1932

Abstract

Directed evolution is a powerful technique for generating tailor-made enzymes for a wide range of biocatalytic applications. Following the principles of natural evolution, iterative cycles of mutagenesis and screening or selection are applied to modify protein properties, enhance catalytic activities, or develop completely new protein catalysts for non-natural chemical transformations. This review briefly surveys the experimental methods used to generate genetic diversity and screen or select for improved enzyme variants. Emphasis is placed on a key challenge, namely how to generate novel catalytic activities that expand the scope of natural reactions. Two particularly effective strategies, exploiting catalytic promiscuity and rational design, are illustrated by representative examples of successfully evolved enzymes. Opportunities for extending these approaches to more complex biocatalytic systems are also considered.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012034
2018-06-20
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-062917-012034.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012034&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Jensen RA. 1976. Enzyme recruitment in evolution of new function. Annu. Rev. Microbiol. 30:409–25
    [Google Scholar]
  2. 2.  Packer MS, Liu DR 2015. Methods for the directed evolution of proteins. Nat. Rev. Genet. 16:379–94
    [Google Scholar]
  3. 3.  Wells JA, Vasser M, Powers DB 1985. Cassette mutagenesis: an efficient method for generation of multiple mutations at defined sites. Gene 34:315–23
    [Google Scholar]
  4. 4.  Kille S, Acevedo-Rocha CG, Parra LP, Zhang ZG, Opperman DJ et al. 2013. Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis. ACS Synth. Biol. 2:83–92
    [Google Scholar]
  5. 5.  Reetz MT, Kahakeaw D, Lohmer R 2008. Addressing the numbers problem in directed evolution. ChemBioChem 9:1797–804
    [Google Scholar]
  6. 6.  Cadwell RC, Joyce GF 1992. Randomization of genes by PCR mutagenesis. PCR Methods Appl 2:28–33
    [Google Scholar]
  7. 7.  Stemmer WP. 1994. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–91
    [Google Scholar]
  8. 8.  Zhao H, Zha W 2006. In vitro ‘sexual’ evolution through the PCR-based staggered extension process (StEP). Nat. Protoc. 1:1865–71
    [Google Scholar]
  9. 9.  Acevedo-Rocha CG, Hoebenreich S, Reetz MT 2014. Iterative saturation mutagenesis: a powerful approach to engineer proteins by systematically simulating Darwinian evolution. Methods Mol. Biol. 1179:103–28
    [Google Scholar]
  10. 10.  Fox RJ, Davis SC, Mundorff EC, Newman LM, Gavrilovic V et al. 2007. Improving catalytic function by ProSAR-driven enzyme evolution. Nat. Biotechnol. 25:338–44
    [Google Scholar]
  11. 11.  Orencia MC, Yoon JS, Ness JE, Stemmer WP, Stevens RC 2001. Predicting the emergence of antibiotic resistance by directed evolution and structural analysis. Nat. Struct. Biol. 8:238–42
    [Google Scholar]
  12. 12.  MacBeath G, Kast P, Hilvert D 1998. Redesigning enzyme topology by directed evolution. Science 279:1958–61
    [Google Scholar]
  13. 13.  Wilson DS, Keefe AD, Szostak JW 2001. The use of mRNA display to select high-affinity protein-binding peptides. PNAS 98:3750–55
    [Google Scholar]
  14. 14.  Hanes J, Plückthun A 1997. In vitro selection and evolution of functional proteins by using ribosome display. PNAS 94:4937–42
    [Google Scholar]
  15. 15.  Amstutz P, Pelletier JN, Guggisberg A, Jermutus L, Cesaro-Tadic S et al. 2002. In vitro selection for catalytic activity with ribosome display. J. Am. Chem. Soc. 124:9396–403
    [Google Scholar]
  16. 16.  Seelig B, Szostak JW 2007. Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. Nature 448:828–31
    [Google Scholar]
  17. 17.  Esvelt KM, Carlson JC, Liu DR 2011. A system for the continuous directed evolution of biomolecules. Nature 472:499–503
