1932

Abstract

Human lectins are integral to maintaining microbial homeostasis on the skin, in the blood, and at mucosal barriers. These proteins can recognize microbial glycans and inform the host about its microbial status. In accordance with their roles, their production can vary with tissue type. They also can have unique structural and biochemical properties, and they can influence microbial colonization at sites proximal and distal to their tissue of origin. In line with their classification as innate immune proteins, soluble lectins have long been studied in the context of acute infectious disease, but only recently have we begun to appreciate their roles in maintaining commensal microbial communities (i.e., the human microbiota). This review provides an overview of soluble lectins that operate at host–microbe interfaces, their glycan recognition properties, and their roles in physiological and pathological mechanisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012322
2024-08-02
2025-04-21
Loading full text...

Full text loading...

/deliver/fulltext/biochem/93/1/annurev-biochem-062917-012322.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012322&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Schnider B, M'Rad Y, el Ahmadie J, de Brevern AG, Imberty A, Lisacek F. 2023.. HumanLectome, an update of UniLectin for the annotation and prediction of human lectins. . Nucleic Acids Res. 52:(D1):D168393
    [Crossref] [Google Scholar]
  2. 2.
    Marchesi JR, Ravel J. 2015.. The vocabulary of microbiome research: a proposal. . Microbiome 3:(1):31
    [Crossref] [Google Scholar]
  3. 3.
    Berg G, Rybakova D, Fischer D, Cernava T, Vergès M-CC, et al. 2020.. Microbiome definition re-visited: old concepts and new challenges. . Microbiome 8:(1):103
    [Crossref] [Google Scholar]
  4. 4.
    Chairatana P, Nolan EM. 2017.. Defensins, lectins, mucins, and secretory immunoglobulin A: microbe-binding biomolecules that contribute to mucosal immunity in the human gut. . Crit. Rev. Biochem. Mol. Biol. 52:(1):4556
    [Crossref] [Google Scholar]
  5. 5.
    Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, et al. 2011.. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. . Science 334:(6053):25558
    [Crossref] [Google Scholar]
  6. 6.
    Sarashina-Kida H, Negishi H, Nishio J, Suda W, Nakajima Y, et al. 2017.. Gallbladder-derived surfactant protein D regulates gut commensal bacteria for maintaining intestinal homeostasis. . PNAS 114:(38):1017883
    [Crossref] [Google Scholar]
  7. 7.
    Wu M, Wang F, Yang J, Li P, Yan D, et al. 2020.. The responses of the gut microbiota to MBL deficiency. . Mol. Immunol. 122::99108
    [Crossref] [Google Scholar]
  8. 8.
    Imperiali B. 2019.. Bacterial carbohydrate diversity—a Brave New World. . Curr. Opin. Chem. Biol. 53::18
    [Crossref] [Google Scholar]
  9. 9.
    Ayres JS, Schneider DS. 2012.. Tolerance of infections. . Annu. Rev. Immunol. 30::27194
    [Crossref] [Google Scholar]
  10. 10.
    Medzhitov R, Schneider DS, Soares MP. 2012.. Disease tolerance as a defense strategy. . Science 335:(6071):93641
    [Crossref] [Google Scholar]
  11. 11.
    Holmskov U, Thiel S, Jensenius JC. 2003.. Collectins and ficolins: humoral lectins of the innate immune defense. . Annu. Rev. Immunol. 21::54778
    [Crossref] [Google Scholar]
  12. 12.
    Bergström JH, Birchenough GMH, Katona G, Schroeder BO, Schütte A, et al. 2016.. Gram-positive bacteria are held at a distance in the colon mucus by the lectin-like protein ZG16. . PNAS 113:(48):1383338
    [Crossref] [Google Scholar]
  13. 13.
    Ghosh S, Ahearn CP, Isabella CR, Marando VM, Dodge GJ, et al. 2023.. Human oral lectin ZG16B acts as a cell wall polysaccharide probe to decode host–microbe interactions with oral commensals. . PNAS 120:(22):e2216304120
    [Crossref] [Google Scholar]
  14. 14.
    McPherson RL, Isabella CR, Walker RL, Sergio D, Bae S, et al. 2023.. Lectin-Seq: a method to profile lectin-microbe interactions in native communities. . Sci. Adv. 9:(30):eadd8766
    [Crossref] [Google Scholar]
  15. 15.
    Herget S, Toukach PV, Ranzinger R, Hull WE, Knirel YA, von der Lieth C-W. 2008.. Statistical analysis of the Bacterial Carbohydrate Structure Data Base (BCSDB): characteristics and diversity of bacterial carbohydrates in comparison with mammalian glycans. . BMC Struct. Biol. 8::35
    [Crossref] [Google Scholar]
  16. 16.
    Tra VN, Dube DH. 2014.. Glycans in pathogenic bacteria – potential for targeted covalent therapeutics and imaging agents. . Chem. Commun. 50:(36):465973
    [Crossref] [Google Scholar]
  17. 17.
    Gow NAR, Lenardon MD. 2023.. Architecture of the dynamic fungal cell wall. . Nat. Rev. Microbiol. 21:(4):24859
    [Crossref] [Google Scholar]
  18. 18.
    Pausan MR, Csorba C, Singer G, Till H, Schöpf V, et al. 2019.. Exploring the archaeome: detection of archaeal signatures in the human body. . Front. Microbiol. 10::2796
    [Crossref] [Google Scholar]
  19. 19.
    Klingl A, Pickl C, Flechsler J. 2019.. Archaeal cell walls. . In Bacterial Cell Walls and Membranes, ed. A Kuhn , pp. 47193. Cham:: Springer Int. Publ.
    [Google Scholar]
  20. 20.
    Bagdonaite I, Wandall HH. 2018.. Global aspects of viral glycosylation. . Glycobiology 28:(7):44367
    [Crossref] [Google Scholar]
  21. 21.
    Watanabe Y, Bowden TA, Wilson IA, Crispin M. 2019.. Exploitation of glycosylation in enveloped virus pathobiology. . Biochim. Biophys. Acta Gen. Subj. 1863:(10):148097
    [Crossref] [Google Scholar]
  22. 22.
    Feng Z, Hensley L, McKnight KL, Hu F, Madden V, et al. 2013.. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. . Nature 496:(7445):36771
    [Crossref] [Google Scholar]
  23. 23.
    Chen Y-H, Du W, Hagemeijer MC, Takvorian PM, Pau C, et al. 2015.. Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. . Cell 160:(4):61930
    [Crossref] [Google Scholar]
  24. 24.
