Dozens of proteins are known to convert to the aggregated amyloid state. These include fibrils associated with systemic and neurodegenerative diseases and cancer, functional amyloid fibrils in microorganisms and animals, and many denatured proteins. Amyloid fibrils can be much more stable than other protein assemblies. In contrast to globular proteins, a single protein sequence can aggregate into several distinctly different amyloid structures, termed polymorphs, and a given polymorph can reproduce itself by seeding. Amyloid polymorphs may be the molecular basis of prion strains. Whereas the Protein Data Bank contains some 100,000 globular protein and 3,000 membrane protein structures, only a few dozen amyloid protein structures have been determined, and most of these are short segments of full amyloid-forming proteins. Regardless, these amyloid structures illuminate the architecture of the amyloid state, including its stability and its capacity for formation of polymorphs.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Sipe JD, Benson MD, Buxbaum JN, Ikeda S, Merlini G. 1.  et al. 2014. Nomenclature 2014: amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid 21:4221–24 [Google Scholar]
  2. Astbury WT, Dickinson S, Bailey K. 2.  1935. The X-ray interpretation of denaturation and the structure of the seed globulins. Biochem. J. 29:102351–60.1 [Google Scholar]
  3. Pauling L, Corey RB. 3.  1951. Configurations of polypeptide chains with favored orientations around single bonds: two new pleated sheets. PNAS 37:11729–40 [Google Scholar]
  4. Nelson R, Sawaya MR, Balbirnie M, Madsen , Riekel C. 4.  et al. 2005. Structure of the cross-β spine of amyloid-like fibrils. Nature 435:7043773–78 [Google Scholar]
  5. Cohen AS, Calkins E. 5.  1959. Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature 183:46691202–3 [Google Scholar]
  6. Eanes ED, Glenner GG. 6.  1968. X-ray diffraction studies on amyloid filaments. J. Histochem. Cytochem. 16:11673–77 [Google Scholar]
  7. Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CC. 7.  1997. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273:3729–39 [Google Scholar]
  8. Hardy J, Selkoe DJ. 8.  2002. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297:5580353–56 [Google Scholar]
  9. Goedert M, Spillantini MG. 9.  2006. A century of Alzheimer's disease. Science 314:5800777–81 [Google Scholar]
  10. Perrin RJ, Fagan AM, Holtzman DM. 10.  2009. Multimodal techniques for diagnosis and prognosis of Alzheimer's disease. Nature 461:7266916–22 [Google Scholar]
  11. Katzman R, Terry R, DeTeresa R, Brown T, Davies P. 11.  et al. 1988. Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann. Neurol. 23:2138–44 [Google Scholar]
  12. Harper JD, Wong SS, Lieber CM, Lansbury PT. 12.  1997. Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem. Biol. 4:2119–25 [Google Scholar]
  13. Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB. 13.  1997. Amyloid β-protein fibrillogenesis: detection of a protofibrillar intermediate. J. Biol. Chem. 272:3522364–72 [Google Scholar]
  14. Nag S, Sarkar B, Chandrakesan M, Abhyanakar R, Bhowmik D. 14.  et al. 2013. A folding transition underlies the emergence of membrane affinity in amyloid-β.. Phys. Chem. Chem. Phys. 15:4419129–33 [Google Scholar]
  15. Benilova I, Karran E, De Strooper B. 15.  2012. The toxic Aβ oligomer and Alzheimer's disease: an emperor in need of clothes. Nat. Neurosci. 15:3349–57 [Google Scholar]
  16. Lorenzo A, Yankner BA. 16.  1994. β-Amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. PNAS 91:2512243–47 [Google Scholar]