    [Google Scholar]
  18. 18.  Dickinson BC, Packer MS, Badran AH, Liu DR 2014. A system for the continuous directed evolution of proteases rapidly reveals drug-resistance mutations. Nat. Commun. 5:5352
    [Google Scholar]
  19. 19.  Yang G, Withers SG 2009. Ultrahigh-throughput FACS-based screening for directed enzyme evolution. ChemBioChem 10:2704–15
    [Google Scholar]
  20. 20.  Varadarajan N, Cantor JR, Georgiou G, Iverson BL 2009. Construction and flow cytometric screening of targeted enzyme libraries. Nat. Protoc. 4:893–901
    [Google Scholar]
  21. 21.  Chen I, Dorr BM, Liu DR 2011. A general strategy for the evolution of bond-forming enzymes using yeast display. PNAS 108:11399–404
    [Google Scholar]
  22. 22.  Gupta RD, Goldsmith M, Ashani Y, Simo Y, Mullokandov G et al. 2011. Directed evolution of hydrolases for prevention of G-type nerve agent intoxication. Nat. Chem. Biol. 7:120–25
    [Google Scholar]
  23. 23.  Fischlechner M, Schaerli Y, Mohamed MF, Patil S, Abell C, Hollfelder F 2014. Evolution of enzyme catalysts caged in biomimetic gel-shell beads. Nat. Chem. 6:791–96
    [Google Scholar]
  24. 24.  Griffiths AD, Tawfik DS 2006. Miniaturising the laboratory in emulsion droplets. Trends Biotechnol 24:395–402
    [Google Scholar]
  25. 25.  Mair P, Gielen F, Hollfelder F 2017. Exploring sequence space in search of functional enzymes using microfluidic droplets. Curr. Opin. Chem. Biol. 37:137–44
    [Google Scholar]
  26. 26.  Baret JC, Miller OJ, Taly V, Ryckelynck M, El-Harrak A et al. 2009. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9:1850–58
    [Google Scholar]
  27. 27.  Agresti JJ, Antipov E, Abate AR, Ahn K, Rowat AC et al. 2010. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. PNAS 107:4004–9
    [Google Scholar]
  28. 28.  Kintses B, Hein C, Mohamed MF, Fischlechner M, Courtois F et al. 2012. Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. Chem. Biol. 19:1001–9
    [Google Scholar]
  29. 29.  Ostafe R, Prodanovic R, Nazor J, Fischer R 2014. Ultra-high-throughput screening method for the directed evolution of glucose oxidase. Chem. Biol. 21:414–21
    [Google Scholar]
  30. 30.  Colin PY, Kintses B, Gielen F, Miton CM, Fischer G et al. 2015. Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat. Commun. 6:10008
    [Google Scholar]
  31. 31.  Larsen AC, Dunn MR, Hatch A, Sau SP, Youngbull C, Chaput JC 2016. A general strategy for expanding polymerase function by droplet microfluidics. Nat. Commun. 7:11235
    [Google Scholar]
  32. 32.  Gielen F, Hours R, Emond S, Fischlechner M, Schell U, Hollfelder F 2016. Ultrahigh-throughput-directed enzyme evolution by absorbance-activated droplet sorting (AADS). PNAS 113:E7383–89
    [Google Scholar]
  33. 33.  Chen B, Lim S, Kannan A, Alford SC, Sunden F et al. 2016. High-throughput analysis and protein engineering using microcapillary arrays. Nat. Chem. Biol. 12:76–81
    [Google Scholar]
  34. 34.  Turner NJ, O'Reilly E 2013. Biocatalytic retrosynthesis. Nat. Chem. Biol. 9:285–88
    [Google Scholar]
  35. 35.  de Souza ROMA, Miranda LSM, Bornscheuer UT 2017. A retrosynthesis approach for biocatalysis in organic synthesis. Chemistry 23:12040–63
    [Google Scholar]
  36. 36.  Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K 2012. Engineering the third wave of biocatalysis. Nature 485:185–94
    [Google Scholar]
  37. 37.  Martinez R, Schwaneberg U 2013. A roadmap to directed enzyme evolution and screening systems for biotechnological applications. Biol. Res. 46:395–405
    [Google Scholar]
  38. 38.  Turner NJ. 2009. Directed evolution drives the next generation of biocatalysts. Nat. Chem. Biol. 5:567–73
    [Google Scholar]
  39. 39.  Moore JC, Arnold FH 1996. Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat. Biotechnol. 14:458–67
    [Google Scholar]
