1932

Abstract

Proteins are increasingly used in basic and applied biomedical research. Many proteins, however, are only marginally stable and can be expressed in limited amounts, thus hampering research and applications. Research has revealed the thermodynamic, cellular, and evolutionary principles and mechanisms that underlie marginal stability. With this growing understanding, computational stability design methods have advanced over the past two decades starting from methods that selectively addressed only some aspects of marginal stability. Current methods are more general and, by combining phylogenetic analysis with atomistic design, have shown drastic improvements in solubility, thermal stability, and aggregation resistance while maintaining the protein's primary molecular activity. Stability design is opening the way to rational engineering of improved enzymes, therapeutics, and vaccines and to the application of protein design methodology to large proteins and molecular activities that have proven challenging in the past.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012102
2018-06-20
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-062917-012102.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012102&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Dill KA. 1990. Dominant forces in protein folding. Biochemistry 29:317133–55
    [Google Scholar]
  2. 2.  Fersht A. 1999. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding New York: Freeman
    [Google Scholar]
  3. 3.  Romero PA, Arnold FH 2009. Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell Biol. 10:12866–76
    [Google Scholar]
  4. 4.  Tokuriki N, Tawfik DS 2009. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19:5596–604
    [Google Scholar]
  5. 5.  Bershtein S, Goldin K, Tawfik DS 2008. Intense neutral drifts yield robust and evolvable consensus proteins. J. Mol. Biol. 379:51029–44
    [Google Scholar]
  6. 6.  Yue P, Li Z, Moult J 2005. Loss of protein structure stability as a major causative factor in monogenic disease. J. Mol. Biol. 353:2459–73
    [Google Scholar]
  7. 7.  Bullock AN, Fersht AR 2001. Rescuing the function of mutant p53. Nat. Rev. Cancer 1:168–76
    [Google Scholar]
  8. 8.  Protasevich I, Yang Z, Wang C, Atwell S, Zhao X et al. 2010. Thermal unfolding studies show the disease causing F508del mutation in CFTR thermodynamically destabilizes nucleotide-binding domain 1. Protein Sci 19:101917–31
    [Google Scholar]
  9. 9.  Pauling L, Itano HA, Singer SJ, Wells IC 1949. Sickle cell anemia, a molecular disease. Science 110:2865543–48
    [Google Scholar]
  10. 10.  Stefani M, Dobson CM 2003. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. 81:11678–99
    [Google Scholar]
  11. 11.  Walther DM, Kasturi P, Zheng M, Pinkert S, Vecchi G et al. 2015. Widespread proteome remodeling and aggregation in aging C. elegans. Cell 161:4919–32
    [Google Scholar]
  12. 12.  Taylor RC, Dillin A 2011. Aging as an event of proteostasis collapse. Cold Spring Harb. Perspect. Biol. 3:5aa004440
    [Google Scholar]
  13. 13.  Gidalevitz T, Ben-Zvi A, Ho KH, Brignull HR, Morimoto RI 2006. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311:57661471–74
    [Google Scholar]
  14. 14.  Ben-Zvi A, Miller EA, Morimoto RI 2009. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. PNAS 106:3514914–19
    [Google Scholar]
  15. 15.  Lin H, Bhatia R, Lal R 2001. Amyloid β protein forms ion channels: implications for Alzheimer's disease pathophysiology. FASEB J 15:132433–44
    [Google Scholar]
  16. 16.  Poirier MA, Li H, Macosko J, Cai S, Amzel M, Ross CA 2002. Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. J. Biol. Chem. 277:4341032–37
