JD, Jones DP. 104.  2015. The cysteine proteome. Free Radic. Biol. Med. 84:227–45 [Google Scholar]
  105. Riemer J, Schwarzländer M, Conrad M, Herrmann JM. 105.  2015. Thiol switches in mitochondria: operation and physiological relevance. Biol. Chem. 396:465–82 [Google Scholar]
  106. Ermakova YG, Bilan DS, Matlashov ME, Mishina NM, Markvicheva KN. 106.  et al. 2014. Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide. Nat. Commun. 5:5222 [Google Scholar]
  107. Mailloux RJ, Treberg JR. 107.  2015. Protein S-glutathionylation links energy metabolism to redox signaling in mitochondria. Redox Biol 8:110–18 [Google Scholar]
  108. Picard M, McManus MJ, Gray JD, Nasca C, Moffat C. 108.  et al. 2015. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. PNAS 112:E6614–23 [Google Scholar]
  109. Waypa GB, Smith KA, Schumacker PT. 109.  2016. O2 sensing, mitochondria and ROS signaling: The fog is lifting. Mol. Aspects Med. 47–48:76–89 [Google Scholar]
  110. Guidot DM, Repine JE, Kitlowski AD, Flores SC, Nelson SK. 110.  et al. 1995. Mitochondrial respiration scavenges extramitochondrial superoxide anion via a nonenzymatic mechanism. J. Clin. Investig. 96:1131–36 [Google Scholar]
  111. Dey S, Sidor A, O'Rourke B. 111.  2016. Compartment-specific control of reactive oxygen species scavenging by antioxidant pathway enzymes. J. Biol. Chem. 291:11185–97 [Google Scholar]
  112. Winterbourn CC. 112.  2015. Are free radicals involved in thiol-based redox signaling?. Free Radic. Biol. Med. 80:164–70 [Google Scholar]
  113. Trujillo M, Alvarez B, Radi R. 113.  2016. One- and two-electron oxidation of thiols: mechanisms, kinetics and biological fates. Free Radic. Res. 50:150–71 [Google Scholar]
  114. Greiner R, Palinkas Z, Basell K, Becher D, Antelmann H. 114.  et al. 2013. Polysulfides link H2S to protein thiol oxidation. Antioxid. Redox Signal. 19:1749–65 [Google Scholar]
  115. Mishanina TV, Libiad M, Banerjee R. 115.  2015. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat. Chem. Biol. 11:457–64 [Google Scholar]
  116. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. 116.  1990. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. PNAS 87:1620–24 [Google Scholar]
  117. Jacob C, Giles GI, Giles NM, Sies H. 117.  2003. Sulfur and selenium: the role of oxidation state in protein structure and function. Angew. Chem. Int. Ed. Engl. 42:4742–58 [Google Scholar]
  118. Cremers CM, Jakob U. 118.  2013. Oxidant sensing by reversible disulfide bond formation. J. Biol. Chem. 288:26489–96 [Google Scholar]
  119. Go YM, Jones DP. 119.  2013. The redox proteome. J. Biol. Chem. 288:26512–20 [Google Scholar]
  120. Drazic A, Winter J. 120.  2014. The physiological role of reversible methionine oxidation. Biochim. Biophys. Acta 1844:1367–82 [Google Scholar]
  121. Kaya A, Lee BC, Gladyshev VN. 121.  2015. Regulation of protein function by reversible methionine oxidation and the role of selenoprotein MsrB1. Antioxid. Redox Signal. 23:814–22 [Google Scholar]