  40. 40.  Giver L, Gershenson A, Freskgard PO, Arnold FH 1998. Directed evolution of a thermostable esterase. PNAS 95:12809–13
    [Google Scholar]
  41. 41.  Reetz MT. 2004. Changing the enantioselectivity of enzymes by directed evolution. Methods Enzymol 388:238–56
    [Google Scholar]
  42. 42.  Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S et al. 2010. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329:305–9
    [Google Scholar]
  43. 43.  Li T, Liang J, Ambrogelly A, Brennan T, Gloor G et al. 2012. Efficient, chemoenzymatic process for manufacture of the Boceprevir bicyclic [3.1.0]proline intermediate based on amine oxidase-catalyzed desymmetrization. J. Am. Chem. Soc. 134:6467–72
    [Google Scholar]
  44. 44.  Ghislieri D, Green AP, Pontini M, Willies SC, Rowles I et al. 2013. Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products. J. Am. Chem. Soc. 135:10863–69
    [Google Scholar]
  45. 45.  Pavlidis IV, Weiss MS, Genz M, Spurr P, Hanlon SP et al. 2016. Identification of (S)-selective transaminases for the asymmetric synthesis of bulky chiral amines. Nat. Chem. 8:1076–82
    [Google Scholar]
  46. 46.  Green AP, Turner NJ 2016. Biocatalytic retrosynthesis: redesigning synthetic routes to high-value chemicals. Perspect. Sci. 9:42–48
    [Google Scholar]
  47. 47.  Köhler V, Bailey KR, Znabet A, Raftery J, Helliwell M, Turner NJ 2010. Enantioselective biocatalytic oxidative desymmetrization of substituted pyrrolidines. Angew. Chem. Int. Ed. Engl. 49:2182–84
    [Google Scholar]
  48. 48.  Alexeeva M, Enright A, Dawson MJ, Mahmoudian M, Turner NJ 2002. Deracemization of α-methylbenzylamine using an enzyme obtained by in vitro evolution. Angew. Chem. Int. Ed. Engl. 41:3177–80
    [Google Scholar]
  49. 49.  Wang L, Brock A, Herberich B, Schultz PG 2001. Expanding the genetic code of Escherichia coli. Science 292:498–500
    [Google Scholar]
  50. 50.  Liu CC, Schultz PG 2010. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79:413–44
    [Google Scholar]
  51. 51.  Bryson DI, Fan C, Guo L-T, Miller C, Söll D, Liu DR 2017. Continuous directed evolution of aminoacyl-tRNA synthetases. Nat. Chem. Biol. 13:1253–60
    [Google Scholar]
  52. 52.  Chin JW. 2014. Expanding and reprogramming the genetic code of cells and animals. Annu. Rev. Biochem. 83:379–408
    [Google Scholar]
  53. 53.  Khersonsky O, Tawfik DS 2010. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79:471–505
    [Google Scholar]
  54. 54.  Kazlauskas RJ. 2005. Enhancing catalytic promiscuity for biocatalysis. Curr. Opin. Chem. Biol. 9:195–201
    [Google Scholar]
  55. 55.  Renata H, Wang ZJ, Arnold FH 2015. Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew. Chem. Int. Ed. Engl. 54:3351–67
    [Google Scholar]
  56. 56.  Alcalde M. 2017. When directed evolution met ancestral enzyme resurrection. Microb. Biotechnol. 10:22–24
    [Google Scholar]
  57. 57.  Alcolombri U, Elias M, Tawfik DS 2011. Directed evolution of sulfotransferases and paraoxonases by ancestral libraries. J. Mol. Biol. 411:837–53
    [Google Scholar]
  58. 58.  Perez-Jimenez R, Ingles-Prieto A, Zhao ZM, Sanchez-Romero I, Alegre-Cebollada J et al. 2011. Single-molecule paleoenzymology probes the chemistry of resurrected enzymes. Nat. Struct. Mol. Biol. 18:592–96
    [Google Scholar]
  59. 59.  Risso VA, Gavira JA, Mejia-Carmona DF, Gaucher EA, Sanchez-Ruiz JM 2013. Hyperstability and substrate promiscuity in laboratory resurrections of Precambrian β-lactamases. J. Am. Chem. Soc. 135:2899–902
    [Google Scholar]
  60. 60.  Emmanuel MA, Greenberg NR, Oblinsky DG, Hyster TK 2016. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540:414–17
    [Google Scholar]
  61. 61.  Toscano MD, Woycechowsky KJ, Hilvert D 2007. Minimalist active-site redesign: teaching old enzymes new tricks. Angew. Chem. Int. Ed. Engl. 46:3212–36
    [Google Scholar]