    [Google Scholar]
  17. 17.  Chiti F, Dobson CM 2006. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75:333–66
    [Google Scholar]
  18. 18.  Zhao H, Arnold FH 1999. Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng 12:147–53
    [Google Scholar]
  19. 19.  Huang P-S, Boyken SE, Baker D 2016. The coming of age of de novo protein design. Nature 537:7620320–27
    [Google Scholar]
  20. 20.  Boyken SE, Chen Z, Groves B, Langan RA, Oberdorfer G et al. 2016. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity. Science 352:6286680–87
    [Google Scholar]
  21. 21.  Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D 2003. Design of a novel globular protein fold with atomic-level accuracy. Science 302:56491364–68
    [Google Scholar]
  22. 22.  Dahiyat BI, Mayo SL 1997. De novo protein design: fully automated sequence selection. Science 278:533582–87
    [Google Scholar]
  23. 23.  Rothlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J et al. 2008. Kemp elimination catalysts by computational enzyme design. Nature 453:7192190–95
    [Google Scholar]
  24. 24.  Fleishman SJ, Whitehead TA, Ekiert DC, Dreyfus C, Corn JE et al. 2011. Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science 332:6031816–21
    [Google Scholar]
  25. 25.  Baran D, Pszolla MG, Lapidoth GD, Norn C, Dym O et al. 2017. Principles for computational design of binding antibodies. PNAS 114:4110900–5
    [Google Scholar]
  26. 26.  Pace CN, Scholtz JM, Grimsley GR 2014. Forces stabilizing proteins. FEBS Lett 588:142177–84
    [Google Scholar]
  27. 27.  Dill KA, MacCallum JL 2012. The protein-folding problem, 50 years on. Science 338:61101042–46
    [Google Scholar]
  28. 28.  Warshel A, Levitt M 1976. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 103:2227–49
    [Google Scholar]
  29. 29.  Shoichet BK, Baase WA, Kuroki R, Matthews BW 1995. A relationship between protein stability and protein function. PNAS 92:2452–56
    [Google Scholar]
  30. 30.  Tokuriki N, Stricher F, Serrano L, Tawfik DS 2008. How protein stability and new functions trade off. PLOS Comput. Biol. 4:2e1000002
    [Google Scholar]
  31. 31.  Halperin I, Wolfson H, Nussinov R 2004. Protein-protein interactions; coupling of structurally conserved residues and of hot spots across interfaces. Implications for docking. Structure 12:61027–38
    [Google Scholar]
  32. 32.  Srere PA. 1984. Why are enzymes so big?. Trends Biochem. Sci. 9:9387–90
    [Google Scholar]
  33. 33.  Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N 2009. Importing mitochondrial proteins: machineries and mechanisms. Cell 138:4628–44
    [Google Scholar]
  34. 34.  Tskhovrebova L, Trinick J, Sleep JA, Simmons RM 1997. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387:6630308–12
    [Google Scholar]
  35. 35.  Ferreiro DU, Komives EA, Wolynes PG 2014. Frustration in biomolecules. Q. Rev. Biophys. 47:4285–363
    [Google Scholar]
  36. 36.  Tsai C-J, Nussinov R 2014. A unified view of “how allostery works. .” PLOS Comput. Biol. 10:2e1003394
    [Google Scholar]
  37. 37.  Brady GP, Sharp KA 1997. Entropy in protein folding and in protein–protein interactions. Curr. Opin. Struct. Biol. 7:2215–21
    [Google Scholar]
  38. 38.  Levinthal C. 1968. Are there pathways for protein folding?. J. Chim. Phys. 65:44–45
    [Google Scholar]
  39. 39.  Fleishman SJ, Baker D 2012. Role of the biomolecular energy gap in protein design, structure, and evolution. Cell 149:2262–73
    [Google Scholar]
  40. 40.  McLendon G, Radany E 1978. Is protein turnover thermodynamically controlled?. J. Biol. Chem. 253:186335–37