    Doores KJ, Bonomelli C, Harvey DJ, Vasiljevic S, Dwek RA, et al. 2010.. Envelope glycans of immunodeficiency virions are almost entirely oligomannose antigens. . PNAS 107:(31):138005
    [Crossref] [Google Scholar]
  25. 25.
    Vu D-L, Kaiser L. 2017.. The concept of commensal viruses almost 20 years later: redefining borders in clinical virology. . Clin. Microbiol. Infect. 23:(10):68890
    [Crossref] [Google Scholar]
  26. 26.
    Weis WI, Drickamer K, Hendrickson WA. 1992.. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. . Nature 360:(6400):12734
    [Crossref] [Google Scholar]
  27. 27.
    Drickamer K, Taylor ME. 2015.. Recent insights into structures and functions of C-type lectins in the immune system. . Curr. Opin. Struct. Biol. 34::2634
    [Crossref] [Google Scholar]
  28. 28.
    Drickamer K. 1992.. Engineering galactose-binding activity into a C-type mannose-binding protein. . Nature 360:(6400):18386
    [Crossref] [Google Scholar]
  29. 29.
    Garlatti V, Belloy N, Martin L, Lacroix M, Matsushita M, et al. 2007.. Structural insights into the innate immune recognition specificities of L- and H-ficolins. . EMBO J. 26:(2):62333
    [Crossref] [Google Scholar]
  30. 30.
    Järvå MA, Lingford JP, John A, Soler NM, Scott NE, Goddard-Borger ED. 2020.. Trefoil factors share a lectin activity that defines their role in mucus. . Nat. Commun. 11:(1):2265
    [Crossref] [Google Scholar]
  31. 31.
    Kanagawa M, Satoh T, Ikeda A, Nakano Y, Yagi H, et al. 2011.. Crystal structures of human secretory proteins ZG16p and ZG16b reveal a Jacalin-related β-prism fold. . Biochem. Biophys. Res. Commun. 404:(1):2015
    [Crossref] [Google Scholar]
  32. 32.
    Wesener DA, Wangkanont K, McBride R, Song X, Kraft MB, et al. 2015.. Recognition of microbial glycans by human intelectin-1. . Nat. Struct. Mol. Biol. 22:(8):60310
    [Crossref] [Google Scholar]
  33. 33.
    Sheriff S, Chang CY, Ezekowitz RA. 1994.. Human mannose-binding protein carbohydrate recognition domain trimerizes through a triple α-helical coiled-coil. . Nat. Struct. Biol. 1:(11):78994
    [Crossref] [Google Scholar]
  34. 34.
    Wang L, Brauner JW, Mao G, Crouch E, Seaton B, et al. 2008.. Interaction of recombinant surfactant protein D with lipopolysaccharide: conformation and orientation of bound protein by IRRAS and simulations. . Biochemistry 47:(31):810313
    [Crossref] [Google Scholar]
  35. 35.
    Bertrand JA, Pignol D, Bernard JP, Verdier JM, Dagorn JC, Fontecilla-Camps JC. 1996.. Crystal structure of human lithostathine, the pancreatic inhibitor of stone formation. . EMBO J. 15:(11):267884
    [Crossref] [Google Scholar]
  36. 36.
    Abergel C, Chenivesse S, Stinnakre MG, Guasco S, Bréchot C, et al. 1999.. Crystallization and preliminary crystallographic study of HIP/PAP, a human C-lectin overexpressed in primary liver cancers. . Acta Crystallogr. D Biol. Crystallogr. 55:(Part 8):148789
    [Crossref] [Google Scholar]
  37. 37.
    Ho M-R, Lou Y-C, Wei S-Y, Luo S-C, Lin W-C, et al. 2010.. Human RegIV protein adopts a typical C-type lectin fold but binds mannan with two calcium-independent sites. . J. Mol. Biol. 402:(4):68295
    [Crossref] [Google Scholar]
  38. 38.
    López-Lucendo MF, Solís D, André S, Hirabayashi J, Kasai K, et al. 2004.. Growth-regulatory human galectin-1: crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding. . J. Mol. Biol. 343:(4):95770
    [Crossref] [Google Scholar]
  39. 39.
    Si Y, Feng S, Gao J, Wang Y, Zhang Z, et al. 2016.. Human galectin-2 interacts with carbohydrates and peptides non-classically: new insight from X-ray crystallography and hemagglutination. . Acta Biochim. Biophys. Sin. 48:(10):93947
    [Crossref] [Google Scholar]
  40. 40.
    Saraboji K, Håkansson M, Genheden S, Diehl C, Qvist J, et al. 2012.. The carbohydrate-binding site in galectin-3 is preorganized to recognize a sugarlike framework of oxygens: ultra-high-resolution structures and water dynamics. . Biochemistry 51:(1):296306
    [Crossref] [Google Scholar]
  41. 41.
    Bum-Erdene K, Leffler H, Nilsson UJ, Blanchard H. 2015.. Structural characterization of human galectin-4 C-terminal domain: elucidating the molecular basis for recognition of glycosphingolipids, sulfated saccharides and blood group antigens. . FEBS J. 282:(17):334867
    [Crossref] [Google Scholar]
  42. 42.
    Leonidas DD, Vatzaki EH, Vorum H, Celis JE, Madsen P, Acharya KR. 1998.. Structural basis for the recognition of carbohydrates by human galectin-7. . Biochemistry 37:(40):1393040
    [Crossref] [Google Scholar]
  43. 43.
    Ideo H, Matsuzaka T, Nonaka T, Seko A, Yamashita K. 2011.. Galectin-8-N-domain recognition mechanism for sialylated and sulfated glycans. . J. Biol. Chem. 286:(13):1134655
    [Crossref] [Google Scholar]
  44. 44.
    Nagae M, Nishi N, Nakamura-Tsuruta S, Hirabayashi J, Wakatsuki S, Kato R. 2008.. Structural analysis of the human galectin-9 N-terminal carbohydrate recognition domain reveals unexpected properties that differ from the mouse orthologue. . J. Mol. Biol. 375:(1):11935
    [Crossref] [Google Scholar]
  45. 45.
    Itoh A, Nonaka Y, Nakakita S, Yoshida H, Nishi N, et al. 2020.. Structures of human galectin-10/monosaccharide complexes demonstrate potential of monosaccharides as effectors in forming Charcot-Leyden crystals. . Biochem. Biophys. Res. Commun. 525:(1):8793
    [Crossref] [Google Scholar]
  46. 46.
    Si Y, Yao Y, Jaramillo Ayala G, Li X, Han Q, et al. 2021.. Human galectin-16 has a pseudo ligand binding site and plays a role in regulating c-Rel-mediated lymphocyte activity. . Biochim. Biophys. Acta Gen. Subj. 1865:(1):129755
    [Crossref] [Google Scholar]
  47. 47.