  122. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K. 122.  et al. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236:313–22 [Google Scholar]
  123. Sporn MB, Liby KT. 123.  2012. NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer 12:564–71 [Google Scholar]
  124. Cebula M, Schmidt EE, Arner ES. 124.  2015. TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid. Redox Signal. 23:823–53 [Google Scholar]
  125. Xue M, Momiji H, Rabbani N, Barker G, Bretschneider T. 125.  et al. 2015. Frequency modulated translocational oscillations of Nrf2 mediate the antioxidant response element cytoprotective transcriptional response. Antioxid. Redox Signal. 23:613–29 [Google Scholar]
  126. Pan JA, Sun Y, Jiang YP, Bott AJ, Jaber N. 126.  et al. 2016. TRIM21 ubiquitylates SQSTM1/p62 and suppresses protein sequestration to regulate redox homeostasis. Mol. Cell 61:720–33 [Google Scholar]
  127. Kubben N, Zhang W, Wang L, Voss TC, Yang J. 127.  et al. 2016. Repression of the antioxidant NRF2 pathway in premature aging. Cell 165:1361–74 [Google Scholar]
  128. Schreck R, Rieber P, Baeuerle PA. 128.  1991. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J 10:2247–58 [Google Scholar]
  129. Toledano MB, Leonard WJ. 129.  1991. Modulation of transcription factor NF-κB binding activity by oxidation-reduction in vitro. PNAS 88:4328–32 [Google Scholar]
  130. Hirota K, Murata M, Sachi Y, Nakamura H, Takeuchi J. 130.  et al. 1999. Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-κB. J. Biol. Chem. 274:27891–97 [Google Scholar]
  131. Halvey PJ, Hansen JM, Johnson JM, Go YM, Samali A, Jones DP. 131.  2007. Selective oxidative stress in cell nuclei by nuclear-targeted D-amino acid oxidase. Antioxid. Redox Signal. 9:807–16 [Google Scholar]
  132. Zambrano S, De Toma I, Piffer A, Bianchi ME, Agresti A. 132.  2016. NF-κB oscillations translate into functionally related patterns of gene expression. eLife 5:PMID26765569 [Google Scholar]
  133. Ganesan A, Hanawalt P. 133.  2016. Photobiological origins of the field of genomic maintenance. Photochem. Photobiol. 92:52–60 [Google Scholar]
  134. Schmitt FJ, Renger G, Friedrich T, Kreslavski VD, Zharmukhamedov SK. 134.  et al. 2014. Reactive oxygen species: re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. Biochim. Biophys. Acta 1837:835–48 [Google Scholar]
  135. Berneburg M, Grether-Beck S, Kurten V, Ruzicka T, Briviba K. 135.  et al. 1999. Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion. J. Biol. Chem. 274:15345–49 [Google Scholar]
  136. Sies H, Stahl W. 136.  2004. Nutritional protection against skin damage from sunlight. Annu. Rev. Nutr. 24:173–200 [Google Scholar]
  137. Di Mascio P, Kaiser S, Sies H. 137.  1989. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 274:532–38 [Google Scholar]
  138. Premi S, Wallisch S, Mano CM, Weiner AB, Bacchiocchi A. 138.  et al. 2015. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science 347:842–47 [Google Scholar]