    [Google Scholar]
  41. 41.  Parsell DA, Sauer RT 1989. The structural stability of a protein is an important determinant of its proteolytic susceptibility in Escherichia coli. J. Biol. Chem. 264:137590–95
    [Google Scholar]
  42. 42.  Warszawski S, Netzer R, Tawfik DS, Fleishman SJ 2014. A “fuzzy”-logic language for encoding multiple physical traits in biomolecules. J. Mol. Biol. 426:244125–38
    [Google Scholar]
  43. 43.  Goldstein RA. 2011. The evolution and evolutionary consequences of marginal thermostability in proteins. Proteins 79:51396–1407
    [Google Scholar]
  44. 44.  Szilágyi A, Závodszky P 2000. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 8:5493–504
    [Google Scholar]
  45. 45.  Jaenicke R, Böhm G 1998. The stability of proteins in extreme environments. Curr. Opin. Struct. Biol. 8:6738–48
    [Google Scholar]
  46. 46.  Steiner P, Sauer U 2001. Proteins induced during adaptation of Acetobacter aceti to high acetate concentrations. Appl. Environ. Microbiol. 67:125474–81
    [Google Scholar]
  47. 47.  Honig B, Yang AS 1995. Free energy balance in protein folding. Adv. Protein Chem. 46:27–58
    [Google Scholar]
  48. 48.  Nicholls A, Sharp KA, Honig B 1991. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11:4281–96
    [Google Scholar]
  49. 49.  Pace CN, Fu H, Fryar KL, Landua J, Trevino SR et al. 2011. Contribution of hydrophobic interactions to protein stability. J. Mol. Biol. 408:3514–28
    [Google Scholar]
  50. 50.  Eriksson AE, Baase WA, Zhang XJ, Heinz DW, Blaber M et al. 1992. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255:5041178–83
    [Google Scholar]
  51. 51.  Chothia C. 1975. Structural invariants in protein folding. Nature 254:5498304–8
    [Google Scholar]
  52. 52.  Albeck S, Unger R, Schreiber G 2000. Evaluation of direct and cooperative contributions towards the strength of buried hydrogen bonds and salt bridges. J. Mol. Biol. 298:3503–20
    [Google Scholar]
  53. 53.  Yang AS, Honig B 1995. Free energy determinants of secondary structure formation: I. α-Helices. J. Mol. Biol. 252:3351–65
    [Google Scholar]
  54. 54.  Honig B, Nicholls A 1995. Classical electrostatics in biology and chemistry. Science 268:52141144–49
    [Google Scholar]
  55. 55.  Horovitz A, Serrano L, Avron B, Bycroft M, Fersht AR 1990. Strength and co-operativity of contributions of surface salt bridges to protein stability. J. Mol. Biol. 216:41031–44
    [Google Scholar]
  56. 56.  Makhatadze GI, Loladze VV, Ermolenko DN, Chen X, Thomas ST 2003. Contribution of surface salt bridges to protein stability: guidelines for protein engineering. J. Mol. Biol. 327:51135–48
    [Google Scholar]
  57. 57.  Anderson DE, Becktel WJ, Dahlquist FW 1990. pH-induced denaturation of proteins: a single salt bridge contributes 3–5 kcal/mol to the free energy of folding of T4 lysozyme. Biochemistry 29:92403–8
    [Google Scholar]
  58. 58.  Tissot AC, Vuilleumier S, Fersht AR 1996. Importance of two buried salt bridges in the stability and folding pathway of barnase. Biochemistry 35:216786–94
    [Google Scholar]
  59. 59.  Elcock AH. 1998. The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. J. Mol. Biol. 284:2489–502
    [Google Scholar]
  60. 60.  McGaughey GB, Gagné M, Rappé AK 1998. π-Stacking interactions. Alive and well in proteins. J. Biol. Chem. 273:2515458–63
    [Google Scholar]
  61. 61.  Dougherty DA. 2007. Cation-π interactions involving aromatic amino acids. J. Nutr. 137:6, Suppl. 11504S–8S
    [Google Scholar]
  62. 62.  Prajapati RS, Sirajuddin M, Durani V, Sreeramulu S, Varadarajan R 2006. Contribution of cation-π interactions to protein stability. Biochemistry 45:5015000–10