    Shrive AK, Cheetham GM, Holden D, Myles DA, Turnell WG, et al. 1996.. Three dimensional structure of human C-reactive protein. . Nat. Struct. Biol. 3:(4):34654
    [Crossref] [Google Scholar]
  48. 48.
    Mikolajek H, Kolstoe SE, Pye VE, Mangione P, Pepys MB, Wood SP. 2011.. Structural basis of ligand specificity in the human pentraxins, C-reactive protein and serum amyloid P component. . J. Mol. Recognit. 24:(2):37177
    [Crossref] [Google Scholar]
  49. 49.
    Noone DP, Dijkstra DJ, van der Klugt TT, van Veelen PA, de Ru AH, et al. 2022.. PTX3 structure determination using a hybrid cryoelectron microscopy and AlphaFold approach offers insights into ligand binding and complement activation. . PNAS 119:(33):e2208144119
    [Crossref] [Google Scholar]
  50. 50.
    Tanio M, Kondo S, Sugio S, Kohno T. 2007.. Trivalent recognition unit of innate immunity system: crystal structure of trimeric human M-ficolin fibrinogen-like domain. . J. Biol. Chem. 282:(6):388995
    [Crossref] [Google Scholar]
  51. 51.
    McMahon CM, Isabella CR, Windsor IW, Kosma P, Raines RT, Kiessling LL. 2020.. Stereoelectronic effects impact glycan recognition. . J. Am. Chem. Soc. 142:(5):238695
    [Crossref] [Google Scholar]
  52. 52.
    Hudson KL, Bartlett GJ, Diehl RC, Agirre J, Gallagher T, et al. 2015.. Carbohydrate–aromatic interactions in proteins. . J. Am. Chem. Soc. 137:(48):1515260
    [Crossref] [Google Scholar]
  53. 53.
    Houser J, Kozmon S, Mishra D, Hammerová Z, Wimmerová M, Koča J. 2020.. The CH–π interaction in protein–carbohydrate binding: bioinformatics and in vitro quantification. . Chemistry 26:(47):1076980
    [Crossref] [Google Scholar]
  54. 54.
    Kiessling LL, Diehl RC. 2021.. CH−π interactions in glycan recognition. . ACS Chem. Biol. 16:(10):188493
    [Crossref] [Google Scholar]
  55. 55.
    Hsu C-H, Park S, Mortenson DE, Foley BL, Wang X, et al. 2016.. The dependence of carbohydrate–aromatic interaction strengths on the structure of the carbohydrate. . J. Am. Chem. Soc. 138:(24):763648
    [Crossref] [Google Scholar]
  56. 56.
    Chen W, Enck S, Price JL, Powers DL, Powers ET, et al. 2013.. Structural and energetic basis of carbohydrate–aromatic packing interactions in proteins. . J. Am. Chem. Soc. 135:(26):987784
    [Crossref] [Google Scholar]
  57. 57.
    Littlejohn JR, da Silva RF, Neale WA, Smallcombe CC, Clark HW, et al. 2018.. Structural definition of hSP-D recognition of Salmonellaenterica LPS inner core oligosaccharides reveals alternative binding modes for the same LPS. . PLOS ONE 13:(6):e0199175
    [Crossref] [Google Scholar]
  58. 58.
    Lee RT, Lee YC. 2000.. Affinity enhancement by multivalent lectin–carbohydrate interaction. . Glycoconj. J. 17:(7):54351
    [Crossref] [Google Scholar]
  59. 59.
    Taylor ME, Drickamer K. 2014.. Convergent and divergent mechanisms of sugar recognition across kingdoms. . Curr. Opin. Struct. Biol. 28::1422
    [Crossref] [Google Scholar]
  60. 60.
    Arroyo R, Echaide M, Moreno-Herrero F, Perez-Gil J, Kingma PS. 2020.. Functional characterization of the different oligomeric forms of human surfactant protein SP-D. . Biochim. Biophys. Acta Proteins Proteom. 1868:(8):140436
    [Crossref] [Google Scholar]
  61. 61.
    Mukherjee S, Zheng H, Derebe MG, Callenberg KM, Partch CL, et al. 2014.. Antibacterial membrane attack by a pore-forming intestinal C-type lectin. . Nature 505:(7481):1037
    [Crossref] [Google Scholar]
  62. 62.
    Hsu DK, Liu F-T. 2002.. Regulation of cellular homeostasis by galectins. . Glycoconj. J. 19:(7–9):50715
    [Crossref] [Google Scholar]
  63. 63.
    Brown GD, Willment JA, Whitehead L. 2018.. C-type lectins in immunity and homeostasis. . Nat. Rev. Immunol. 18:(6):37489
    [Crossref] [Google Scholar]
  64. 64.
    Chen L, Li J, Yang G. 2020.. A comparative review of intelectins. . Scand. J. Immunol. 92:(1):e12882
    [Crossref] [Google Scholar]
  65. 65.
    Gadjeva M, Thiel S, Jensenius JC. 2001.. The mannan-binding-lectin pathway of the innate immune response. . Curr. Opin. Immunol. 13:(1):7478
    [Crossref] [Google Scholar]
  66. 66.
    Wesener DA, Dugan A, Kiessling LL. 2017.. Recognition of microbial glycans by soluble human lectins. . Curr. Opin. Struct. Biol. 44::16878
    [Crossref] [Google Scholar]
  67. 67.
    Ma YJ, Garred P. 2018.. Pentraxins in complement activation and regulation. . Front. Immunol. 9::3046
    [Crossref] [Google Scholar]
  68. 68.
    Dunkelberger JR, Song W-C. 2010.. Complement and its role in innate and adaptive immune responses. . Cell Res. 20:(1):3450
    [Crossref] [Google Scholar]
  69. 69.
    Deo PN, Deshmukh R. 2019.. Oral microbiome: unveiling the fundamentals. . J. Oral Maxillofac. Pathol. 23:(1):12228
    [Crossref] [Google Scholar]
  70. 70.
    Donaldson GP, Ladinsky MS, Yu KB, Sanders JG, Yoo BB, et al. 2018.. Gut microbiota utilize immunoglobulin A for mucosal colonization. . Science 360:(6390):795800
    [Crossref] [Google Scholar]
  71. 71.
    van Asbeck EC, Hoepelman AI, Scharringa J, Herpers BL, Verhoef J. 2008.. Mannose binding lectin plays a crucial role in innate immunity against yeast by enhanced complement activation and enhanced uptake of polymorphonuclear cells. . BMC Microbiol. 8:(1):229
    [Crossref] [Google Scholar]
  72. 72.