  139. Halliwell B, Gutteridge JMC. 139.  2015. Free Radicals in Biology and Medicine Oxford: Oxford Univ. Press, 5th ed..
  140. Storz G, Christman MF, Sies H, Ames BN. 140.  1987. Spontaneous mutagenesis and oxidative damage to DNA in Salmonella typhimurium. PNAS 84:8917–21 [Google Scholar]
  141. Freudenthal BD, Beard WA, Perera L, Shock DD, Kim T. 141.  et al. 2015. Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide. Nature 517:635–39 [Google Scholar]
  142. Cadet J, Loft S, Olinski R, Evans MD, Bialkowski K. 142.  et al. 2012. Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids. Free Radic. Res. 46:367–81 [Google Scholar]
  143. Leon J, Sakumi K, Castillo E, Sheng Z, Oka S, Nakabeppu Y. 143.  2016. 8-Oxoguanine accumulation in mitochondrial DNA causes mitochondrial dysfunction and impairs neuritogenesis in cultured adult mouse cortical neurons under oxidative conditions. Sci. Rep. 6:22086 [Google Scholar]
  144. Bräutigam L, Pudelko L, Jemth AS, Gad H, Narwal M. 144.  et al. 2016. Hypoxic signaling and the cellular redox tumor environment determine sensitivity to MTH1 inhibition. Cancer Res 76:2366–75 [Google Scholar]
  145. Poulsen HE, Specht E, Broedbaek K, Henriksen T, Ellervik C. 145.  et al. 2012. RNA modifications by oxidation: a novel disease mechanism?. Free Radic. Biol. Med. 52:1353–61 [Google Scholar]
  146. Cheng X, Ku CH, Siow RC. 146.  2013. Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis. Free Radic. Biol. Med. 64:4–11 [Google Scholar]
  147. Wang JX, Gao J, Ding SL, Wang K, Jiao JQ. 147.  et al. 2015. Oxidative modification of miR-184 enables it to target Bcl-xL and Bcl-w. Mol. Cell 59:50–61 [Google Scholar]
  148. Lang A, Grether-Beck S, Singh M, Kuck F, Jakob S. 148.  et al. 2016. MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4. Aging 8:484–505 [Google Scholar]
  149. Griffiths HR, Dias IH, Willetts RS, Devitt A. 149.  2014. Redox regulation of protein damage in plasma. Redox. Biol. 2:430–35 [Google Scholar]
  150. Kim HJ, Ha S, Lee HY, Lee KJ. 150.  2015. ROSics: chemistry and proteomics of cysteine modifications in redox biology. Mass Spectrom. Rev. 34:184–208 [Google Scholar]
  151. Oka OB, Bulleid NJ. 151.  2013. Forming disulfides in the endoplasmic reticulum. Biochim. Biophys. Acta 1833:2425–29 [Google Scholar]
  152. Ramming T, Hansen HG, Nagata K, Ellgaard L, Appenzeller-Herzog C. 152.  2014. GPx8 peroxidase prevents leakage of H2O2 from the endoplasmic reticulum. Free Radic. Biol. Med. 70:106–16 [Google Scholar]
  153. Chen YI, Wei PC, Hsu JL, Su FY, Lee WH. 153.  2016. NPGPx (GPx7): a novel oxidative stress sensor/transmitter with multiple roles in redox homeostasis. Am. J. Transl. Res. 8:1626–40 [Google Scholar]
  154. Appenzeller-Herzog C, Banhegyi G, Bogeski I, Davies KJ, Delaunay-Moisan A. 154.  et al. 2016. Transit of H2O2 across the endoplasmic reticulum membrane is not sluggish. Free Radic. Biol. Med. 94:157–60 [Google Scholar]
  155. Kirstein J, Morito D, Kakihana T, Sugihara M, Minnen A. 155.  et al. 2015. Proteotoxic stress and ageing triggers the loss of redox homeostasis across cellular compartments. EMBO J 34:2334–49 [Google Scholar]
  156. Hartl FU, Bracher A, Hayer-Hartl M. 156.  2011. Molecular chaperones in protein folding and proteostasis. Nature 475:324–32 [Google Scholar]
  157. Eletto D, Chevet E, Argon Y, Appenzeller-Herzog C. 157.  2014. Redox controls UPR to control redox. J. Cell Sci. 127:3649–58 [Google Scholar]
  158. Niforou K, Cheimonidou C, Trougakos IP. 158.  2014. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol 2:323–32 [Google Scholar]