    [Google Scholar]
  63. 63.  Abkevich VI, Gutin AM, Shakhnovich EI 1994. Free energy landscape for protein folding kinetics: intermediates, traps, and multiple pathways in theory and lattice model simulations. J. Chem. Phys. 101:76052–62
    [Google Scholar]
  64. 64.  Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG 1995. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21:3167–95
    [Google Scholar]
  65. 65.  Schafer NP, Kim BL, Zheng W, Wolynes PG 2014. Learning to fold proteins using energy landscape theory. Isr. J. Chem. 54:8–91311–37
    [Google Scholar]
  66. 66.  Richardson JS, Richardson DC 2002. Natural β-sheet proteins use negative design to avoid edge-to-edge aggregation. PNAS 99:52754–59
    [Google Scholar]
  67. 67.  Broome BM, Hecht MH 2000. Nature disfavors sequences of alternating polar and non-polar amino acids: implications for amyloidogenesis. J. Mol. Biol. 296:4961–68
    [Google Scholar]
  68. 68.  Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM 2003. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424:6950805–8
    [Google Scholar]
  69. 69.  Das R, Baker D 2008. Macromolecular modeling with Rosetta. Annu. Rev. Biochem. 77:363–82
    [Google Scholar]
  70. 70.  Dahiyat BI, Mayo SL 1996. Protein design automation. Protein Sci 5:5895–903
    [Google Scholar]
  71. 71.  Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L 2005. The FoldX web server: an online force field. Nucleic Acids Res 33:Suppl. 2W382–88
    [Google Scholar]
  72. 72.  Yin S, Ding F, Dokholyan NV 2007. Eris: an automated estimator of protein stability. Nat. Methods 4:6466–67
    [Google Scholar]
  73. 73.  Bryson JW, Betz SF, Lu HS, Suich DJ, Zhou HX et al. 1995. Protein design: a hierarchic approach. Science 270:5238935–41
    [Google Scholar]
  74. 74.  Koga N, Tatsumi-Koga R, Liu G, Xiao R, Acton TB et al. 2012. Principles for designing ideal protein structures. Nature 491:7423222–27
    [Google Scholar]
  75. 75.  Lazaridis T, Karplus M 1999. Effective energy function for proteins in solution. Proteins 35:2133–52
    [Google Scholar]
  76. 76.  Park H, Bradley P, Greisen P Jr., Liu Y, Mulligan VK et al. 2016. Simultaneous optimization of biomolecular energy functions on features from small molecules and macromolecules. J. Chem. Theory Comput. 12:126201–12
    [Google Scholar]
  77. 77.  Balchin D, Hayer-Hartl M, Hartl FU 2016. In vivo aspects of protein folding and quality control. Science 353:6294aac4354
    [Google Scholar]
  78. 78.  Labbadia J, Morimoto RI 2015. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84:435–64
    [Google Scholar]
  79. 79.  Powers ET, Balch WE 2013. Diversity in the origins of proteostasis networks—a driver for protein function in evolution. Nat. Rev. Mol. Cell Biol. 14:4237–48
    [Google Scholar]
  80. 80.  Saibil H. 2013. Chaperone machines for protein folding, unfolding and disaggregation. Nat. Rev. Mol. Cell Biol. 14:10630–42
    [Google Scholar]
  81. 81.  Anfinsen CB. 1973. Principles that govern the folding of protein chains. Science 181:4096223–30
    [Google Scholar]
  82. 82.  Jackson SE. 1998. How do small single-domain proteins fold?. Fold. Des. 3:4R81–91
    [Google Scholar]
  83. 83.  Shakhnovich EI. 1997. Theoretical studies of protein-folding thermodynamics and kinetics. Curr. Opin. Struct. Biol. 7:129–40
    [Google Scholar]
  84. 84.  Brocchieri L, Karlin S 2005. Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res 33:103390–3400
    [Google Scholar]
  85. 85.  Brockwell DJ, Radford SE 2007. Intermediates: ubiquitous species on folding energy landscapes?. Curr. Opin. Struct. Biol. 17:130–37
    [Google Scholar]
