1932

Abstract

Ribosome biogenesis is a complex and highly energy-demanding process that requires the concerted action of all three nuclear RNA polymerases (Pol I–III) in eukaryotes. The three largest ribosomal RNAs (rRNAs) originate from a precursor transcript (pre-rRNA) that is encoded by multicopy genes located in the nucleolus. Transcription of these rRNA genes (rDNA) by Pol I is the key regulation step in ribosome production and is tightly controlled by an intricate network of signaling pathways and epigenetic mechanisms. In this article, we give an overview of the composition of the basal Pol I machinery and rDNA chromatin. We discuss rRNA gene regulation in response to environmental signals and developmental cues and focus on perturbations occurring in diseases linked to either excessive or limited rRNA levels. Finally, we discuss the emerging view that rDNA integrity and activity may be involved in the aging process.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012612
2018-06-20
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-062917-012612.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012612&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Kressler D, Hurt E, Bassler J 2017. A puzzle of life: crafting ribosomal subunits. Trends Biochem. Sci. 42:640–54
    [Google Scholar]
  2. 2.  Gonzalez IL, Sylvester JE 1995. Complete sequence of the 43-kb human ribosomal DNA repeat: analysis of the intergenic spacer. Genomics 27:320–28
    [Google Scholar]
  3. 3.  Grozdanov P, Georgiev O, Karagyozov L 2003. Complete sequence of the 45-kb mouse ribosomal DNA repeat: analysis of the intergenic spacer. Genomics 82:637–43
    [Google Scholar]
  4. 4.  Henderson AS, Warburton D, Atwood KC 1972. Location of ribosomal DNA in the human chromosome complement. PNAS 69:3394–98
    [Google Scholar]
  5. 5.  Sakai K, Ohta T, Minoshima S, Kudoh J, Wang Y et al. 1995. Human ribosomal RNA gene cluster: identification of the proximal end containing a novel tandem repeat sequence. Genomics 26:521–26
    [Google Scholar]
  6. 6.  Caburet S, Conti C, Schurra C, Lebofsky R, Edelstein SJ, Bensimon A 2005. Human ribosomal RNA gene arrays display a broad range of palindromic structures. Genome Res 15:1079–85
    [Google Scholar]
  7. 7.  Stults DM, Killen MW, Pierce HH, Pierce AJ 2008. Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res 18:13–18
    [Google Scholar]
  8. 8.  Gibbons JG, Branco AT, Godinho SA, Yu S, Lemos B 2015. Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes. PNAS 112:2485–90
    [Google Scholar]
  9. 9.  Robicheau BM, Susko E, Harrigan AM, Snyder M 2017. Ribosomal RNA genes contribute to the formation of pseudogenes and junk DNA in the human genome. Genome Biol. Evol. 9:380–97
    [Google Scholar]
  10. 10.  Conconi A, Widmer RM, Koller T, Sogo JM 1989. Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 57:753–61
    [Google Scholar]
  11. 11.  Strohner R, Nemeth A, Jansa P, Hofmann-Rohrer U, Santoro R et al. 2001. NoRC—a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J 20:4892–900
    [Google Scholar]
  12. 12.  Zhou Y, Grummt I 2005. The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing. Curr. Biol. 15:1434–38
    [Google Scholar]
  13. 13.  Mayer C, Schmitz KM, Li J, Grummt I, Santoro R 2006. Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol. Cell 22:351–61
    [Google Scholar]
  14. 14.  Kuhn A, Grummt I 1987. A novel promoter in the mouse rDNA spacer is active in vivo and in vitro. EMBO J 6:3487–92
    [Google Scholar]
  15. 15.  Shiao YH, Lupascu ST, Gu YD, Kasprzak W, Hwang CJ et al. 2009. An intergenic non-coding rRNA correlated with expression of the rRNA and frequency of an rRNA single nucleotide polymorphism in lung cancer cells. PLOS ONE 4:e7505
    [Google Scholar]
  16. 16.  Leone S, Bar D, Slabber CF, Dalcher D, Santoro R 2017. The RNA helicase DHX9 establishes nucleolar heterochromatin, and this activity is required for embryonic stem cell differentiation. EMBO Rep 18:1248–62
