1932

Abstract

Flavin-dependent halogenases (FDHs) catalyze the halogenation of organic substrates by coordinating reactions of reduced flavin, molecular oxygen, and chloride. Targeted and random mutagenesis of these enzymes have been used to both understand and alter their reactivity. These studies have led to insights into residues essential for catalysis and FDH variants with improved stability, expanded substrate scope, and altered site selectivity. Mutations throughout FDH structures have contributed to all of these advances. More recent studies have sought to rationalize the impact of these mutations on FDH function and to identify new FDHs to deepen our understanding of this enzyme class and to expand their utility for biocatalytic applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012042
2018-06-20
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-062917-012042.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012042&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Gribble GW. 1998. Naturally occurring organohalogen compounds. Acc. Chem. Res. 31:3141–52
    [Google Scholar]
  2. 2.  Chen X, van Pée K-H 2008. Catalytic mechanisms, basic roles, and biotechnological and environmental significance of halogenating enzymes. Acta Biochim. Biophys. Sin. 40:3183–93
    [Google Scholar]
  3. 3.  Herrera-Rodriguez LN, Khan F, Robins KT Meyer H-P 2011. Perspectives on biotechnological halogenation. Part I: halogenated products and enzymatic halogenation. Chim. Oggi Chem. Today 29:431–33
    [Google Scholar]
  4. 4.  Lu Y, Liu Y, Xu Z, Li H, Liu H, Zhu W 2012. Halogen bonding for rational drug design and new drug discovery. Expert Opin. Drug Discov. 7:5375–83
    [Google Scholar]
  5. 5.  Vairappan CS, Kawamoto T, Miwa H, Suzuki M 2004. Potent antibacterial activity of halogenated compounds against antibiotic-resistant bacteria. Planta Med 70:111087–90
    [Google Scholar]
  6. 6.  Harris CM, Kannan R, Kopecka H, Harris TM 1985. The role of the chlorine substituents in the antibiotic vancomycin: preparation and characterization of mono- and didechlorovancomycin. J. Am. Chem. Soc. 107:236652–58
    [Google Scholar]
  7. 7.  Bunders CA, Minvielle MJ, Worthington RJ, Ortiz M, Cavanagh J, Melander C 2011. Intercepting bacterial indole signaling with flustramine derivatives. J. Am. Chem. Soc. 133:5020160–63
    [Google Scholar]
  8. 8.  Smith BM, Smith JM, Tsai JH, Schultz JA, Gilson CA et al. 2008. Discovery and structure-activity relationship of (1R)-8-chloro-2,3,4,5-tetrahydro-1-methyl-1H-3-benzazepine (Lorcaserin), a selective serotonin 5-HT2C receptor agonist for the treatment of obesity. J. Med. Chem. 51:2305–13
    [Google Scholar]
  9. 9.  Groll M, Huber R, Potts BCM 2006. Crystal structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of β-lactone ring opening and a mechanism for irreversible binding. J. Am. Chem. Soc. 128:155136–41
    [Google Scholar]
  10. 10.  Pereira ER, Belin L, Sancelme M, Prudhomme M, Ollier M et al. 1996. Structure−activity relationships in a series of substituted indolocarbazoles: topoisomerase I and protein kinase C inhibition and antitumoral and antimicrobial properties. J. Med. Chem. 39:224471–77
    [Google Scholar]
  11. 11.  Jeschke P. 2009. The unique role of halogen substituents in the design of modern agrochemicals. Pest. Manag. Sci. 66:110–27
    [Google Scholar]
  12. 12.  Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A et al. 2016. The halogen bond. Chem. Rev. 116:42478–2601
    [Google Scholar]