    Andresen S, Fantone K, Chapla D, Rada B, Moremen KW, et al. 2022.. Human intelectin-1 promotes cellular attachment and neutrophil killing of Streptococcus pneumoniae in a serotype-dependent manner. . Infect. Immun. 90:(5):e0068221
    [Crossref] [Google Scholar]
  73. 73.
    Gardai SJ, Xiao Y-Q, Dickinson M, Nick JA, Voelker DR, et al. 2003.. By binding SIRPα or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. . Cell 115:(1):1323
    [Crossref] [Google Scholar]
  74. 74.
    Yi L, Cheng D, Zhang K, Huo X, Mo Y, et al. 2017.. Intelectin contributes to allergen-induced IL-25, IL-33, and TSLP expression and type 2 response in asthma and atopic dermatitis. . Mucosal Immunol. 10:(6):1491503
    [Crossref] [Google Scholar]
  75. 75.
    Ma YJ, Lee BL, Garred P. 2017.. An overview of the synergy and crosstalk between pentraxins and collectins/ficolins: their functional relevance in complement activation. . Exp. Mol. Med. 49:(4):e320
    [Crossref] [Google Scholar]
  76. 76.
    Woodward AM, Mauris J, Argüeso P. 2013.. Binding of transmembrane mucins to galectin-3 limits herpesvirus 1 infection of human corneal keratinocytes. . J. Virol. 87:(10):584147
    [Crossref] [Google Scholar]
  77. 77.
    Jang SJ, Lee K, Kwon B, You HJ, Ko G. 2019.. Vaginal lactobacilli inhibit growth and hyphae formation of Candida albicans. . Sci. Rep. 9:(1):8121
    [Crossref] [Google Scholar]
  78. 78.
    Zangl I, Pap I-J, Aspöck C, Schüller C. 2019.. The role of Lactobacillus species in the control of Candida via biotrophic interactions. . Microb. Cell 7:(1):114
    [Crossref] [Google Scholar]
  79. 79.
    Morozov V, Borkowski J, Hanisch F-G. 2018.. The double face of mucin-type O-glycans in lectin-mediated infection and immunity. . Molecules 23:(5):1151
    [Crossref] [Google Scholar]
  80. 80.
    Hanisch F-G, Bonar D, Schloerer N, Schroten H. 2014.. Human trefoil factor 2 is a lectin that binds α-GlcNAc-capped mucin glycans with antibiotic activity against Helicobacter pylori. . J. Biol. Chem. 289:(40):2736375
    [Crossref] [Google Scholar]
  81. 81.
    Massier L, Chakaroun R, Tabei S, Crane A, Didt KD, et al. 2020.. Adipose tissue derived bacteria are associated with inflammation in obesity and type 2 diabetes. . Gut 69:(10):1796806
    [Crossref] [Google Scholar]
  82. 82.
    Urbaniak C, Cummins J, Brackstone M, Macklaim JM, Gloor GB, et al. 2014.. Microbiota of human breast tissue. . Appl. Environ. Microbiol. 80:(10):300714
    [Crossref] [Google Scholar]
  83. 83.
    Chakaroun RM, Massier L, Kovacs P. 2020.. Gut microbiome, intestinal permeability, and tissue bacteria in metabolic disease: perpetrators or bystanders?. Nutrients 12:(4):1082
    [Crossref] [Google Scholar]
  84. 84.
    Hou K, Wu Z-X, Chen X-Y, Wang J-Q, Zhang D, et al. 2022.. Microbiota in health and diseases. . Signal Transduct. Target. Ther. 7:(1):135
    [Crossref] [Google Scholar]
  85. 85.
    Parhi L, Alon-Maimon T, Sol A, Nejman D, Shhadeh A, et al. 2020.. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. . Nat. Commun. 11:(1):3259
    [Crossref] [Google Scholar]
  86. 86.
    Okuda S, Hirose Y, Takihara H, Okuda A, Ling Y, et al. 2022.. Unveiling microbiome profiles in human inner body fluids and tumor tissues with pancreatic or biliary tract cancer. . Sci. Rep. 12:(1):8766
    [Crossref] [Google Scholar]
  87. 87.
    Møller-Kristensen M, Ip WKE, Shi L, Gowda LD, Hamblin MR, et al. 2006.. Deficiency of mannose-binding lectin greatly increases susceptibility to postburn infection with Pseudomonas aeruginosa. . J. Immunol. 176:(3):176975
    [Crossref] [Google Scholar]
  88. 88.
    Shi L, Takahashi K, Dundee J, Shahroor-Karni S, Thiel S, et al. 2004.. Mannose-binding lectin-deficient mice are susceptible to infection with Staphylococcus aureus. . J. Exp. Med. 199:(10):137990
    [Crossref] [Google Scholar]
  89. 89.
    Choteau L, Parny M, François N, Bertin B, Fumery M, et al. 2016.. Role of mannose-binding lectin in intestinal homeostasis and fungal elimination. . Mucosal Immunol. 9:(3):76776
    [Crossref] [Google Scholar]
  90. 90.
    Gupta A. 2012.. MBL deficiency as risk of infection and autoimmunity. . In Animal Lectins: Form, Function and Clinical Applications, ed. GS Gupta , pp. 93353. Vienna:: Springer
    [Google Scholar]
  91. 91.
    Kang JH, Super M, Yung CW, Cooper RM, Domansky K, et al. 2014.. An extracorporeal blood-cleaning device for sepsis therapy. . Nat. Med. 20:(10):121116
    [Crossref] [Google Scholar]
  92. 92.
    Sproston NR, Ashworth JJ. 2018.. Role of C-reactive protein at sites of inflammation and infection. . Front. Immunol. 9::754
    [Crossref] [Google Scholar]
  93. 93.
    Mold C, Nakayama S, Holzer TJ, Gewurz H, Du Clos TW. 1981.. C-reactive protein is protective against Streptococcus pneumoniae infection in mice. . J. Exp. Med. 154:(5):17038
    [Crossref] [Google Scholar]
  94. 94.
    Zhang H, Wang R, Wang Z, Wu W, Zhang N, et al. 2022.. Molecular insight into pentraxin-3: update advances in innate immunity, inflammation, tissue remodeling, diseases, and drug role. . Biomed. Pharmacother. 156::113783
    [Crossref] [Google Scholar]
  95. 95.
    de Haas CJC. 1999.. New insights into the role of serum amyloid P component, a novel lipopolysaccharide-binding protein. . FEMS Immunol. Med. Microbiol. 26:(3–4):197202
    [Crossref] [Google Scholar]
  96. 96.