  17. Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L. 17.  et al. 2011. In vivo demonstration that α-synuclein oligomers are toxic. PNAS 108:104194–99 [Google Scholar]
  18. Pieri L, Madiona K, Bousset L, Melki R. 18.  2012. Fibrillar α-synuclein and Huntingtin exon 1 assemblies are toxic to the cells. Biophys. J. 102:122894–905 [Google Scholar]
  19. Abedini A, Plesner A, Cao P, Ridgway Z, Zhang J. 19.  et al. 2016. Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics. eLife 5:e12977 [Google Scholar]
  20. Ikenoue T, Lee Y-H, Kardos J, Saiki M, Yagi H. 20.  et al. 2014. Cold denaturation of α-synuclein amyloid fibrils. Angew. Chem. Int. Ed. Engl. 53:307799–804 [Google Scholar]
  21. Buell AK, Dobson CM, Knowles TPJ. 21.  2014. The physical chemistry of the amyloid phenomenon: thermodynamics and kinetics of filamentous protein aggregation. Essays Biochem 56:11–39 [Google Scholar]
  22. Gustavsson A, Engström U, Westermark P. 22.  1991. Normal transthyretin and synthetic transthyretin fragments form amyloid-like fibrils in vitro. Biochem. Biophys. Res. Commun. 175:31159–64 [Google Scholar]
  23. Colon W, Kelly JW. 23.  1992. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 31:368654–60 [Google Scholar]
  24. Booth DR, Sunde M, Bellotti V, Robinson CV, Hutchinson WL. 24.  et al. 1997. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385:6619787–93 [Google Scholar]
  25. Guijarro JI, Sunde M, Jones JA, Campbell ID, Dobson CM. 25.  1998. Amyloid fibril formation by an SH3 domain. PNAS 95:84224–28 [Google Scholar]
  26. Fändrich M, Fletcher MA, Dobson CM. 26.  2001. Amyloid fibrils from muscle myoglobin. Nature 410:6825165–66 [Google Scholar]
  27. Fändrich M, Dobson CM. 27.  2002. The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation. EMBO J 21:215682–90 [Google Scholar]
  28. Goldschmidt L, Teng PK, Riek R, Eisenberg D. 28.  2010. Identifying the amylome, proteins capable of forming amyloid-like fibrils. PNAS 107:83487–92 [Google Scholar]
  29. Otzen D. 29.  2010. Functional amyloid: turning swords into plowshares. Prion 4:4256–64 [Google Scholar]
  30. Pham CLL, Kwan AH, Sunde M. 30.  2014. Functional amyloid: widespread in nature, diverse in purpose. Essays Biochem 56:207–19 [Google Scholar]
  31. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J. 31.  et al. 2002. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295:5556851–55 [Google Scholar]
  32. Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K. 32.  et al. 2009. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325:5938328–32 [Google Scholar]
  33. Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW. 33.  2006. Functional amyloid formation within mammalian tissue. PLOS Biol 4:1e6 [Google Scholar]
  34. Kato M, Han TW, Xie S, Shi K, Du X. 34.  et al. 2012. Cell-free formation of RNA granules: Low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:4753–67 [Google Scholar]
  35. Si K, Lindquist S, Kandel ER. 35.  2003. A neuronal isoform of the Aplysia CPEB has prion-like properties. Cell 115:7879–91 [Google Scholar]
  36. Knowles TPJ, Buehler MJ. 36.  2011. Nanomechanics of functional and pathological amyloid materials. Nat. Nanotechnol. 6:8469–79 [Google Scholar]
  37. Li D, Furukawa H, Deng H, Liu C, Yaghi OM, Eisenberg DS. 37.  2014. Designed amyloid fibers as materials for selective carbon dioxide capture. PNAS 111:1191–96 [Google Scholar]
  38. Balbirnie M, Grothe R, Eisenberg DS. 38.  2001. An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated β-sheet structure for amyloid. PNAS 98:52375–80 [Google Scholar]
  39. Bowie JU, Lüthy R, Eisenberg D. 39.  1991. A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:5016164–70 [Google Scholar]