  159. Niki E. 159.  2014. Biomarkers of lipid peroxidation in clinical material. Biochim. Biophys. Acta 1840:809–17 [Google Scholar]
  160. Spickett CM, Pitt AR. 160.  2015. Oxidative lipidomics coming of age: advances in analysis of oxidized phospholipids in physiology and pathology. Antioxid. Redox. Signal. 22:1646–66 [Google Scholar]
  161. Davies SS, Pontsler AV, Marathe GK, Harrison KA, Murphy RC. 161.  et al. 2001. Oxidized alkyl phospholipids are specific, high affinity peroxisome proliferator-activated receptor γ ligands and agonists. J. Biol. Chem. 276:16015–23 [Google Scholar]
  162. Robertson RP. 162.  2004. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J. Biol. Chem. 279:42351–54 [Google Scholar]
  163. Monnier VM, Cerami A. 163.  1981. Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science 211:491–93 [Google Scholar]
  164. Zachara NE, Hart GW. 164.  2006. Cell signaling, the essential role of O-GlcNAc!. Biochim. Biophys. Acta 1761:599–617 [Google Scholar]
  165. Kizuka Y, Nakano M, Kitazume S, Saito T, Saido TC, Taniguchi N. 165.  2016. Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem. J. 473:21–30 [Google Scholar]
  166. Karababa A, Görg B, Schliess F, Häussinger D. 166.  2014. O-GlcNAcylation as a novel ammonia-induced posttranslational protein modification in cultured rat astrocytes. Metab. Brain Dis. 29:975–82 [Google Scholar]
  167. Griffiths HR, Moller L, Bartosz G, Bast A, Bertoni-Freddari C. 167.  et al. 2002. Biomarkers. Mol. Aspects Med. 23:101–208 [Google Scholar]
  168. Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R. 168.  et al. 2015. Clinical relevance of biomarkers of oxidative stress. Antioxid. Redox Signal. 23:1144–70 [Google Scholar]
  169. Van't Erve TJ, Lih FB, Jelsema C, Deterding LJ, Eling TE. 169.  et al. 2016. Reinterpreting the best biomarker of oxidative stress: the 8-iso-prostaglandin F/prostaglandin F ratio shows complex origins of lipid peroxidation biomarkers in animal models. Free Radic. Biol. Med. 95:65–73 [Google Scholar]
  170. von Zglinicki T. 170.  2002. Oxidative stress shortens telomeres. Trends Biochem. Sci. 27:339–44 [Google Scholar]
  171. Collins AR. 171.  2014. Measuring oxidative damage to DNA and its repair with the comet assay. Biochim. Biophys. Acta 1840:794–800 [Google Scholar]
  172. Patel RS, Ghasemzadeh N, Eapen DJ, Sher S, Arshad S. 172.  et al. 2016. Novel biomarker of oxidative stress is associated with risk of death in patients with coronary artery disease. Circulation 133:361–69 [Google Scholar]
  173. Schaefer L. 173.  2014. Complexity of danger: the diverse nature of damage-associated molecular patterns. J. Biol. Chem. 289:35237–45 [Google Scholar]
  174. Shapiro JA. 174.  1998. Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 52:81–104 [Google Scholar]
  175. Gambino M, Cappitelli F. 175.  2016. Mini-review: biofilm responses to oxidative stress. Biofouling 32:167–78 [Google Scholar]
  176. Stahl W, Sies H. 176.  2012. β-Carotene and other carotenoids in protection from sunlight. Am. J. Clin. Nutr. 96:1179S–84S [Google Scholar]
  177. Cunningham GM, Roman MG, Flores LC, Hubbard GB, Salmon AB. 177.  et al. 2015. The paradoxical role of thioredoxin on oxidative stress and aging. Arch. Biochem. Biophys. 576:32–38 [Google Scholar]
  178. Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS. 178.  et al. 2016. Paradoxical roles of antioxidant enzymes: basic mechanisms and health implications. Physiol. Rev. 96:307–64 [Google Scholar]
  179. Szypowska AA, Burgering BM. 179.  2011. The peroxide dilemma: opposing and mediating insulin action. Antioxid. Redox Signal. 15:219–32 [Google Scholar]