    Chen Y, Meng P, Cheng S, Jia Y, Wen Y, et al. 2021.. Assessing the effect of interaction between C-reactive protein and gut microbiome on the risks of anxiety and depression. . Mol. Brain 14:(1):133
    [Crossref] [Google Scholar]
  97. 97.
    Uhlenbruck G, Karduck D, Haupt H, Schwick HG. 1979.. C-reactive protein (CRP), 9.5 Sα1-glycoprotein and C1q: serum proteins with lectin properties?. Z. Immun. Immunobiol. 155:(3):26266
    [Google Scholar]
  98. 98.
    Kempka G, Roos PH, Kolb-Bachofen V. 1990.. A membrane-associated form of C-reactive protein is the galactose-specific particle receptor on rat liver macrophages. . J. Immunol. 144:(3):10049
    [Crossref] [Google Scholar]
  99. 99.
    Agus A, Clément K, Sokol H. 2021.. Gut microbiota-derived metabolites as central regulators in metabolic disorders. . Gut 70:(6):117482
    [Crossref] [Google Scholar]
  100. 100.
    Silpe JE, Balskus EP. 2021.. Deciphering human microbiota–host chemical interactions. . ACS Cent. Sci. 7:(1):2029
    [Crossref] [Google Scholar]
  101. 101.
    Molecular conversations. 2021.. Nat. Chem. Biol. 17:(10):1009
    [Crossref] [Google Scholar]
  102. 102.
    Long SL, Gahan CGM, Joyce SA. 2017.. Interactions between gut bacteria and bile in health and disease. . Mol. Aspects Med. 56::5465
    [Crossref] [Google Scholar]
  103. 103.
    Paik D, Yao L, Zhang Y, Bae S, D'Agostino GD, et al. 2022.. Human gut bacteria produce ΤΗ17-modulating bile acid metabolites. . Nature 603:(7903):90712
    [Crossref] [Google Scholar]
  104. 104.
    Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. 2014.. The role of short-chain fatty acids in health and disease. . Adv. Immunol. 121::91119
    [Crossref] [Google Scholar]
  105. 105.
    Round JL, Mazmanian SK. 2009.. The gut microbiota shapes intestinal immune responses during health and disease. . Nat. Rev. Immunol. 9:(5):31323
    [Crossref] [Google Scholar]
  106. 106.
    Wade WG. 2013.. The oral microbiome in health and disease. . Pharmacol. Res. 69:(1):13743
    [Crossref] [Google Scholar]
  107. 107.
    Abeles SR, Robles-Sikisaka R, Ly M, Lum AG, Salzman J, et al. 2014.. Human oral viruses are personal, persistent and gender-consistent. . ISME J. 8:(9):175367
    [Crossref] [Google Scholar]
  108. 108.
    Baker JL, Bor B, Agnello M, Shi W, He X. 2017.. Ecology of the oral microbiome: beyond bacteria. . Trends Microbiol. 25:(5):36274
    [Crossref] [Google Scholar]
  109. 109.
    Saitou M, Gaylord EA, Xu E, May AJ, Neznanova L, et al. 2020.. Functional specialization of human salivary glands and origins of proteins intrinsic to human saliva. . Cell Rep. 33:(7):108402
    [Crossref] [Google Scholar]
  110. 110.
    Heo S-M, Choi K-S, Kazim LA, Reddy MS, Haase EM, et al. 2013.. Host defense proteins derived from human saliva bind to Staphylococcus aureus. . Infect. Immun. 81:(4):136473
    [Crossref] [Google Scholar]
  111. 111.
    Meng H, Li W, Boardman LA, Wang L. 2018.. Loss of ZG16 is associated with molecular and clinicopathological phenotypes of colorectal cancer. . BMC Cancer 18:(1):433
    [Crossref] [Google Scholar]
  112. 112.
    Tateno H, Yabe R, Sato T, Shibazaki A, Shikanai T, et al. 2012.. Human ZG16p recognizes pathogenic fungi through non-self polyvalent mannose in the digestive system. . Glycobiology 22:(2):21020
    [Crossref] [Google Scholar]
  113. 113.
    Yang Q, Ouyang J, Pi D, Feng L, Yang J. 2022.. Malassezia in inflammatory bowel disease: accomplice of evoking tumorigenesis. . Front. Immunol. 13::846469
    [Crossref] [Google Scholar]
  114. 114.
    Natalini JG, Singh S, Segal LN. 2023.. The dynamic lung microbiome in health and disease. . Nat. Rev. Microbiol. 21:(4):22235
    [Crossref] [Google Scholar]
  115. 115.
    Dickson RP, Huffnagle GB. 2015.. The lung microbiome: new principles for respiratory bacteriology in health and disease. . PLOS Pathog. 11:(7):e1004923
    [Crossref] [Google Scholar]
  116. 116.
    Sorensen GL. 2018.. Surfactant protein D in respiratory and non-respiratory diseases. . Front. Med. 5::18
    [Crossref] [Google Scholar]
  117. 117.
    Kishore U, Greenhough TJ, Waters P, Shrive AK, Ghai R, et al. 2006.. Surfactant proteins SP-A and SP-D: structure, function and receptors. . Mol. Immunol. 43:(9):1293315
    [Crossref] [Google Scholar]
  118. 118.
    Wang H, Head J, Kosma P, Brade H, Müller-Loennies S, et al. 2008.. Recognition of heptoses and the inner core of bacterial lipopolysaccharides by surfactant protein D. . Biochemistry 47:(2):71020
    [Crossref] [Google Scholar]
  119. 119.
    Sahly H, Ofek I, Podschun R, Brade H, He Y, et al. 2002.. Surfactant protein D binds selectively to Klebsiella pneumoniae lipopolysaccharides containing mannose-rich O-antigens. . J. Immunol. 169:(6):326774
    [Crossref] [Google Scholar]
  120. 120.
    Reeves EP, Ali T, Leonard P, Hearty S, O'Kennedy R, et al. 2008.. Helicobacter pylori lipopolysaccharide interacts with TFF1 in a pH-dependent manner. . Gastroenterology 135:(6):204354.e2
    [Crossref] [Google Scholar]
  121. 121.
    Dunne C, Naughton J, Duggan G, Loughrey C, Kilcoyne M, et al. 2018.. Binding of Helicobacter pylori to human gastric mucins correlates with binding of TFF1. . Microorganisms 6:(2):44
    [Crossref] [Google Scholar]
  122. 122.
    Clyne M, Dillon P, Daly S, O'Kennedy R, May FEB, et al. 2004.. Helicobacter pylori interacts with the human single-domain trefoil protein TFF1. . PNAS 101:(19):740914
    [Crossref] [Google Scholar]
  123. 123.