  13. 13.  Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM 2013. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J. Med. Chem. 56:41363–88
    [Google Scholar]
  14. 14.  Auffinger P, Hays FA, Westhof E, Ho PS, Van Holde KE 2004. Halogen bonds in biological molecules. PNAS 101:4816789–94
    [Google Scholar]
  15. 15.  Nicolaou KC, Bulger PG, Sarlah D 2005. Palladium-catalyzed cross-coupling reactions in total synthesis. Angew. Chem. Int. Ed. 44:294442–89
    [Google Scholar]
  16. 16.  Horton DA, Bourne GT, Smythe ML 2003. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev. 103:3893–930
    [Google Scholar]
  17. 17.  Littke AF, Fu GC 1998. A convenient and general method for Pd-catalyzed Suzuki cross‐couplings of aryl chlorides and arylboronic acids. Angew. Chem. Int. Ed. 37:243387–88
    [Google Scholar]
  18. 18.  Old DW, Wolfe JP, Buchwald SL 1998. A highly active catalyst for palladium-catalyzed cross-coupling reactions: room-temperature Suzuki couplings and amination of unactivated aryl chlorides. J. Am. Chem. Soc. 120:379722–23
    [Google Scholar]
  19. 19.  Han F-S. 2013. Transition-metal-catalyzed Suzuki-Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts. Chem. Soc. Rev. 42:125270–98
    [Google Scholar]
  20. 20.  Li L, Zhao S, Joshi-Pangu A, Diane M, Biscoe MR 2014. Stereospecific Pd-catalyzed cross-coupling reactions of secondary alkylboron nucleophiles and aryl chlorides. J. Am. Chem. Soc. 136:4014027–30
    [Google Scholar]
  21. 21.  Podgoršek A, Zupan M, Iskra J 2009. Oxidative halogenation with “green” oxidants: oxygen and hydrogen peroxide. Angew. Chem. Int. Ed. 48:458424–50
    [Google Scholar]
  22. 22.  Maddox SM, Nalbandian CJ, Smith DE, Gustafson JL 2015. A practical Lewis base catalyzed electrophilic chlorination of arenes and heterocycles. Org. Lett. 17:41042–45
    [Google Scholar]
  23. 23.  Ashtekar KD, Marzijarani NS, Jaganathan A, Holmes D, Jackson JE, Borhan B 2014. A new tool to guide halofunctionalization reactions: the halenium affinity (HalA) scale. J. Am. Chem. Soc. 136:3813355–62
    [Google Scholar]
  24. 24.  Smith BJ, Radom L 1993. Assigning absolute values to proton affinities: a differentiation between competing scales. J. Am. Chem. Soc. 115:114885–88
    [Google Scholar]
  25. 25.  Pratihar S, Roy S 2010. Nucleophilicity and site selectivity of commonly used arenes and heteroarenes. J. Org. Chem. 75:154957–63
    [Google Scholar]
  26. 26.  Latham J, Brandenburger E, Shepherd SA, Menon BRK, Micklefield J 2018. Development of halogenase enzymes for use in synthesis. Chem. Rev. 118:1232–69
    [Google Scholar]
  27. 27.  Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS 2017. Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chem. Rev. 117:85619–74
    [Google Scholar]
  28. 28.  Weichold V, Milbredt D, van Pée K-H 2016. Specific enzymatic halogenation—from the discovery of halogenated enzymes to their applications invitro and invivo. Angew. Chem. Int. Ed. 55:226374–89
    [Google Scholar]
  29. 29.  Neumann CS, Fujimori DG, Walsh CT 2008. Halogenation strategies in natural product biosynthesis. Chem. Biol. 15:299–109
    [Google Scholar]
  30. 30.  Vaillancourt FH, Yeh E, Vosburg DA, Garneau-Tsodikova S, Walsh CT 2006. Nature's inventory of halogenation catalysts: oxidative strategies predominate. Chem. Rev. 106:83364–78
    [Google Scholar]
  31. 31.  Smith DR, Grüschow S, Goss RJ 2013. Scope and potential of halogenases in biosynthetic applications. Curr. Opin. Chem. Biol. 17:2276–83
    [Google Scholar]