  62. 62.  Meier MM, Rajendran C, Malisi C, Fox NG, Xu C et al. 2013. Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template. J. Am. Chem. Soc. 135:11670–77
    [Google Scholar]
  63. 63.  Khare SD, Kipnis Y, Greisen P Jr, Takeuchi R, Ashani Y et al. 2012. Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. Nat. Chem. Biol. 8:294–300
    [Google Scholar]
  64. 64.  Wendt KU, Poralla K, Schulz GE 1997. Structure and function of a squalene cyclase. Science 277:1811–15
    [Google Scholar]
  65. 65.  Hoshino T, Sato T 2002. Squalene-hopene cyclase: catalytic mechanism and substrate recognition. Chem. Commun. 2002:291–301
    [Google Scholar]
  66. 66.  Hammer SC, Syren PO, Seitz M, Nestl BM, Hauer B 2013. Squalene hopene cyclases: highly promiscuous and evolvable catalysts for stereoselective CC and CX bond formation. Curr. Opin. Chem. Biol. 17:293–300
    [Google Scholar]
  67. 67.  Seitz M, Syrén PO, Steiner L, Klebensberger J, Nestl BM, Hauer B 2013. Synthesis of heterocyclic terpenoids by promiscuous squalene-hopene cyclases. ChemBioChem 14:436–39
    [Google Scholar]
  68. 68.  Syrén PO, Henche S, Eichler A, Nestl BM, Hauer B 2016. Squalene-hopene cyclases—evolution, dynamics and catalytic scope. Curr. Opin. Struct. Biol. 41:73–82
    [Google Scholar]
  69. 69.  Yonemura Y, Ohyama T, Hoshino T 2012. Chemo-enzymatic syntheses of drimane-type sesquiterpenes and the fundamental core of hongoquercin meroterpenoid by recombinant squalene–hopene cyclase. Org. Biomol. Chem. 10:440–46
    [Google Scholar]
  70. 70.  Siedenburg G, Jendrossek D, Breuer M, Juhl B, Pleiss J et al. 2012. Activation-independent cyclization of monoterpenoids. Appl. Environ. Microbiol. 78:1055–62
    [Google Scholar]
  71. 71.  Hammer SC, Marjanovic A, Dominicus JM, Nestl BM, Hauer B 2015. Squalene hopene cyclases are protonases for stereoselective Brønsted acid catalysis. Nat. Chem. Biol. 11:121–26
    [Google Scholar]
  72. 72.  Denisov IG, Makris TM, Sligar SG, Schlichting I 2005. Structure and chemistry of cytochrome P450. Chem. Rev. 105:2253–77
    [Google Scholar]
  73. 73.  Roiban GD, Reetz MT 2015. Expanding the toolbox of organic chemists: directed evolution of P450 monooxygenases as catalysts in regio- and stereoselective oxidative hydroxylation. Chem. Commun. 51:2208–24
    [Google Scholar]
  74. 74.  Rittle J, Green MT 2010. Cytochrome P450 compound I: capture, characterization, and C-H bond activation kinetics. Science 330:933–37
    [Google Scholar]
  75. 75.  Luthra A, Denisov IG, Sligar SG 2011. Spectroscopic features of cytochrome P450 reaction intermediates. Arch. Biochem. Biophys. 507:26–35
    [Google Scholar]
  76. 76.  Harskamp J, Britz-McKibbin P, Wilson JY 2012. Functional screening of cytochrome P450 activity and uncoupling by capillary electrophoresis. Anal. Chem. 84:862–66
    [Google Scholar]
  77. 77.  Coelho PS, Brustad EM, Kannan A, Arnold FH 2013. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339:307–10
    [Google Scholar]
  78. 78.  Coelho PS, Wang ZJ, Ener ME, Baril SA, Kannan A et al. 2013. A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo. Nat. Chem. Biol. 9:485–87
    [Google Scholar]
  79. 79.  Wang ZJ, Renata H, Peck NE, Farwell CC, Coelho PS, Arnold FH 2014. Improved cyclopropanation activity of histidine-ligated cytochrome P450 enables the enantioselective formal synthesis of levomilnacipran. Angew. Chem. Int. Ed. Engl. 53:6810–13
    [Google Scholar]
  80. 80.  McIntosh JA, Coelho PS, Farwell CC, Wang ZJ, Lewis JC et al. 2013. Enantioselective intramolecular C-H amination catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo. Angew. Chem. Int. Ed. Engl. 52:9309–12
    [Google Scholar]
  81. 81.  Singh R, Bordeaux M, Fasan R 2014. P450-catalyzed intramolecular sp3 C-H amination with arylsulfonyl azide substrates. ACS Catal 4:546–52
    [Google Scholar]
  82. 82.  Prier CK, Zhang RK, Buller AR, Brinkmann-Chen S, Arnold FH 2017. Enantioselective, intermolecular benzylic C-H amination catalysed by an engineered iron-haem enzyme. Nat. Chem. 9:629–34