  40. Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, Eisenberg D. 40.  2006. The 3D profile method for identifying fibril-forming segments of proteins. PNAS 103:114074–78 [Google Scholar]
  41. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA. 41.  et al. 2007. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447:7143453–57 [Google Scholar]
  42. Wiltzius JJW, Landau M, Nelson R, Sawaya MR, Apostol MI. 42.  et al. 2009. Molecular mechanisms for protein-encoded inheritance. Nat. Struct. Mol. Biol. 16:9973–78 [Google Scholar]
  43. Wiltzius JJW, Sievers SA, Sawaya MR, Eisenberg D. 43.  2009. Atomic structures of IAPP (amylin) fusions suggest a mechanism for fibrillation and the role of insulin in the process. Protein Sci 18:71521–30 [Google Scholar]
  44. Apostol MI, Sawaya MR, Cascio D, Eisenberg D. 44.  2010. Crystallographic studies of prion protein (PrP) segments suggest how structural changes encoded by polymorphism at residue 129 modulate susceptibility to human prion disease. J. Biol. Chem. 285:3929671–75 [Google Scholar]
  45. Apostol MI, Wiltzius JJW, Sawaya MR, Cascio D, Eisenberg D. 45.  2011. Atomic structures suggest determinants of transmission barriers in mammalian prion disease. Biochemistry 50:132456–63 [Google Scholar]
  46. Landau M, Sawaya MR, Faull KF, Laganowsky A, Jiang L. 46.  et al. 2011. Towards a pharmacophore for amyloid. PLOS Biol 9:6e1001080 [Google Scholar]
  47. Colletier J-P, Laganowsky A, Landau M, Zhao M, Soriaga AB. 47.  et al. 2011. Molecular basis for amyloid-β polymorphism. PNAS 108:4116938–43 [Google Scholar]
  48. Ivanova MI, Sievers SA, Guenther EL, Johnson LM, Winkler DD. 48.  et al. 2014. Aggregation-triggering segments of SOD1 fibril formation support a common pathway for familial and sporadic ALS. PNAS 111:1197–201 [Google Scholar]
  49. Liu C, Zhao M, Jiang L, Cheng P-N, Park J. 49.  et al. 2012. Out-of-register β-sheets suggest a pathway to toxic amyloid aggregates. PNAS 109:5120913–18 [Google Scholar]
  50. Soriaga AB, Sangwan S, Macdonald R, Sawaya MR, Eisenberg D. 50.  2016. Crystal structures of IAPP amyloidogenic segments reveal a novel packing motif of out-of-register beta sheets. J. Phys. Chem. B 120:265810–16 [Google Scholar]
  51. Soragni A, Janzen DM, Johnson LM, Lindgren AG, Thai-Quynh Nguyen A. 51.  et al. 2016. A designed inhibitor of p53 aggregation rescues p53 tumor suppression in ovarian carcinomas. Cancer Cell 29:190–103 [Google Scholar]
  52. Roland BP, Kodali R, Mishra R, Wetzel R. 52.  2013. A serendipitous survey of prediction algorithms for amyloidogenicity. Biopolymers 100:6780–89 [Google Scholar]
  53. Tycko R. 53.  2011. Solid-state NMR studies of amyloid fibril structure. Annu. Rev. Phys. Chem. 62:279–99 [Google Scholar]
  54. Paravastu AK, Qahwash I, Leapman RD, Meredith SC, Tycko R. 54.  2009. Seeded growth of β-amyloid fibrils from Alzheimer's brain-derived fibrils produces a distinct fibril structure. PNAS 106:187443–48 [Google Scholar]
  55. Bai X, McMullan G, Scheres SHW. 55.  2015. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 40:149–57 [Google Scholar]
  56. Tsemekhman K, Goldschmidt L, Eisenberg D, Baker D. 56.  2007. Cooperative hydrogen bonding in amyloid formation. Protein Sci 16:4761–64 [Google Scholar]
  57. Lawrence MC, Colman PM. 57.  1993. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234:4946–50 [Google Scholar]
  58. Stroud JC. 58.  2013. The zipper groups of the amyloid state of proteins. Acta Crystallogr. Sect. D 69:Pt 4540–45 [Google Scholar]
  59. White HE, Hodgkinson JL, Jahn TR, Cohen-Krausz S, Gosal WS. 59.  et al. 2009. Globular tetramers of β2-microglobulin assemble into elaborate amyloid fibrils. J. Mol. Biol. 389:148–57 [Google Scholar]