  180. Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L. 180.  2014. The role of oxidative stress during inflammatory processes. Biol. Chem. 395:203–30 [Google Scholar]
  181. Nathan C, Cunningham-Bussel A. 181.  2013. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat. Rev. Immunol. 13:349–61 [Google Scholar]
  182. Stocker R, Keaney JF Jr.. 182.  2004. Role of oxidative modifications in atherosclerosis. Physiol. Rev. 84:1381–478 [Google Scholar]
  183. Serhan CN, Chiang N, Van Dyke TE. 183.  2008. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 8:349–61 [Google Scholar]
  184. Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S. 184.  et al. 2010. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 9:3256–76 [Google Scholar]
  185. Casas AI, Dao VT, Daiber A, Maghzal GJ, Di LF. 185.  et al. 2015. Reactive oxygen-related diseases: therapeutic targets and emerging clinical indications. Antioxid. Redox Signal. 23:1171–85 [Google Scholar]
  186. Dao VT, Casas AI, Maghzal GJ, Seredenina T, Kaludercic N. 186.  et al. 2015. Pharmacology and clinical drug candidates in redox medicine. Antioxid. Redox Signal. 23:1113–29 [Google Scholar]
  187. O'Neill P, Wardman P. 187.  2009. Radiation chemistry comes before radiation biology. Int. J. Radiat. Biol. 85:9–25 [Google Scholar]
  188. Chen J, Stubbe J. 188.  2005. Bleomycins: towards better therapeutics. Nat. Rev. Cancer 5:102–12 [Google Scholar]
  189. Reczek CR, Chandel NS. 189.  2015. Cancer. Revisiting vitamin C and cancer. Science 350:1317–18 [Google Scholar]
  190. Du J, Cieslak JA, Welsh JL, Sibenaller ZA, Allen BG. 190.  et al. 2015. Pharmacological ascorbate radiosensitizes pancreatic cancer. Cancer Res 75:3314–3326 [Google Scholar]
  191. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D. 191.  et al. 1998. Photodynamic therapy. J. Natl. Cancer Inst. 90:889–905 [Google Scholar]
  192. Cordeiro JV, Jacinto A. 192.  2013. The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nat. Rev. Mol. Cell Biol. 14:249–62 [Google Scholar]
  193. Toyokuni S. 193.  2016. The origin and future of oxidative stress pathology: from the recognition of carcinogenesis as an iron addiction with ferroptosis-resistance to non-thermal plasma therapy. Pathol. Int. 66:245–59 [Google Scholar]
  194. Isbary G, Morfill G, Schmidt HU, Georgi M, Ramrath K. 194.  et al. 2010. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Brit. J. Dermatol. 163:78–82 [Google Scholar]
  195. Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C. 195.  et al. 2015. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27:211–22 [Google Scholar]
  196. Tobe R, Carlson BA, Tsuji PA, Lee BJ, Gladyshev VN, Hatfield DL. 196.  2015. Differences in redox regulatory systems in human lung and liver tumors suggest different avenues for therapy. Cancers 7:2262–76 [Google Scholar]
  197. Chun KS, Kundu J, Kundu JK, Surh YJ. 197.  2014. Targeting Nrf2-Keap1 signaling for chemoprevention of skin carcinogenesis with bioactive phytochemicals. Toxicol. Lett. 229:73–84 [Google Scholar]
  198. Buendia I, Michalska P, Navarro E, Gameiro I, Egea J, Leon R. 198.  2016. Nrf2-ARE pathway: an emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol. Ther. 157:84–104 [Google Scholar]
  199. Esteras N, Dinkova-Kostova AT, Abramov AY. 199.  2016. Nrf2 activation in the treatment of neurodegenerative diseases: a focus on its role in mitochondrial bioenergetics and function. Biol. Chem. 397:383–400 [Google Scholar]
  200. Brennan MS, Patel H, Allaire N, Thai A, Cullen P. 200.  et al. 2016. Pharmacodynamics of dimethyl fumarate are tissue specific and involve NRF2-dependent and -independent mechanisms. Antioxid. Redox Signal. 24:1058–71 [Google Scholar]