    Esposito R, Morello S, Vllahu M, Eletto D, Porta A, Tosco A. 2017.. Gastric TFF1 expression from acute to chronic Helicobacter infection. . Front. Cell. Infect. Microbiol. 7::434
    [Crossref] [Google Scholar]
  124. 124.
    Lefebvre O, Chenard M-P, Masson R, Linares J, Dierich A, et al. 1996.. Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil protein. . Science 274:(5285):25962
    [Crossref] [Google Scholar]
  125. 125.
    Soutto M, Belkhiri A, Piazuelo MB, Schneider BG, Peng D, et al. 2011.. Loss of TFF1 is associated with activation of NF-κB-mediated inflammation and gastric neoplasia in mice and humans. . J. Clin. Invest. 121:(5):175367
    [Crossref] [Google Scholar]
  126. 126.
    Soutto M, Chen Z, Katsha AM, Romero-Gallo J, Krishna US, et al. 2015.. Trefoil factor 1 expression suppresses Helicobacter pylori–induced inflammation in gastric carcinogenesis. . Cancer 121:(24):434858
    [Crossref] [Google Scholar]
  127. 127.
    Hoffmann W. 2015.. TFF2, a MUC6-binding lectin stabilizing the gastric mucus barrier and more. . Int. J. Oncol. 47:(3):80616
    [Crossref] [Google Scholar]
  128. 128.
    Farrell JJ, Taupin D, Koh TJ, Chen D, Zhao C-M, et al. 2002.. TFF2/SP-deficient mice show decreased gastric proliferation, increased acid secretion, and increased susceptibility to NSAID injury. . J. Clin. Invest. 109:(2):193204
    [Crossref] [Google Scholar]
  129. 129.
    Shah AA, Mihalj M, Ratkay I, Lubka-Pathak M, Balogh P, et al. 2012.. Increased susceptibility to Yersinia enterocolitica infection of Tff2 deficient mice. . Cell. Physiol. Biochem. 30:(4):85362
    [Crossref] [Google Scholar]
  130. 130.
    McCarthy AJ, Birchenough GMH, Taylor PW. 2019.. Loss of trefoil factor 2 sensitizes rat pups to systemic infection with the neonatal pathogen Escherichia coli K1. . Infect. Immun. 87:(5):e00878-18
    [Crossref] [Google Scholar]
  131. 131.
    Rio MC, Bellocq JP, Daniel JY, Tomasetto C, Lathe R, et al. 1988.. Breast cancer-associated pS2 protein: synthesis and secretion by normal stomach mucosa. . Science 241:(4866):7058
    [Crossref] [Google Scholar]
  132. 132.
    Hanby AM, Poulsom R, Singh S, Elia G, Jeffery RE, Wright NA. 1993.. Spasmolytic polypeptide is a major antral peptide: distribution of the trefoil peptides human spasmolytic polypeptide and pS2 in the stomach. . Gastroenterology 105:(4):111016
    [Crossref] [Google Scholar]
  133. 133.
    Lefebvre O, Wolf C, Kédinger M, Chenard MP, Tomasetto C, et al. 1993.. The mouse one P-domain (pS2) and two P-domain (mSP) genes exhibit distinct patterns of expression. . J. Cell Biol. 122:(1):19198
    [Crossref] [Google Scholar]
  134. 134.
    Longman R, Douthwaite J, Sylvester P, Poulsom R, Corfield A, et al. 2000.. Coordinated localisation of mucins and trefoil peptides in the ulcer associated cell lineage and the gastrointestinal mucosa. . Gut 47:(6):792800
    [Crossref] [Google Scholar]
  135. 135.
    Ruchaud-Sparagano M-H, Westley BR, May FEB. 2004.. The trefoil protein TFF1 is bound to MUC5AC in human gastric mucosa. . Cell. Mol. Life Sci. 61:(15):194654
    [Crossref] [Google Scholar]
  136. 136.
    Yu H, He Y, Zhang X, Peng Z, Yang Y, et al. 2011.. The rat IgGFcγBP and Muc2 C-terminal domains and TFF3 in two intestinal mucus layers bind together by covalent interaction. . PLOS ONE 6:(5):e20334
    [Crossref] [Google Scholar]
  137. 137.
    Meyer zum Büschenfelde D, Tauber R, Huber O. 2006.. TFF3-peptide increases transepithelial resistance in epithelial cells by modulating claudin-1 and -2 expression. . Peptides 27:(12):338390
    [Crossref] [Google Scholar]
  138. 138.
    Mashimo H, Wu DC, Podolsky DK, Fishman MC. 1996.. Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. . Science 274:(5285):26265
    [Crossref] [Google Scholar]
  139. 139.
    Loonen LM, Stolte EH, Jaklofsky MT, Meijerink M, Dekker J, et al. 2014.. REG3γ-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum. . Mucosal Immunol. 7:(4):93947
    [Crossref] [Google Scholar]
  140. 140.
    Cash HL, Whitham CV, Behrendt CL, Hooper LV. 2006.. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. . Science 313:(5790):112630
    [Crossref] [Google Scholar]
  141. 141.
    Wang L, Fouts DE, Stärkel P, Hartmann P, Chen P, et al. 2016.. Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing bacterial translocation. . Cell Host Microbe 19:(2):22739
    [Crossref] [Google Scholar]
  142. 142.
    Darnaud M, Dos Santos A, Gonzalez P, Augui S, Lacoste C, et al. 2018.. Enteric delivery of regenerating family member 3 alpha alters the intestinal microbiota and controls inflammation in mice with colitis. . Gastroenterology 154:(4):100923.e14
    [Crossref] [Google Scholar]
  143. 143.
    Nonnecke EB, Castillo PA, Johansson MEV, Hollox EJ, Shen B, et al. 2022.. Human intelectin-2 (ITLN2) is selectively expressed by secretory Paneth cells. . FASEB J. 36:(3):e22200
    [Crossref] [Google Scholar]
  144. 144.
    Nonnecke EB, Castillo PA, Dugan AE, Almalki F, Underwood MA, et al. 2021.. Human intelectin-1 (ITLN1) genetic variation and intestinal expression. . Sci. Rep. 11:(1):12889
    [Crossref] [Google Scholar]
  145. 145.
    Wangkanont K, Wesener DA, Vidani JA, Kiessling LL, Forest KT. 2016.. Structures of Xenopus embryonic epidermal lectin reveal a conserved mechanism of microbial glycan recognition. . J. Biol. Chem. 291:(11):5596610
    [Crossref] [Google Scholar]
  146. 146.