    [Google Scholar]
  83. 83.  Brandenberg OF, Fasan R, Arnold FH 2017. Exploiting and engineering hemoproteins for abiological carbene and nitrene transfer reactions. Curr. Opin. Biotechnol. 47:102–11
    [Google Scholar]
  84. 84.  Zhou XG, Yu XQ, Huang JS, Che CM 1999. Asymmetric amidation of saturated C-H bonds catalysed by chiral ruthenium and manganese porphyrins. Chem. Commun. 1999:2377–78
    [Google Scholar]
  85. 85.  Bordeaux M, Tyagi V, Fasan R 2015. Highly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin-based catalysts. Angew. Chem. Int. Ed. Engl. 54:1744–48
    [Google Scholar]
  86. 86.  Sreenilayam G, Fasan R 2015. Myoglobin-catalyzed intermolecular carbene N-H insertion with arylamine substrates. Chem. Commun. 51:1532–34
    [Google Scholar]
  87. 87.  Tyagi V, Fasan R 2016. Myoglobin-catalyzed olefination of aldehydes. Angew. Chem. Int. Ed. Engl. 55:2512–16
    [Google Scholar]
  88. 88.  Tyagi V, Sreenilayam G, Bajaj P, Tinoco A, Fasan R 2016. Biocatalytic synthesis of allylic and allenyl sulfides through a myoglobin-catalyzed Doyle-Kirmse reaction. Angew. Chem. Int. Ed. Engl. 55:13562–66
    [Google Scholar]
  89. 89.  Kan SB, Lewis RD, Chen K, Arnold FH 2016. Directed evolution of cytochrome c for carbon–silicon bond formation: bringing silicon to life. Science 354:1048–51
    [Google Scholar]
  90. 90.  Kan SB, Huang X, Gumulya Y, Chen K, Arnold FH 2017. Genetically programmed chiral organoborane synthesis. Nature 552:132–36
    [Google Scholar]
  91. 91.  Dydio P, Key HM, Nazarenko A, Rha JY, Seyedkazemi V et al. 2016. An artificial metalloenzyme with the kinetics of native enzymes. Science 354:102–6
    [Google Scholar]
  92. 92.  Key HM, Dydio P, Clark DS, Hartwig JF 2016. Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Nature 534:534–37
    [Google Scholar]
  93. 93.  Key HM, Dydio P, Liu Z, Rha JY, Nazarenko A et al. 2017. Beyond iron: iridium-containing P450 enzymes for selective cyclopropanations of structurally diverse alkenes. ACS Cent. Sci. 3:302–8
    [Google Scholar]
  94. 94.  Dydio P, Key HM, Hayashi H, Clark DS, Hartwig JF 2017. Chemoselective, enzymatic C-H bond amination catalyzed by a cytochrome P450 containing an Ir(Me)-PIX cofactor. J. Am. Chem. Soc. 139:1750–53
    [Google Scholar]
  95. 95.  Pott M, Hayashi T, Mori T, Mittl PRE, Green AP, Hilvert D 2018. A noncanonical proximal heme ligand affords an efficient peroxidase in a globin fold. J. Am. Chem. Soc. 140:1535–43
    [Google Scholar]
  96. 96.  White MD, Flashman E 2016. Catalytic strategies of the non-heme iron dependent oxygenases and their roles in plant biology. Curr. Opin. Chem. Biol. 31:126–35
    [Google Scholar]
  97. 97.  Gally C, Nestl BM, Hauer B 2015. Engineering Rieske non-heme iron oxygenases for the asymmetric dihydroxylation of alkenes. Angew. Chem. Int. Ed. Engl. 54:12952–56
    [Google Scholar]
  98. 98.  Matthews ML, Neumann CS, Miles LA, Grove TL, Booker SJ et al. 2009. Substrate positioning controls the partition between halogenation and hydroxylation in the aliphatic halogenase, SyrB2. PNAS 106:17723–28
    [Google Scholar]
  99. 99.  Wong SD, Srnec M, Matthews ML, Liu LV, Kwak Y et al. 2013. Elucidation of the Fe(IV)=O intermediate in the catalytic cycle of the halogenase SyrB2. Nature 499:320–23
    [Google Scholar]
  100. 100.  Petrik ID, Liu J, Lu Y 2014. Metalloenzyme design and engineering through strategic modifications of native protein scaffolds. Curr. Opin. Chem. Biol. 19:67–75
    [Google Scholar]
  101. 101.  Schwizer F, Okamoto Y, Heinisch T, Gu Y, Pellizzoni MM et al. 2018. Artificial metalloenzymes: reaction scope and optimization strategies. Chem. Rev. 118:142–231
    [Google Scholar]
  102. 102.  Hyster TK, Knorr L, Ward TR, Rovis T 2012. Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C-H activation. Science 338:500–3