  201. Lastres-Becker I, Garcia-Yague AJ, Scannevin RH, Casarejos MJ, Kugler S. 201.  et al. 2016. Repurposing the NRF2 activator dimethyl fumarate as therapy against synucleinopathy in Parkinson's disease. Antioxid. Redox Signal. 25:61–77 [Google Scholar]
  202. Kaur SJ, McKeown SR, Rashid S. 202.  2016. Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene 577:109–18 [Google Scholar]
  203. Freitas-Andrade M, Naus CC. 203.  2016. Astrocytes in neuroprotection and neurodegeneration: the role of connexin43 and pannexin1. Neuroscience 323:207–21 [Google Scholar]
  204. Görg B, Schliess F, Häussinger D. 204.  2013. Osmotic and oxidative/nitrosative stress in ammonia toxicity and hepatic encephalopathy. Arch. Biochem. Biophys. 536:158–63 [Google Scholar]
  205. May JM, de Haen C. 205.  1979. The insulin-like effect of hydrogen peroxide on pathways of lipid synthesis in rat adipocytes. J. Biol. Chem. 254:9017–21 [Google Scholar]
  206. Loh K, Deng H, Fukushima A, Cai X, Boivin B. 206.  et al. 2009. Reactive oxygen species enhance insulin sensitivity. Cell Metab 10:260–72 [Google Scholar]
  207. Sies H, Stahl W, Sevanian A. 207.  2005. Nutritional, dietary and postprandial oxidative stress. J. Nutr. 135:969–72 [Google Scholar]
  208. Watson JD. 208.  2014. Type 2 diabetes as a redox disease. Lancet 383:841–43 [Google Scholar]
  209. Bilan DS, Belousov VV. 209.  2017. New tools for redox biology: from imaging to manipulation. Free Radic. Biol. Med In press. doi: 10.1016/j.freeradbiomed.2016.12.004
  210. Valle G, Stanisloo M, Facciorusso A, Carmignani M, Volpe AR. 210.  2009. Mithridates VI Eupator, father of the empirical toxicology. Clin. Toxicol. 47:433 [Google Scholar]
  211. Borzelleca JF. 211.  2000. Paracelsus: herald of modern toxicology. Toxicol. Sci. 53:2–4 [Google Scholar]
  212. Holmes FL. 212.  1986. Claude Bernard, the milieu intérieur, and regulatory physiology. Hist. Phil. Life Sci. 8:3–25 [Google Scholar]
  213. Cannon WB. 213.  1932. The Wisdom of the Body New York: Norton
  214. Oberbaum M, Gropp C. 214.  2015. Update on hormesis and its relation to homeopathy. Homeopathy 105:227–33 [Google Scholar]
  215. Southam CM, Ehrlich J. 215.  1943. Effects of extracts of western red-cedar heartwood on certain wood-decaying fungi in culture. Phytopathology 33:517–24 [Google Scholar]
  216. Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J. 216.  et al. 2007. Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol. Appl. Pharmacol. 222:122–28 [Google Scholar]
  217. Ritossa F. 217.  1962. A new puffing pattern introduced by temperature shock and DNP in Drosophila. Experientia 18:571–73 [Google Scholar]
  218. Christman MF, Morgan RW, Jacobson FS, Ames BN. 218.  1985. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41:753–62 [Google Scholar]
  219. Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J. 219.  1988. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332:462–64 [Google Scholar]
  220. Semenza GL, Wang GL. 220.  1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12:5447–54 [Google Scholar]
  221. Wondrak GT. 221.  2009. Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid. Redox Signal. 11:3013–69 [Google Scholar]
  222. Kirkpatrick DL, Powis G. 222.  2017. Clinically evaluated cancer drugs inhibiting redox signaling. Antioxid. Redox Signal. 26:262–73 [Google Scholar]
/content/journals/10.1146/annurev-biochem-061516-045037
Loading
/content/journals/10.1146/annurev-biochem-061516-045037
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error