  32. 32.  Andorfer MC, Park HJ, Vergara-Coll J, Lewis JC 2016. Directed evolution of RebH for catalyst-controlled halogenation of indole C–H bonds. Chem. Sci. 7:3720–29
    [Google Scholar]
  33. 33.  Andorfer MC, Grob JE, Hajdin CE, Chael JR, Siuti P et al. 2017. Understanding flavin-dependent halogenase reactivity via substrate activity profiling. ACS Catal 7:31897–1904
    [Google Scholar]
  34. 34.  Massey V. 1994. Activation of molecular oxygen by flavins and flavoproteins. J. Biol. Chem. 269:3622459–62
    [Google Scholar]
  35. 35.  Walsh CT, Wencewicz TA 2013. Flavoenzymes: versatile catalysts in biosynthetic pathways. Nat. Prod. Rep. 30:1175–200
    [Google Scholar]
  36. 36.  Entsch B, van Berkel WJ 1995. Structure and mechanism of para-hydroxybenzoate hydroxylase. FASEB J 9:7476–83
    [Google Scholar]
  37. 37.  Menon BRK, Brandenburger E, Sharif HH, Klemstein U, Shepherd SA et al. 2017. RadH: a versatile halogenase for integration into synthetic pathways. Angew. Chem. Int. Ed. 56:3911841–45
    [Google Scholar]
  38. 38.  Yeh E, Cole LJ, Barr EW, Bollinger JM Jr., Ballou DP, Walsh CT 2006. Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH. Biochemistry 45:257904–12
    [Google Scholar]
  39. 39.  Schreuder HA, van der Laan JM, Hol WG, Drenth J 1988. Crystal structure of p-hydroxybenzoate hydroxylase complexed with its reaction product 3,4-dihydroxybenzoate. J. Mol. Biol. 199:4637–48
    [Google Scholar]
  40. 40.  Bitto E, Huang Y, Bingman CA, Singh S, Thorson JS, Phillips GN Jr 2007. The structure of flavin-dependent tryptophan 7-halogenase RebH. Proteins 70:1289–93
    [Google Scholar]
  41. 41.  Yeh E, Blasiak LC, Koglin A, Drennan CL, Walsh CT 2007. Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases. Biochemistry 46:51284–92
    [Google Scholar]
  42. 42.  Dong CJ, Flecks S, Unversucht S, Haupt C, van Pée KH, Naismith JH 2005. Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination. Science 309:57442216–19
    [Google Scholar]
  43. 43.  Blasiak LC, Drennan CL 2009. Structural perspective on enzymatic halogenation. Acc. Chem. Res. 42:1147–55
    [Google Scholar]
  44. 44.  Flecks S, Patallo EP, Zhu X, Ernyei AJ, Seifert G et al. 2008. New insights into the mechanism of enzymatic chlorination of tryptophan. Angew. Chem. Int. Ed. 47:499533–36
    [Google Scholar]
  45. 45.  Yeh E, Garneau S, Walsh CT 2005. Robust in vitro activity of RebF and RebH, a two-component reductase/halogenase, generating 7-chlorotryptophan during rebeccamycin biosynthesis. PNAS 102:113960–65
    [Google Scholar]
  46. 46.  Keller S, Wage T, Hohaus K, Hölzer M, Eichhorn E, van Pée KH 2000. Purification and partial characterization of tryptophan 7-halogenase (PrnA) from Pseudomonas fluorescens. Angew. Chem. Int. Ed. Engl. 39:132300–2302
    [Google Scholar]
  47. 47.  Zehner S, Kotzsch A, Bister B, Süssmuth RD, Méndez C et al. 2005. A regioselective tryptophan 5-halogenase is involved in pyrroindomycin biosynthesis in Streptomyces rugosporus LL-42D005. Chem. Biol. 12:4445–52
    [Google Scholar]
  48. 48.  Chang FY, Brady SF 2011. Cloning and characterization of an environmental DNA-derived gene cluster that encodes the biosynthesis of the antitumor substance BE-54017. J. Am. Chem. Soc. 133:269996–99
    [Google Scholar]
  49. 49.  Ryan KS. 2011. Biosynthetic gene cluster for the cladoniamides, bis-indoles with a rearranged scaffold. PLOS ONE 6:8e23694
    [Google Scholar]
  50. 50.  Chang FY, Brady SF 2013. Discovery of indolotryptoline antiproliferative agents by homology-guided metagenomic screening. PNAS 110:72478–83