    [Google Scholar]
  103. 103.  Hyster TK, Ward TR 2016. Genetic optimization of metalloenzymes: enhancing enzymes for non-natural reactions. Angew. Chem. Int. Ed. Engl. 55:7344–57
    [Google Scholar]
  104. 104.  Srivastava P, Yang H, Ellis-Guardiola K, Lewis JC 2015. Engineering a dirhodium artificial metalloenzyme for selective olefin cyclopropanation. Nat. Commun. 6:7789
    [Google Scholar]
  105. 105.  Bos J, Browne WR, Driessen AJ, Roelfes G 2015. Supramolecular assembly of artificial metalloenzymes based on the dimeric protein LmrR as promiscuous scaffold. J. Am. Chem. Soc. 137:9796–99
    [Google Scholar]
  106. 106.  Drienovska I, Rioz-Martinez A, Draksharapu A, Roelfes G 2015. Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids. Chem. Sci. 6:770–76
    [Google Scholar]
  107. 107.  Ward TR. 2011. Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond. Acc. Chem. Res. 44:47–57
    [Google Scholar]
  108. 108.  Heinisch T, Ward TR 2016. Artificial metalloenzymes based on the biotin-streptavidin technology: challenges and opportunities. Acc. Chem. Res. 49:1711–21
    [Google Scholar]
  109. 109.  Mallin H, Hestericova M, Reuter R, Ward TR 2016. Library design and screening protocol for artificial metalloenzymes based on the biotin-streptavidin technology. Nat. Protoc. 11:835–52
    [Google Scholar]
  110. 110.  Jeschek M, Reuter R, Heinisch T, Trindler C, Klehr J et al. 2016. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537:661–65
    [Google Scholar]
  111. 111.  Jeschek M, Panke S, Ward TR 2016. Periplasmic screening for artificial metalloenzymes. Methods Enzymol 580:539–56
    [Google Scholar]
  112. 112.  Kiss G, Çelebi-Ölçüm N, Moretti R, Baker D, Houk KN 2013. Computational enzyme design. Angew. Chem. Int. Ed. Engl. 52:5700–25
    [Google Scholar]
  113. 113.  Kries H, Blomberg R, Hilvert D 2013. De novo enzymes by computational design. Curr. Opin. Chem. Biol. 17:221–28
    [Google Scholar]
  114. 114.  Bolon DN, Mayo SL 2001. Enzyme-like proteins by computational design. PNAS 98:14274–79
    [Google Scholar]
  115. 115.  Lassila JK, Privett HK, Allen BD, Mayo SL 2006. Combinatorial methods for small-molecule placement in computational enzyme design. PNAS 103:16710–15
    [Google Scholar]
  116. 116.  Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J et al. 2011. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–74
    [Google Scholar]
  117. 117.  Richter F, Leaver-Fay A, Khare SD, Bjelic S, Baker D 2011. De novo enzyme design using Rosetta3. PLOS ONE 6:e19230
    [Google Scholar]
  118. 118.  Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR et al. 2010. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329:309–13
    [Google Scholar]
  119. 119.  Eiben CB, Siegel JB, Bale JB, Cooper S, Khatib F et al. 2012. Increased Diels-Alderase activity through backbone remodeling guided by Foldit players. Nat. Biotechnol. 30:190–92
    [Google Scholar]
  120. 120.  Preiswerk N, Beck T, Schulz JD, Milovnik P, Mayer C et al. 2014. Impact of scaffold rigidity on the design and evolution of an artificial Diels-Alderase. PNAS 111:8013–18
    [Google Scholar]
  121. 121.  Röthlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J et al. 2008. Kemp elimination catalysts by computational enzyme design. Nature 453:190–5
    [Google Scholar]
  122. 122.  Privett HK, Kiss G, Lee TM, Blomberg R, Chica RA et al. 2012. Iterative approach to computational enzyme design. PNAS 109:3790–95
    [Google Scholar]
  123. 123.  Khersonsky O, Röthlisberger D, Dym O, Albeck S, Jackson CJ et al. 2010. Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series. J. Mol. Biol. 396:1025–42
    [Google Scholar]
  124. 124.  Khersonsky O, Röthlisberger D, Wollacott AM, Murphy P, Dym O et al. 2011. Optimization of the in-silico-designed Kemp eliminase KE70 by computational design and directed evolution. J. Mol. Biol. 407:391–412