  86. 86.  Dobson CM. 2003. Protein folding and misfolding. Nature 426:6968884–90
    [Google Scholar]
  87. 87.  Ellis RJ, Minton AP 2006. Protein aggregation in crowded environments. Biol. Chem. 387:5485–97
    [Google Scholar]
  88. 88.  Douglas PM, Dillin A 2010. Protein homeostasis and aging in neurodegeneration. J. Cell Biol. 190:5719–29
    [Google Scholar]
  89. 89.  Hartl FU, Hayer-Hartl M 2009. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 16:6574–81
    [Google Scholar]
  90. 90.  Rutherford SL, Lindquist S 1998. Hsp90 as a capacitor for morphological evolution. Nature 396:6709336–42
    [Google Scholar]
  91. 91.  Tokuriki N, Tawfik DS 2009. Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459:7247668–73
    [Google Scholar]
  92. 92.  Chaney JL, Clark PL 2015. Roles for synonymous codon usage in protein biogenesis. Annu. Rev. Biophys. 44:143–66
    [Google Scholar]
  93. 93.  Young R, Bremer H 1976. Polypeptide-chain-elongation rate in Escherichia coli B/r as a function of growth rate. Biochem. J. 160:2185–94
    [Google Scholar]
  94. 94.  Kramer G, Boehringer D, Ban N, Bukau B 2009. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat. Struct. Mol. Biol. 16:6589–97
    [Google Scholar]
  95. 95.  Trovato F, O'Brien EP 2016. Insights into cotranslational nascent protein behavior from computer simulations. Annu. Rev. Biophys. 45:345–69
    [Google Scholar]
  96. 96.  Evans MS, Sander IM, Clark PL 2008. Cotranslational folding promotes β-helix formation and avoids aggregation in vivo. J. Mol. Biol. 383:3683–92
    [Google Scholar]
  97. 97.  Voss NR, Gerstein M, Steitz TA, Moore PB 2006. The geometry of the ribosomal polypeptide exit tunnel. J. Mol. Biol. 360:4893–906
    [Google Scholar]
  98. 98.  Kosolapov A, Deutsch C 2009. Tertiary interactions within the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 16:4405–11
    [Google Scholar]
  99. 99.  Nilsson OB, Hedman R, Marino J, Wickles S, Bischoff L et al. 2015. Cotranslational protein folding inside the ribosome exit tunnel. Cell Rep 12:101533–40
    [Google Scholar]
  100. 100.  Lu J, Deutsch C 2005. Folding zones inside the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 12:121123–29
    [Google Scholar]
  101. 101.  Woolhead CA, McCormick PJ, Johnson AE 2004. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116:5725–36
    [Google Scholar]
  102. 102.  Bhushan S, Gartmann M, Halic M, Armache J-P, Jarasch A et al. 2010. α-Helical nascent polypeptide chains visualized within distinct regions of the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 17:3313–17
    [Google Scholar]
  103. 103.  Lu J, Kobertz WR, Deutsch C 2007. Mapping the electrostatic potential within the ribosomal exit tunnel. J. Mol. Biol. 371:51378–91
    [Google Scholar]
  104. 104.  Ziv G, Haran G, Thirumalai D 2005. Ribosome exit tunnel can entropically stabilize α-helices. PNAS 102:5218956–61
    [Google Scholar]
  105. 105.  Hartl FU. 1996. Molecular chaperones in cellular protein folding. Nature 381:6583571–79
    [Google Scholar]
  106. 106.  Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU 2013. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 82:323–55
    [Google Scholar]
  107. 107.  Chakraborty K, Chatila M, Sinha J, Shi Q, Poschner BC et al. 2010. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell 142:1112–22
    [Google Scholar]
  108. 108.  Gong Y, Kakihara Y, Krogan N, Greenblatt J, Emili A et al. 2009. An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol. Syst. Biol. 5:1275
    [Google Scholar]
  109. 109.  Rüdiger S, Germeroth L, Schneider-Mergener J, Bukau B 1997. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J 16:71501–7