    [Google Scholar]
  51. 51.  Seibold C, Schnerr H, Rumpf J, Kunzendorf A, Hatscher C et al. 2006. A flavin-dependent tryptophan 6-halogenase and its use in modification of pyrrolnitrin biosynthesis. Biocatal. Biotransform. 24:6401–8
    [Google Scholar]
  52. 52.  Zeng J, Zhan J 2011. Characterization of a tryptophan 6-halogenase from Streptomyces toxytricini. Biotechnol. Lett. 33:81607–13
    [Google Scholar]
  53. 53.  Menon BRK, Latham J, Dunstan MS, Brandenburger E, Klemstein U et al. 2016. Structure and biocatalytic scope of thermophilic flavin-dependent halogenase and flavin reductase enzymes. Org. Biomol. Chem. 14:399354–61
    [Google Scholar]
  54. 54.  Milbredt D, Patallo EP, van Pée KH 2014. A tryptophan 6-halogenase and an amidotransferase are involved in thienodolin biosynthesis. ChemBioChem 15:71011–20
    [Google Scholar]
  55. 55.  Zhu X, De Laurentis W, Leang K, Herrmann J, Ihlefeld K et al. 2009. Structural insights into regioselectivity in the enzymatic chlorination of tryptophan. J. Mol. Biol. 391:174–85
    [Google Scholar]
  56. 56.  Shepherd SA, Menon BRK, Fisk H, Struck A-W, Levy C et al. 2016. A structure-guided switch in the regioselectivity of a tryptophan halogenase. ChemBioChem 17:9821–24
    [Google Scholar]
  57. 57.  Chankhamjon P, Boettger-Schmidt D, Scherlach K, Urbansky B, Lackner G et al. 2014. Biosynthesis of the halogenated mycotoxin aspirochlorine in koji mold involves a cryptic amino acid conversion. Angew. Chem. Int. Ed. 53:4913409–13
    [Google Scholar]
  58. 58.  Agarwal V, El Gamal AA, Yamanaka K, Poth D, Kersten RD et al. 2014. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria. Nat. Chem. Biol. 10:8640–47
    [Google Scholar]
  59. 59.  Zeng J, Zhan J 2010. A novel fungal flavin-dependent halogenase for natural product biosynthesis. ChemBioChem 11:152119–23
    [Google Scholar]
  60. 60.  Wang S, Xu Y, Maine EA, Wijeratne EMK, Espinosa-Artiles P et al. 2008. Functional characterization of the biosynthesis of radicicol, an Hsp90 inhibitor resorcylic acid lactone from Chaetomium chiversii. Chem. Biol. 15:121328–38
    [Google Scholar]
  61. 61.  Sato M, Winter JM, Kishimoto S, Noguchi H, Tang Y, Watanabe K 2016. Combinatorial generation of chemical diversity by redox enzymes in chaetoviridin biosynthesis. Org. Lett. 18:61446–49
    [Google Scholar]
  62. 62.  Ferrara M, Perrone G, Gambacorta L, Epifani F, Solfrizzo M, Gallo A 2016. Identification of a halogenase involved in the biosynthesis of ochratoxin A in Aspergillus carbonarius. Appl. Environ. Microbiol. 82:185631–41
    [Google Scholar]
  63. 63.  Wick J, Heine D, Lackner G, Misiek M, Tauber J et al. 2015. A fivefold parallelized biosynthetic process secures chlorination of Armillaria mellea (honey mushroom) toxins. Appl. Environ. Microbiol. 82:41196–204
    [Google Scholar]
  64. 64.  Xiao Y, Li S, Niu S, Ma L, Zhang G et al. 2011. Characterization of tiacumicin B biosynthetic gene cluster affording diversified tiacumicin analogues and revealing a tailoring dihalogenase. J. Am. Chem. Soc. 133:41092–105
    [Google Scholar]
  65. 65.  Neumann CS, Walsh CT, Kay RR 2010. A flavin-dependent halogenase catalyzes the chlorination step in the biosynthesis of Dictyostelium differentiation-inducing factor 1. PNAS 107:135798–803
    [Google Scholar]
  66. 66.  Dorrestein PC, Yeh E, Garneau-Tsodikova S, Kelleher NL, Walsh CT 2005. Dichlorination of a pyrrolyl-S-carrier protein by FADH2-dependent halogenase PltA during pyoluteorin biosynthesis. PNAS 102:3913843–48