    [Google Scholar]
  125. 125.  Khersonsky O, Kiss G, Röthlisberger D, Dym O, Albeck S et al. 2012. Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59. PNAS 109:10358–63
    [Google Scholar]
  126. 126.  Blomberg R, Kries H, Pinkas DM, Mittl PR, Grutter MG et al. 2013. Precision is essential for efficient catalysis in an evolved Kemp eliminase. Nature 503:418–21
    [Google Scholar]
  127. 127.  Jiang L, Althoff EA, Clemente FR, Doyle L, Röthlisberger D et al. 2008. De novo computational design of retro-aldol enzymes. Science 319:1387–91
    [Google Scholar]
  128. 128.  Althoff EA, Wang L, Jiang L, Giger L, Lassila JK et al. 2012. Robust design and optimization of retroaldol enzymes. Protein Sci 21:717–26
    [Google Scholar]
  129. 129.  Bjelic S, Kipnis Y, Wang L, Pianowski Z, Vorobiev S et al. 2014. Exploration of alternate catalytic mechanisms and optimization strategies for retroaldolase design. J. Mol. Biol. 426:256–71
    [Google Scholar]
  130. 130.  Giger L, Caner S, Obexer R, Kast P, Baker D et al. 2013. Evolution of a designed retro-aldolase leads to complete active site remodeling. Nat. Chem. Biol. 9:494–98
    [Google Scholar]
  131. 131.  Obexer R, Godina A, Garrabou X, Mittl PR, Baker D et al. 2017. Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase. Nat. Chem. 9:50–56
    [Google Scholar]
  132. 132.  Windle CL, Muller M, Nelson A, Berry A 2014. Engineering aldolases as biocatalysts. Curr. Opin. Chem. Biol. 19:25–33
    [Google Scholar]
  133. 133.  Zeymer C, Zschoche R, Hilvert D 2017. Optimization of enzyme mechanism along the evolutionary trajectory of a computationally designed (retro-)aldolase. J. Am. Chem. Soc. 139:12541–49
    [Google Scholar]
  134. 134.  Tittmann K. 2014. Sweet siblings with different faces: the mechanisms of FBP and F6P aldolase, transaldolase, transketolase and phosphoketolase revisited in light of recent structural data. Bioorg. Chem. 57:263–80
    [Google Scholar]
  135. 135.  Obexer R, Pott M, Zeymer C, Griffiths AD, Hilvert D 2016. Efficient laboratory evolution of computationally designed enzymes with low starting activities using fluorescence-activated droplet sorting. Protein Eng. Des. Sel. 29:355–66
    [Google Scholar]
  136. 136.  Boyken SE, Chen Z, Groves B, Langan RA, Oberdorfer G et al. 2016. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity. Science 352:680–87
    [Google Scholar]
  137. 137.  Garrabou X, Beck T, Hilvert D 2015. A promiscuous de novo retro-aldolase catalyzes asymmetric Michael additions via Schiff base intermediates. Angew. Chem. Int. Ed. Engl. 54:5609–12
    [Google Scholar]
  138. 138.  Garrabou X, Wicky BI, Hilvert D 2016. Fast Knoevenagel condensations catalyzed by an artificial Schiff-base-forming enzyme. J. Am. Chem. Soc. 138:6972–74
    [Google Scholar]
  139. 139.  Garrabou X, Macdonald DS, Hilvert D 2017. Chemoselective Henry condensations catalyzed by artificial carboligases. Chemistry 23:6001–3
    [Google Scholar]
  140. 140.  France SP, Hepworth LJ, Turner NJ, Flitsch SL 2017. Constructing biocatalytic cascades: in vitro and in vivo approaches to de novo multi-enzyme pathways. ACS Catal 7:710–24
    [Google Scholar]
  141. 141.  Paddon CJ, Keasling JD 2014. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 12:355–67
    [Google Scholar]
  142. 142.  Woolston BM, Edgar S, Stephanopoulos G 2013. Metabolic engineering: past and future. Annu. Rev. Chem. Biomol. Eng. 4:259–88
    [Google Scholar]
  143. 143.  Erb TJ, Jones PR, Bar-Even A 2017. Synthetic metabolism: metabolic engineering meets enzyme design. Curr. Opin. Chem. Biol. 37:56–62
    [Google Scholar]
  144. 144.  Umeno D, Tobias AV, Arnold FH 2005. Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol. Mol. Biol. Rev. 69:51–78
    [Google Scholar]
  145. 145.  Umeno D, Arnold FH 2004. Evolution of a pathway to novel long-chain carotenoids. J. Bacteriol. 186:1531–36