    Tsuji S, Yamashita M, Hoffman DR, Nishiyama A, Shinohara T, et al. 2009.. Capture of heat-killed Mycobacterium bovis bacillus Calmette-Guérin by intelectin-1 deposited on cell surfaces. . Glycobiology 19:(5):51826
    [Crossref] [Google Scholar]
  147. 147.
    Sigal M, Reinés MDM, Müllerke S, Fischer C, Kapalczynska M, et al. 2019.. R-spondin-3 induces secretory, antimicrobial Lgr5+ cells in the stomach. . Nat. Cell Biol. 21:(7):81223
    [Crossref] [Google Scholar]
  148. 148.
    Matute JD, Duan J, Flak MB, Griebel P, Tascon-Arcila JA, et al. 2023.. Intelectin-1 binds and alters the localization of the mucus barrier-modifying bacterium Akkermansia muciniphila. . J. Exp. Med. 220:(1):e20211938
    [Crossref] [Google Scholar]
  149. 149.
    Nonnecke EB, Castillo PA, Akahoshi DT, Goley SM, Bevins CL, Lönnerdal B. 2022.. Characterization of an intelectin-1 (Itln1) knockout mouse model. . Front. Immunol. 13::894649
    [Crossref] [Google Scholar]
  150. 150.
    de Waard A, Hickman S, Kornfeld S. 1976.. Isolation and properties of β-galactoside binding lectins of calf heart and lung. . J. Biol. Chem. 251:(23):758187
    [Crossref] [Google Scholar]
  151. 151.
    Dias-Baruffi M, Stowell SR, Song S-C, Arthur CM, Cho M, et al. 2010.. Differential expression of immunomodulatory galectin-1 in peripheral leukocytes and adult tissues and its cytosolic organization in striated muscle. . Glycobiology 20:(5):50720
    [Crossref] [Google Scholar]
  152. 152.
    Arthur CM, Cummings RD, Stowell SR. 2015.. Evaluation of the bactericidal activity of galectins. . Methods Mol. Biol. 1207::42130
    [Crossref] [Google Scholar]
  153. 153.
    Kasamatsu A, Uzawa K, Shimada K, Shiiba M, Otsuka Y, et al. 2005.. Elevation of galectin-9 as an inflammatory response in the periodontal ligament cells exposed to Porphylomonas gingivalis lipopolysaccharide in vitro and in vivo. . Int. J. Biochem. Cell Biol. 37:(2):397408
    [Crossref] [Google Scholar]
  154. 154.
    Thiemann S, Baum LG. 2016.. Galectins and immune responses—Just how do they do those things they do?. Annu. Rev. Immunol. 34::24364
    [Crossref] [Google Scholar]
  155. 155.
    Liu F-T, Stowell SR. 2023.. The role of galectins in immunity and infection. . Nat. Rev. Immunol. 23:(8):47994
    [Crossref] [Google Scholar]
  156. 156.
    Yu X, Qian J, Ding L, Yin S, Zhou L, Zheng S. 2023.. Galectin-1: A traditionally immunosuppressive protein displays context-dependent capacities. . Int. J. Mol. Sci. 24:(7):6501
    [Crossref] [Google Scholar]
  157. 157.
    Díaz-Alvarez L, Ortega E. 2017.. The many roles of Galectin-3, a multifaceted molecule, in innate immune responses against pathogens. . Mediators Inflamm. 2017::9247574
    [Crossref] [Google Scholar]
  158. 158.
    Davicino RC, Méndez-Huergo SP, Eliçabe RJ, Stupirski JC, Autenrieth I, et al. 2017.. Galectin-1-driven tolerogenic programs aggravate Yersinia enterocolitica infection by repressing antibacterial immunity. . J. Immunol. 199:(4):138292
    [Crossref] [Google Scholar]
  159. 159.
    Tana FL, Guimarães ES, Cerqueira DM, Campos PC, Gomes MTR, et al. 2021.. Galectin-3 regulates proinflammatory cytokine function and favours Brucella abortus chronic replication in macrophages and mice. . Cell. Microbiol. 23:(10):e13375
    [Crossref] [Google Scholar]
  160. 160.
    Fowler M, Thomas RJ, Atherton J, Roberts IS, High NJ. 2006.. Galectin-3 binds to Helicobacter pylori O-antigen: It is upregulated and rapidly secreted by gastric epithelial cells in response to H. pylori adhesion. . Cell. Microbiol. 8:(1):4454
    [Crossref] [Google Scholar]
  161. 161.
    Park A-M, Hagiwara S, Hsu DK, Liu F-T, Yoshie O. 2016.. Galectin-3 plays an important role in innate immunity to gastric infection by Helicobacter pylori. . Infect. Immun. 84:(4):118493
    [Crossref] [Google Scholar]
  162. 162.
    Nieminen J, St-Pierre C, Bhaumik P, Poirier F, Sato S. 2008.. Role of galectin-3 in leukocyte recruitment in a murine model of lung infection by Streptococcus pneumoniae. . J. Immunol. 180:(4):246673
    [Crossref] [Google Scholar]
  163. 163.
    Stowell SR, Arthur CM, McBride R, Berger O, Razi N, et al. 2014.. Microbial glycan microarrays define key features of host-microbial interactions. . Nat. Chem. Biol. 10:(6):47076
    [Crossref] [Google Scholar]
  164. 164.
    Song X, Xia B, Stowell SR, Lasanajak Y, Smith DF, Cummings RD. 2009.. Novel fluorescent glycan microarray strategy reveals ligands for galectins. . Chem. Biol. 16:(1):3647
    [Crossref] [Google Scholar]
  165. 165.
    Krishnamoorthy L, Mahal LK. 2009.. Glycomic analysis: an array of technologies. . ACS Chem. Biol. 4:(9):71532
    [Crossref] [Google Scholar]
  166. 166.
    Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, et al. 2008.. GLYCAM06: a generalizable biomolecular force field. Carbohydrates. . J. Comput. Chem. 29:(4):62255
    [Crossref] [Google Scholar]
  167. 167.
    Sood A, Gerlits OO, Ji Y, Bovin NV, Coates L, Woods RJ. 2018.. Defining the specificity of carbohydrate–protein interactions by quantifying functional group contributions. . J. Chem. Inf. Model. 58:(9):1889901
    [Crossref] [Google Scholar]
  168. 168.
    York WS, Mazumder R, Ranzinger R, Edwards N, Kahsay R, et al. 2020.. GlyGen: computational and informatics resources for glycoscience. . Glycobiology 30:(2):7273
    [Crossref] [Google Scholar]
  169. 169.
    Wuo MG, Dugan AE, Halim M, Hauser BM, Feldman J, et al. 2023.. Lectin fingerprinting distinguishes antibody neutralization in SARS-CoV-2. . ACS Cent. Sci. 9:(5):94756
    [Crossref] [Google Scholar]
  170. 170.