    [Google Scholar]
  67. 67.  Yamanaka K, Ryan KS, Gulder TAM, Hughes CC, Moore BS 2012. Flavoenzyme-catalyzed atropo-selective N,C-bipyrrole homocoupling in marinopyrrole biosynthesis. J. Am. Chem. Soc. 134:3012434–37
    [Google Scholar]
  68. 68.  Hohaus K, Altmann A, Burd W, Fischer I, Hammer PE et al. 1997. NADH-dependent halogenases are more likely to be involved in halometaolite biosynthesis than haloperoxidases. Angew. Chem. Int. Ed. 36:182012–13
    [Google Scholar]
  69. 69.  Mantovani SM, Moore BS 2013. Flavin-linked oxidase catalyzes pyrrolizine formation of dichloropyrrole-containing polyketide extender unit in chlorizidine A. J. Am. Chem. Soc. 135:4818032–35
    [Google Scholar]
  70. 70.  Walsh CT, Garneau-Tsodikova S, Howard-Jones AR 2006. Biological formation of pyrroles: nature's logic and enzymatic machinery. Nat. Prod. Rep. 23:4517–15
    [Google Scholar]
  71. 71.  Podzelinska K, Latimer R, Bhattacharya A, Vining LC, Zechel DL, Jia Z 2010. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond. J. Mol. Biol. 397:1316–31
    [Google Scholar]
  72. 72.  Chankhamjon P, Tsunematsu Y, Ishida-Ito M, Sasa Y, Meyer F et al. 2016. Regioselective dichlorination of a non-activated aliphatic carbon atom and phenolic bismethylation by a multifunctional fungal flavoenzyme. Angew. Chem. Int. Ed. 128:3912134–38
    [Google Scholar]
  73. 73.  Lin S, Van Lanen SG, Shen B 2007. Regiospecific chlorination of (S)-β-tyrosyl-S-carrier protein catalyzed by SgcC3 in the biosynthesis of the enediyne antitumor antibiotic C-1027. J. Am. Chem. Soc. 129:4112432–38
    [Google Scholar]
  74. 74.  Ortega MA, Cogan DP, Mukherjee S, Garg N, Li B et al. 2017. Two flavoenzymes catalyze the post-translational generation of 5-chlorotryptophan and 2-aminovinyl-cysteine during NAI-107 biosynthesis. ACS Chem. Biol. 12:2548–57
    [Google Scholar]
  75. 75.  Andorfer MC, Belsare KD, Girlich AM, Lewis JC 2017. Aromatic halogenation using bifunctional flavin reductase-halogenase fusion enzymes. ChemBioChem 18:212099–103
    [Google Scholar]
  76. 76.  Pacholec M, Sello JK, Walsh CT, Thomas MG 2007. Formation of an aminoacyl-S-enzyme intermediate is a key step in the biosynthesis of chloramphenicol. Org. Biomol. Chem. 5:111692–93
    [Google Scholar]
  77. 77.  Buedenbender S, Rachid S, Müller R, Schulz GE 2009. Structure and action of the myxobacterial chondrochloren halogenase CndH: a new variant of FAD-dependent halogenases. J. Mol. Biol. 385:2520–30
    [Google Scholar]
  78. 78.  Pang AH, Garneau-Tsodikova S, Tsodikov OV 2015. Crystal structure of halogenase PltA from the pyoluteorin biosynthetic pathway. J. Struct. Biol. 192:3349–57
    [Google Scholar]
  79. 79.  Jordan PA, Moore BS 2016. Biosynthetic pathway connects cryptic ribosomally synthesized posttranslationally modified peptide genes with pyrroloquinoline alkaloids. Cell Chem. Biol. 23:121504–14
    [Google Scholar]
  80. 80.  Payne JT, Andorfer MC, Lewis JC 2013. Regioselective arene halogenation using the FAD-dependent halogenase RebH. Angew. Chem. Int. Ed. 52:205271–74
    [Google Scholar]
  81. 81.  Frese M, Sewald N 2015. Enzymatic halogenation of tryptophan on a gram scale. Angew. Chem. Int. Ed. 54:1298–301
    [Google Scholar]
  82. 82.  Shepherd SA, Karthikeyan C, Latham J, Struck A-W, Thompson ML et al. 2015. Extending the biocatalytic scope of regiocomplementary flavin-dependent halogenase enzymes. Chem. Sci. 6:3454–60
    [Google Scholar]