    [Google Scholar]
  110. 110.  Sekhar A, Rosenzweig R, Bouvignies G, Kay LE 2015. Mapping the conformation of a client protein through the Hsp70 functional cycle. PNAS 112:3310395–400
    [Google Scholar]
  111. 111.  Sekhar A, Rosenzweig R, Bouvignies G, Kay LE 2016. Hsp70 biases the folding pathways of client proteins. PNAS 113:202794–2801
    [Google Scholar]
  112. 112.  Bloom JD, Labthavikul ST, Otey CR, Arnold FH 2006. Protein stability promotes evolvability. PNAS 103:155869–74
    [Google Scholar]
  113. 113.  Bershtein S, Segal M, Bekerman R, Tokuriki N, Tawfik DS 2006. Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444:7121929–32
    [Google Scholar]
  114. 114.  Goldsmith M, Aggarwal N, Ashani Y, Jubran H, Greisen PJ et al. 2017. Overcoming an optimization plateau in the directed evolution of highly efficient nerve agent bioscavengers. Protein Eng. Des. Sel. 30:4333–45
    [Google Scholar]
  115. 115.  Shakhnovich EI, Gutin AM 1993. Engineering of stable and fast-folding sequences of model proteins. PNAS 90:157195–99
    [Google Scholar]
  116. 116.  Steipe B, Schiller B, Plückthun A, Steinbacher S 1994. Sequence statistics reliably predict stabilizing mutations in a protein domain. J. Mol. Biol. 240:3188–92
    [Google Scholar]
  117. 117.  Kohl A, Binz HK, Forrer P, Stumpp MT, Pluckthun A, Grutter MG 2003. Designed to be stable: crystal structure of a consensus ankyrin repeat protein. PNAS 100:1700–5
    [Google Scholar]
  118. 118.  Lehmann M, Pasamontes L, Lassen SF, Wyss M 2000. The consensus concept for thermostability engineering of proteins. Biochim. Biophys. Acta 1543:2408–15
    [Google Scholar]
  119. 119.  Magliery TJ. 2015. Protein stability: computation, sequence statistics, and new experimental methods. Curr. Opin. Struct. Biol. 33:161–68
    [Google Scholar]
  120. 120.  Porebski BT, Buckle AM 2016. Consensus protein design. Protein Eng. Des. Sel. 29:7245–51
    [Google Scholar]
  121. 121.  Sullivan BJ, Nguyen T, Durani V, Mathur D, Rojas S et al. 2012. Stabilizing proteins from sequence statistics: the interplay of conservation and correlation in triosephosphate isomerase stability. J. Mol. Biol. 420:4–5384–99
    [Google Scholar]
  122. 122.  Korkegian A, Black ME, Baker D, Stoddard BL 2005. Computational thermostabilization of an enzyme. Science 308:5723857–60
    [Google Scholar]
  123. 123.  Borgo B, Havranek JJ 2012. Automated selection of stabilizing mutations in designed and natural proteins. PNAS 109:51494–99
    [Google Scholar]
  124. 124.  Lawrence MS, Phillips KJ, Liu DR 2007. Supercharging proteins can impart unusual resilience. J. Am. Chem. Soc. 129:3310110–12
    [Google Scholar]
  125. 125.  Miklos AE, Kluwe C, Der BS, Pai S, Sircar A et al. 2012. Structure-based design of supercharged, highly thermoresistant antibodies. Chem. Biol. 19:4449–55
    [Google Scholar]
  126. 126.  Ganesan A, Siekierska A, Beerten J, Brams M, Van Durme J et al. 2016. Structural hot spots for the solubility of globular proteins. Nat. Commun. 7:10816
    [Google Scholar]
  127. 127.  Dombkowski AA, Sultana KZ, Craig DB 2014. Protein disulfide engineering. FEBS Lett 588:2206–12
    [Google Scholar]
  128. 128.  Hardy F, Vriend G, Veltman OR, van der Vinne B, Venema G, Eijsink VG 1993. Stabilization of Bacillus stearothermophilus neutral protease by introduction of prolines. FEBS Lett 317:1–289–92
    [Google Scholar]
  129. 129.  Matthews BW, Nicholson H, Becktel WJ 1987. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. PNAS 84:196663–67
    [Google Scholar]