  60. Fitzpatrick AWP, Debelouchina GT, Bayro MJ, Clare DK, Caporini MA. 60.  et al. 2013. Atomic structure and hierarchical assembly of a cross-β amyloid fibril. PNAS 110:145468–73 [Google Scholar]
  61. Jiménez JL, Nettleton EJ, Bouchard M, Robinson CV, Dobson CM, Saibil HR. 61.  2002. The protofilament structure of insulin amyloid fibrils. PNAS 99:149196–9201 [Google Scholar]
  62. Jiménez JL, Guijarro JI, Orlova E, Zurdo J, Dobson CM. 62.  et al. 1999. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J 18:4815–21 [Google Scholar]
  63. Chou KC, Pottle M, Némethy G, Ueda Y, Scheraga HA. 63.  1982. Structure of β-sheets: origin of the right-handed twist and of the increased stability of antiparallel over parallel sheets. J. Mol. Biol. 162:189–112 [Google Scholar]
  64. Wälti MA, Ravotti F, Arai H, Glabe CG, Wall JS. 64.  et al. 2016. Atomic-resolution structure of a disease-relevant Aβ(1–42) amyloid fibril. PNAS 113:34e4976–84 [Google Scholar]
  65. Colvin MT, Silvers R, Ni QZ, Can TV, Sergeyev IV. 65.  et al. 2016. Atomic resolution structure of monomorphic Aβ42 amyloid fibrils. J. Am. Chem. Soc. 138:309663–74 [Google Scholar]
  66. Tuttle MD, Comellas G, Nieuwkoop AJ, Covell DJ, Berthold DA. 66.  et al. 2016. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat. Struct. Mol. Biol. 23:5409–15 [Google Scholar]
  67. Van Melckebeke H, Wasmer C, Lange A, Ab E, Loquet A. 67.  et al. 2010. Atomic-resolution three-dimensional structure of HET-s(218–289) amyloid fibrils by solid-state NMR spectroscopy. J. Am. Chem. Soc. 132:3913765–75 [Google Scholar]
  68. Liu C, Sawaya MR, Eisenberg D. 68.  2011. B2-microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages. Nat. Struct. Mol. Biol. 18:149–55 [Google Scholar]
  69. Mehta AK, Lu K, Childers WS, Liang Y, Dublin SN. 69.  et al. 2008. Facial symmetry in protein self-assembly. J. Am. Chem. Soc. 130:309829–35 [Google Scholar]
  70. Liang C, Ni R, Smith JE, Childers WS, Mehta AK, Lynn DG. 70.  2014. Kinetic intermediates in amyloid assembly. J. Am. Chem. Soc. 136:4315146–49 [Google Scholar]
  71. O'Nuallain B, Williams AD, Westermark P, Wetzel R. 71.  2004. Seeding specificity in amyloid growth induced by heterologous fibrils. J. Biol. Chem. 279:1717490–99 [Google Scholar]
  72. Petkova AT, Leapman RD, Guo Z, Yau W-M, Mattson MP, Tycko R. 72.  2005. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307:5707262–65 [Google Scholar]
  73. Petkova AT, Yau W-M, Tycko R. 73.  2006. Experimental constraints on quaternary structure in Alzheimer's β-amyloid fibrils. Biochemistry 45:2498–512 [Google Scholar]
  74. Paravastu AK, Leapman RD, Yau W-M, Tycko R. 74.  2008. Molecular structural basis for polymorphism in Alzheimer's β-amyloid fibrils. PNAS 105:4718349–54 [Google Scholar]
  75. Schütz AK, Vagt T, Huber M, Ovchinnikova OY, Cadalbert R. 75.  et al. 2015. Atomic-resolution three-dimensional structure of amyloid β fibrils bearing the Osaka mutation. Angew. Chem. Int. Ed. Engl. 54:1331–35 [Google Scholar]
  76. Xiao Y, Ma B, McElheny D, Parthasarathy S, Long F. 76.  et al. 2015. Aβ(1-42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer's disease. Nat. Struct. Mol. Biol. 22:6499–505 [Google Scholar]
  77. Schmidt M, Rohou A, Lasker K, Yadav JK, Schiene-Fischer C. 77.  et al. 2015. Peptide dimer structure in an Aβ(1–42) fibril visualized with cryo-EM. PNAS 112:3811858–63 [Google Scholar]
  78. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. 78.  1997. α-Synuclein in Lewy bodies. Nature 388:6645839–40 [Google Scholar]
  79. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A. 79.  et al. 1997. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276:53212045–47 [Google Scholar]