  83. 83.  Smith DRM, Uria ARR, Helfrich EJN, Milbredt D, van Pée K-H et al. 2017. An unusual flavin-dependent halogenase from the metagenome of the marine sponge Theonella swinhoei WA. ACS Chem. Biol. 12:51281–87
    [Google Scholar]
  84. 84.  Zeng J, Lytle AK, Gage D, Johnson SJ, Zhan J 2013. Specific chlorination of isoquinolines by a fungal flavin-dependent halogenase. Bioorg. Med. Chem. Lett. 23:41001–3
    [Google Scholar]
  85. 85.  Roy AD, Grüschow S, Cairns N, Goss RJM 2010. Gene expression enabling synthetic diversification of natural products: chemogenetic generation of pacidamycin analogs. J. Am. Chem. Soc. 132:3512243–45
    [Google Scholar]
  86. 86.  Durak LJ, Payne JT, Lewis JC 2016. Late-stage diversification of biologically active molecules via chemoenzymatic C–H functionalization. ACS Catal 6:31451–54
    [Google Scholar]
  87. 87.  Latham J, Henry J-M, Sharif HH, Menon BRK, Shepherd SA et al. 2016. Integrated catalysis opens new arylation pathways via regiodivergent enzymatic C–H activation. Nat. Commun. 7:11873
    [Google Scholar]
  88. 88.  Brown S, O'Connor SE 2015. Halogenase engineering for the generation of new natural product analogues. ChemBioChem 16:152129–35
    [Google Scholar]
  89. 89.  Sánchez C, Zhu L, Braña AF, Salas AP, Rohr J et al. 2005. Combinatorial biosynthesis of antitumor indolocarbazole compounds. PNAS 102:2461–66
    [Google Scholar]
  90. 90.  Runguphan W, Qu X, O'Connor SE 2010. Integrating carbon–halogen bond formation into medicinal plant metabolism. Nature 468:7322461–64
    [Google Scholar]
  91. 91.  Glenn WS, Nims E, O'Connor SE 2011. Reengineering a tryptophan halogenase to preferentially chlorinate a direct alkaloid precursor. J. Am. Chem. Soc. 133:4819346–49
    [Google Scholar]
  92. 92.  Fräbel S, Krischke M, Staniek A, Warzecha H 2016. Recombinant flavin-dependent halogenases are functional in tobacco chloroplasts without co-expression of flavin reductase genes. Biotechnol. J. 11:121586–94
    [Google Scholar]
  93. 93.  Hubig SM, Kochi JK 2000. Structure and dynamics of reactive intermediates in reaction mechanisms. σ- and π-complexes in electrophilic aromatic substitutions. J. Org. Chem. 65:216807–18
    [Google Scholar]
  94. 94.  Schnepel C, Minges H, Frese M, Sewald N 2016. A high-throughput fluorescence assay to determine the activity of tryptophan halogenases. Angew. Chem. Int. Ed. 55:4514159–63
    [Google Scholar]
  95. 95.  Lang A, Polnick S, Nicke T, William P, Patallo EP et al. 2011. Changing the regioselectivity of the tryptophan 7-halogenase PrnA by site-directed mutagenesis. Angew. Chem. Int. Ed. 50:132951–53
    [Google Scholar]
  96. 96.  Belsare KD, Andorfer MC, Cardenas FS, Chael JR, Park HJ, Lewis JC 2017. A simple combinatorial codon mutagenesis method for targeted protein engineering. ACS Synth. Biol. 6:3416–20
    [Google Scholar]
  97. 97.  Romero PA, Arnold FH 2009. Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell Biol. 10:12866–76
    [Google Scholar]
  98. 98.  Packer MS, Liu DR 2015. Methods for the directed evolution of proteins. Nat. Rev. Genet. 16:7379–94
    [Google Scholar]
  99. 99.  Payne JT, Andorfer MC, Lewis JC 2016. Engineering flavin-dependent halogenases. Methods Enzymol 575:93–126
    [Google Scholar]
  100. 100.  Poor CB, Andorfer MC, Lewis JC 2014. Improving the stability and catalyst lifetime of the halogenase RebH by directed evolution. ChemBioChem 15:91286–89
    [Google Scholar]
  101. 101.  Zhao H, Arnold FH 1999. Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng. Des. Sel. 12:147–53
    [Google Scholar]