  130. 130.  Bednar D, Beerens K, Sebestova E, Bendl J, Khare S et al. 2015. FireProt: energy- and evolution-based computational design of thermostable multiple-point mutants. PLOS Comput. Biol. 11:11e1004556
    [Google Scholar]
  131. 131.  Goldenzweig A, Goldsmith M, Hill SE, Gertman O, Laurino P et al. 2016. Automated structure- and sequence-based design of proteins for high bacterial expression and stability. Mol. Cell. 63:2337–46
    [Google Scholar]
  132. 132.  Campeotto I, Goldenzweig A, Davey J, Barfod L, Marshall JM et al. 2017. One-step design of a stable variant of the malaria invasion protein RH5 for use as a vaccine immunogen. PNAS 114:5998–1002
    [Google Scholar]
  133. 133.  Kieke MC, Shusta EV, Boder ET, Teyton L, Wittrup KD, Kranz DM 1999. Selection of functional T cell receptor mutants from a yeast surface-display library. PNAS 96:105651–56
    [Google Scholar]
  134. 134.  Kwon WS, Da Silva NA, Kellis JT Jr 1996. Relationship between thermal stability, degradation rate and expression yield of barnase variants in the periplasm of Escherichia coli. Protein Eng 9:121197–1202
    [Google Scholar]
  135. 135.  Bandyopadhyay B, Goldenzweig A, Unger T, Adato O, Fleishman SJ et al. 2017. Local energetic frustration affects the dependence of green fluorescent protein folding on the chaperonin GroEL. J. Biol. Chem. 292:20583–91
    [Google Scholar]
  136. 136.  Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J et al. 2010. Rosetta3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–74
    [Google Scholar]
  137. 137.  Joyce MG, Zhang B, Ou L, Chen M, Chuang G-Y et al. 2016. Iterative structure-based improvement of a fusion-glycoprotein vaccine against RSV. Nat. Struct. Mol. Biol. 23:9811–20
    [Google Scholar]
  138. 138.  Kotecha A, Seago J, Scott K, Burman A, Loureiro S et al. 2015. Structure-based energetics of protein interfaces guides foot-and-mouth disease virus vaccine design. Nat. Struct. Mol. Biol. 22:10788–94
    [Google Scholar]
  139. 139.  Serrano-Vega MJ, Magnani F, Shibata Y, Tate CG 2008. Conformational thermostabilization of the β1-adrenergic receptor in a detergent-resistant form. PNAS 105:3877–82
    [Google Scholar]
  140. 140.  Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J et al. 2005. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433:7024377–81
    [Google Scholar]
  141. 141.  Elazar A, Weinstein J, Biran I, Fridman Y, Bibi E, Fleishman SJ 2016. Mutational scanning reveals the determinants of protein insertion and association energetics in the plasma membrane. eLife 5:e12125
    [Google Scholar]
  142. 142.  Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang H-C et al. 2005. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122:2209–20
    [Google Scholar]
  143. 143.  Fujiwara K, Ishihama Y, Nakahigashi K, Soga T, Taguchi H 2010. A systematic survey of in vivo obligate chaperonin-dependent substrates. EMBO J 29:91552–64
    [Google Scholar]
  144. 144.  Ishimoto T, Fujiwara K, Niwa T, Taguchi H 2014. Conversion of a chaperonin GroEL-independent protein into an obligate substrate. J. Biol. Chem. 289:4632073–80
    [Google Scholar]
  145. 145.  Clark AC, Hugo E, Frieden C 1996. Determination of regions in the dihydrofolate reductase structure that interact with the molecular chaperonin GroEL. Biochemistry 35:185893–901
    [Google Scholar]
  146. 146.  Takano K, Scholtz JM, Sacchettini JC, Pace CN 2003. The contribution of polar group burial to protein stability is strongly context-dependent. J. Biol. Chem. 278:3431790–95
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012102
Loading
/content/journals/10.1146/annurev-biochem-062917-012102
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error