    Li S, Wang N, Yu B, Sun W, Wang L. 2023.. Genetically encoded chemical crosslinking of carbohydrate. . Nat. Chem. 15:(1):3342
    [Crossref] [Google Scholar]
  171. 171.
    Ip WKE, Takahashi K, Ezekowitz RA, Stuart LM. 2009.. Mannose-binding lectin and innate immunity. . Immunol. Rev. 230:(1):921
    [Crossref] [Google Scholar]
  172. 172.
    Neth O, Jack DL, Dodds AW, Holzel H, Klein NJ, Turner MW. 2000.. Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. . Infect. Immun. 68:(2):68893
    [Crossref] [Google Scholar]
  173. 173.
    van Rozendaal BA, van Golde LM, Haagsman HP. 2001.. Localization and functions of SP-A and SP-D at mucosal surfaces. . Pediatr. Pathol. Mol. Med. 20:(4):31939
    [Crossref] [Google Scholar]
  174. 174.
    Hansen SWK, Ohtani K, Roy N, Wakamiya N. 2016.. The collectins CL-L1, CL-K1 and CL-P1, and their roles in complement and innate immunity. . Immunobiology 221:(10):105867
    [Crossref] [Google Scholar]
  175. 175.
    Gout E, Garlatti V, Smith DF, Lacroix M, Dumestre-Pérard C, et al. 2010.. Carbohydrate recognition properties of human ficolins. . J. Biol. Chem. 285:(9):661222
    [Crossref] [Google Scholar]
  176. 176.
    Ren Y, Ding Q, Zhang X. 2014.. Ficolins and infectious diseases. . Virol. Sin. 29:(1):2532
    [Crossref] [Google Scholar]
  177. 177.
    Abernethy TJ, Avery OT. 1941.. The occurrence during acute infections of a protein not normally present in the blood. I. Distribution of the reactive protein in patients' sera and the effect of calcium on the flocculation reaction with C polysaccharide of Pneumococcus. . J. Exp. Med. 73::17382
    [Crossref] [Google Scholar]
  178. 178.
    Bottazzi B, Doni A, Garlanda C, Mantovani A. 2010.. An integrated view of humoral innate immunity: pentraxins as a paradigm. . Annu. Rev. Immunol. 28::15783
    [Crossref] [Google Scholar]
  179. 179.
    Loveless RW, Floyd-O'Sullivan G, Raynes JG, Yuen CT, Feizi T. 1992.. Human serum amyloid P is a multispecific adhesive protein whose ligands include 6-phosphorylated mannose and the 3-sulphated saccharides galactose, N-acetylgalactosamine and glucuronic acid. . EMBO J. 11:(3):81319
    [Crossref] [Google Scholar]
  180. 180.
    Noursadeghi M, Bickerstaff MCM, Gallimore JR, Herbert J, Cohen J, Pepys MB. 2000.. Role of serum amyloid P component in bacterial infection: protection of the host or protection of the pathogen. . PNAS 97:(26):1458489
    [Crossref] [Google Scholar]
  181. 181.
    de Haas CJC, van Leeuwen EMM, van Bommel T, Verhoef J, van Kessel KPM, van Strijp JAG. 2000.. Serum amyloid P component bound to gram-negative bacteria prevents lipopolysaccharide-mediated classical pathway complement activation. . Infect. Immun. 68:(4):175359
    [Crossref] [Google Scholar]
  182. 182.
    Daigo K, Mantovani A, Bottazzi B. 2014.. The yin-yang of long pentraxin PTX3 in inflammation and immunity. . Immunol. Lett. 161:(1):3843
    [Crossref] [Google Scholar]
  183. 183.
    Zhang Y-W, Ding L-S, Lai M-D. 2003.. Reg gene family and human diseases. . World J. Gastroenterol. 9:(12):263541
    [Crossref] [Google Scholar]
  184. 184.
    Caballero S, Pamer EG. 2015.. Microbiota-mediated inflammation and antimicrobial defense in the intestine. . Annu. Rev. Immunol. 33::22756
    [Crossref] [Google Scholar]
  185. 185.
    Mukherjee S, Hooper LV. 2015.. Antimicrobial defense of the intestine. . Immunity 42:(1):2839
    [Crossref] [Google Scholar]
  186. 186.
    Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. 2008.. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. . PNAS 105:(52):2085863
    [Crossref] [Google Scholar]
  187. 187.
    Miki T, Holst O, Hardt W-D. 2012.. The bactericidal activity of the C-type lectin RegIIIβ against Gram-negative bacteria involves binding to lipid A. . J. Biol. Chem. 287:(41):3484455
    [Crossref] [Google Scholar]
  188. 188.
    Zhao J, Wang J, Wang H, Lai M. 2013.. Reg proteins and their roles in inflammation and cancer of the human digestive system. . Adv. Clin. Chem. 61::15373
    [Crossref] [Google Scholar]
  189. 189.
    van Beelen Granlund A, Beisvag V, Torp SH, Flatberg A, Kleveland PM, et al. 2011.. Activation of REG family proteins in colitis. . Scand. J. Gastroenterol. 46:(11):131623
    [Crossref] [Google Scholar]
  190. 190.
    Kato Y, Kochi K, Unno H, Goda S, Hatakeyama T. 2014.. Manno-oligosaccharide-binding ability of mouse RegIV/GST-fusion protein evaluated by complex formation with the carbohydrate-containing polyamidoamine dendrimer. . Biosci. Biotechnol. Biochem. 78:(11):19069
    [Crossref] [Google Scholar]
  191. 191.
    Baum LG, Garner OB, Schaefer K, Lee B. 2014.. Microbe–host interactions are positively and negatively regulated by galectin–glycan interactions. . Front. Immunol. 5::284
    [Crossref] [Google Scholar]
  192. 192.
    Vasta GR. 2009.. Roles of galectins in infection. . Nat. Rev. Microbiol. 7:(6):42438
    [Crossref] [Google Scholar]
  193. 193.
    Chen H-Y, Weng I-C, Hong M-H, Liu F-T. 2014.. Galectins as bacterial sensors in the host innate response. . Curr. Opin. Microbiol. 17::7581
    [Crossref] [Google Scholar]
  194. 194.
    Kanagawa M, Liu Y, Hanashima S, Ikeda A, Chai W, et al. 2014.. Structural basis for multiple sugar recognition of Jacalin-related human ZG16p lectin. . J. Biol. Chem. 289:(24):1695465
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012322
Loading
/content/journals/10.1146/annurev-biochem-062917-012322
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error