  102. 102.  Giver L, Gershenson A, Freskgard PO, Arnold FH 1998. Directed evolution of a thermostable esterase. PNAS 95:2212809–13
    [Google Scholar]
  103. 103.  Lawrence MS, Phillips KJ, Liu DR 2007. Supercharging proteins can impart unusual resilience. J. Am. Chem. Soc. 129:3310110–12
    [Google Scholar]
  104. 104.  Blake PR, Park JB, Bryant FO, Aono S, Magnuson JK et al. 1991. Determinants of protein hyperthermostability: purification and amino acid sequence of rubredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus and secondary structure of the zinc adduct by NMR. Biochemistry 30:4510885–95
    [Google Scholar]
  105. 105.  Hosford J, Shepherd SA, Micklefield J, Wong LS 2014. A high-throughput assay for arylamine halogenation based on a peroxidase-mediated quinone-amine coupling with applications in the screening of enzymatic halogenations. Chem. Eur. J. 20:5016759–63
    [Google Scholar]
  106. 106.  Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D et al. 2011. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50:214402–10
    [Google Scholar]
  107. 107.  Payne JT, Poor CB, Lewis JC 2015. Directed evolution of RebH for site-selective halogenation of large biologically active molecules. Angew. Chem. Int. Ed. 127:144300–4
    [Google Scholar]
  108. 108.  Hartwig JF. 2017. Catalyst-controlled site-selective bond activation. Acc. Chem. Res. 50:3549–55
    [Google Scholar]
  109. 109.  Zhang C, Welborn M, Zhu T, Yang NJ, Santos MS et al. 2015. π-Clamp-mediated cysteine conjugation. Nat. Chem. 8:2120–28
    [Google Scholar]
  110. 110.  Erlanson DA, McDowell RS, O'Brien T 2004. Fragment-based drug discovery. J. Med. Chem. 47:143463–82
    [Google Scholar]
  111. 111.  Löfdahl CG, Svedmyr N 1989. Formoterol fumarate, a new β2‐adrenoceptor agonist. Allergy 44:4264–71
    [Google Scholar]
  112. 112.  Tishchenko O, Pham-Tran N-N, Kryachko ES, Nguyen MT 2001. Protonation of gaseous halogenated phenols and anisoles and its interpretation using DFT-based local reactivity indices. J. Phys. Chem. A. 105:388709–17
    [Google Scholar]
  113. 113.  Schwabe T, Grimme S 2008. Theoretical description of substituent effects in electrophilic aromatic substitution reactions. Eur. J. Org. Chem. 2008:355928–35
    [Google Scholar]
  114. 114.  Aoki S, Matsuo Y, Ogura S, Ohwada H, Hisamatsu Y et al. 2011. Regioselective aromatic substitution reactions of cyclometalated Ir(III) complexes: synthesis and photochemical properties of substituted Ir(III) complexes that exhibit blue, green, and red color luminescence emission. Inorg. Chem. 50:3806–18
    [Google Scholar]
  115. 115.  Abagyan R, Totrov M, Kuznetsov D 1994. ICM—a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 15:5488–506
    [Google Scholar]
  116. 116.  Grant JA, Gallardo MA, Pickup BT 1996. A fast method of molecular shape comparison: a simple application of a Gaussian description of molecular shape. J. Comput. Chem. 17:141653–66
    [Google Scholar]
  117. 117.  Negretti S, Narayan ARH, Chiou KC, Kells PM, Stachowski JL et al. 2014. Directing group-controlled regioselectivity in an enzymatic C–H bond oxygenation. J. Am. Chem. Soc. 136:134901–4
    [Google Scholar]
  118. 118.  Narayan ARH, Jiménez-Osés G, Liu P, Negretti S, Zhao W et al. 2015. Enzymatic hydroxylation of an unactivated methylene C–H bond guided by molecular dynamics simulations. Nat. Chem. 7:8653–60
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012042
Loading
/content/journals/10.1146/annurev-biochem-062917-012042
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error