  80. Bodles AM, Guthrie DJ, Greer B, Irvine GB. 80.  2001. Identification of the region of non-Aβ component (NAC) of Alzheimer's disease amyloid responsible for its aggregation and toxicity. J. Neurochem. 78:2384–95 [Google Scholar]
  81. Giasson BI, Murray IV, Trojanowski JQ, Lee VM. 81.  2001. A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for filament assembly. J. Biol. Chem. 276:42380–86 [Google Scholar]
  82. Rodriguez JA, Ivanova MI, Sawaya MR, Cascio D, Reyes FE. 82.  et al. 2015. Structure of the toxic core of α-synuclein from invisible crystals. Nature 525:7570486–90 [Google Scholar]
  83. Tanaka M, Chien P, Naber N, Cooke R, Weissman JS. 83.  2004. Conformational variations in an infectious protein determine prion strain differences. Nature 428:6980323–28 [Google Scholar]
  84. Rodriguez JA, Jiang L, Eisenberg D. 84.  2017. Toward the atomic structure of PrPSc. Cold Spring Harb. Perspect. Biol. In press
  85. Safar J, Wille H, Itri V, Groth D, Serban H. 85.  et al. 1998. Eight prion strains have PrPSc molecules with different conformations. Nat. Med. 4:101157–65 [Google Scholar]
  86. Jarrett JT, Lansbury PT. 86.  1993. Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer's disease and scrapie?. Cell 73:61055–58 [Google Scholar]
  87. Prusiner SB. 87.  2012. A unifying role for prions in neurodegenerative diseases. Science 336:60881511–13 [Google Scholar]
  88. Aguzzi A, Rajendran L. 88.  2009. The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64:6783–90 [Google Scholar]
  89. Luk KC, Kehm V, Carroll J, Zhang B, O'Brien P. 89.  et al. 2012. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338:6109949–53 [Google Scholar]
  90. Kfoury N, Holmes BB, Jiang H, Holtzman DM, Diamond MI. 90.  2012. Trans-cellular propagation of tau aggregation by fibrillar species. J. Biol. Chem. 287:2319440–51 [Google Scholar]
  91. Eisele YS, Obermüller U, Heilbronner G, Baumann F, Kaeser SA. 91.  et al. 2010. Peripherally applied Aβ-containing inoculates induce cerebral β-amyloidosis. Science 330:6006980–82 [Google Scholar]
  92. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC. 92.  et al. 2003. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:5618486–89 [Google Scholar]
  93. Fändrich M. 93.  2012. Oligomeric intermediates in amyloid formation: structure determination and mechanisms of toxicity. J. Mol. Biol. 421:4–5427–40 [Google Scholar]
  94. Haass C, Selkoe DJ. 94.  2007. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8:2101–12 [Google Scholar]
  95. Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL. 95.  et al. 2005. The most infectious prion protein particles. Nature 437:7056257–61 [Google Scholar]
  96. Laganowsky A, Liu C, Sawaya MR, Whitelegge JP, Park J. 96.  et al. 2012. Atomic view of a toxic amyloid small oligomer. Science 335:60731228–31 [Google Scholar]
  97. Stroud JC, Liu C, Teng PK, Eisenberg D. 97.  2012. Toxic fibrillar oligomers of amyloid-β have cross-β structure. PNAS 109:207717–22 [Google Scholar]
  98. Gu L, Liu C, Stroud JC, Ngo S, Jiang L, Guo Z. 98.  2014. Antiparallel triple-strand architecture for prefibrillar Aβ42 oligomers. J. Biol. Chem. 289:3927300–313 [Google Scholar]
  99. Kishimoto A, Hasegawa K, Suzuki H, Taguchi H, Namba K, Yoshida M. 99.  2004. β-Helix is a likely core structure of yeast prion Sup35 amyloid fibers. Biochem. Biophys. Res. Commun. 315:3739–45 [Google Scholar]
  100. Krotee P, Rodriguez JA, Sawaya MR, Cascio D, Reyes FE. 100.  et al. 2017. Atomic structures of fibrillar segments of hIAPP suggest tightly mated β-sheets are important for cytotoxicity. eLife 6:e19273 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error