    [Google Scholar]
  146. 146.  Leonard E, Ajikumar PK, Thayer K, Xiao WH, Mo JD et al. 2010. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. PNAS 107:13654–59
    [Google Scholar]
  147. 147.  Schwander T, Schada von Borzyskowski L, Burgener S, Cortina NS, Erb TJ 2016. A synthetic pathway for the fixation of carbon dioxide in vitro. Science 354:900–4
    [Google Scholar]
  148. 148.  Siegel JB, Smith AL, Poust S, Wargacki AJ, Bar-Even A et al. 2015. Computational protein design enables a novel one-carbon assimilation pathway. PNAS 112:3704–9
    [Google Scholar]
  149. 149.  Meier JL, Burkart MD 2009. The chemical biology of modular biosynthetic enzymes. Chem. Soc. Rev. 38:2012–45
    [Google Scholar]
  150. 150.  Cane DE, Walsh CT, Khosla C 1998. Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282:63–68
    [Google Scholar]
  151. 151.  Winn M, Fyans JK, Zhuo Y, Micklefield J 2016. Recent advances in engineering nonribosomal peptide assembly lines. Nat. Prod. Rep. 33:317–47
    [Google Scholar]
  152. 152.  Nguyen KT, Ritz D, Gu JQ, Alexander D, Chu M et al. 2006. Combinatorial biosynthesis of novel antibiotics related to daptomycin. PNAS 103:17462–67
    [Google Scholar]
  153. 153.  Ad O, Thuronyi BW, Chang MC 2017. Elucidating the mechanism of fluorinated extender unit loading for improved production of fluorine-containing polyketides. PNAS 114:E660–68
    [Google Scholar]
  154. 154.  Walker MC, Thuronyi BW, Charkoudian LK, Lowry B, Khosla C, Chang MC 2013. Expanding the fluorine chemistry of living systems using engineered polyketide synthase pathways. Science 341:1089–94
    [Google Scholar]
  155. 155.  Fischbach MA, Lai JR, Roche ED, Walsh CT, Liu DR 2007. Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes. PNAS 104:11951–56
    [Google Scholar]
  156. 156.  Kries H, Wachtel R, Pabst A, Wanner B, Niquille D, Hilvert D 2014. Reprogramming nonribosomal peptide synthetases for “clickable” amino acids. Angew. Chem. Int. Ed. Engl. 53:10105–8
    [Google Scholar]
  157. 157.  Kries H, Niquille DL, Hilvert D 2015. A subdomain swap strategy for reengineering nonribosomal peptides. Chem. Biol. 22:640–48
    [Google Scholar]
  158. 158.  Evans BS, Chen Y, Metcalf WW, Zhao H, Kelleher NL 2011. Directed evolution of the nonribosomal peptide synthetase AdmK generates new andrimid derivatives in vivo. Chem. Biol. 18:601–7
    [Google Scholar]
  159. 159.  Villiers B, Hollfelder F 2011. Directed evolution of a gatekeeper domain in nonribosomal peptide synthesis. Chem. Biol. 18:1290–99
    [Google Scholar]
  160. 160.  Niquille DL, Hansen DA, Mori T, Fercher D, Kries H, Hilvert D 2018. Nonribosomal biosynthesis of backbone-modified peptides. Nat. Chem. 10:282–87
    [Google Scholar]
  161. 161.  Kosuri S, Church GM 2014. Large-scale de novo DNA synthesis: technologies and applications. Nat. Methods 11:499–507
    [Google Scholar]
  162. 162.  Goodwin S, McPherson JD, McCombie WR 2016. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17:333–51
    [Google Scholar]
  163. 163.  Huang PS, Boyken SE, Baker D 2016. The coming of age of de novo protein design. Nature 537:320–27
    [Google Scholar]
  164. 164.  Osuna S, Jimenez-Oses G, Noey EL, Houk KN 2015. Molecular dynamics explorations of active site structure in designed and evolved enzymes. Acc. Chem. Res. 48:1080–89
    [Google Scholar]
  165. 165.  Childers MC, Daggett V 2017. Insights from molecular dynamics simulations for computational protein design. Mol. Syst. Des. Eng. 2:9–33
    [Google Scholar]
  166. 166.  Conti E, Stachelhaus T, Marahiel MA, Brick P 1997. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16:4174–83
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012034
Loading
/content/journals/10.1146/annurev-biochem-062917-012034
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error