    [Google Scholar]
  17. 17.  Zhou Y, Santoro R, Grummt I 2002. The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription. EMBO J 21:4632–40
    [Google Scholar]
  18. 18.  Santoro R, Li J, Grummt I 2002. The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat. Genet. 32:393–96
    [Google Scholar]
  19. 19.  Guetg C, Scheifele F, Rosenthal F, Hottiger MO, Santoro R 2012. Inheritance of silent rDNA chromatin is mediated by PARP1 via noncoding RNA. Mol. Cell 45:790–800
    [Google Scholar]
  20. 20.  Grummt I, Langst G 2013. Epigenetic control of RNA polymerase I transcription in mammalian cells. Biochim. Biophys. Acta 1829:393–404
    [Google Scholar]
  21. 21.  Li J, Langst G, Grummt I 2006. NoRC-dependent nucleosome positioning silences rRNA genes. EMBO J 25:5735–41
    [Google Scholar]
  22. 22.  Manelyte L, Strohner R, Gross T, Langst G 2014. Chromatin targeting signals, nucleosome positioning mechanism and non-coding RNA-mediated regulation of the chromatin remodeling complex NoRC. PLOS Genet 10:e1004157
    [Google Scholar]
  23. 23.  Schmitz KM, Mayer C, Postepska A, Grummt I 2010. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev 24:2264–69
    [Google Scholar]
  24. 24.  McStay B. 2016. Nucleolar organizer regions: genomic ‘dark matter’ requiring illumination. Genes Dev 30:1598–610
    [Google Scholar]
  25. 25.  Sanij E, Hannan RD 2009. The role of UBF in regulating the structure and dynamics of transcriptionally active rDNA chromatin. Epigenetics 4:374–82
    [Google Scholar]
  26. 26.  Bazett-Jones DP, Leblanc B, Herfort M, Moss T 1994. Short-range DNA looping by the Xenopus HMG-box transcription factor, xUBF. Science 264:1134–37
    [Google Scholar]
  27. 27.  Putnam CD, Copenhaver GP, Denton ML, Pikaard CS 1994. The RNA polymerase I transactivator upstream binding factor requires its dimerization domain and high-mobility-group (HMG) box 1 to bend, wrap, and positively supercoil enhancer DNA. Mol. Cell Biol. 14:6476–88
    [Google Scholar]
  28. 28.  O'Sullivan AC, Sullivan GJ, McStay B 2002. UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat. Mol. Cell Biol. 22:657–68
    [Google Scholar]
  29. 29.  Santoro R, Grummt I 2001. Molecular mechanisms mediating methylation-dependent silencing of ribosomal gene transcription. Mol. Cell 8:719–25
    [Google Scholar]
  30. 30.  Kermekchiev M, Workman JL, Pikaard CS 1997. Nucleosome binding by the polymerase I transactivator upstream binding factor displaces linker histone H1. Mol. Cell Biol. 17:5833–42
    [Google Scholar]
  31. 31.  Sanij E, Poortinga G, Sharkey K, Hung S, Holloway TP et al. 2008. UBF levels determine the number of active ribosomal RNA genes in mammals. J. Cell Biol. 183:1259–74
    [Google Scholar]
  32. 32.  Prieto JL, McStay B 2007. Recruitment of factors linking transcription and processing of pre-rRNA to NOR chromatin is UBF-dependent and occurs independent of transcription in human cells. Genes Dev 21:2041–54
    [Google Scholar]
  33. 33.  Grob A, Colleran C, McStay B 2014. Construction of synthetic nucleoli in human cells reveals how a major functional nuclear domain is formed and propagated through cell division. Genes Dev 28:220–30
    [Google Scholar]
  34. 34.  Mais C, Wright JE, Prieto JL, Raggett SL, McStay B 2005. UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev 19:50–64
    [Google Scholar]
  35. 35.  Tessarz P, Santos-Rosa H, Robson SC, Sylvestersen KB, Nelson CJ et al. 2014. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature 505:564–68
    [Google Scholar]
  36. 36.  Birch JL, Tan BC, Panov KI, Panova TB, Andersen JS et al. 2009. FACT facilitates chromatin transcription by RNA polymerases I and III. EMBO J 28:854–65
    [Google Scholar]
  37. 37.  Hanada K, Song CZ, Yamamoto K, Yano K, Maeda Y et al. 1996. RNA polymerase I associated factor 53 binds to the nucleolar transcription factor UBF and functions in specific rDNA transcription. EMBO J 15:2217–26
    [Google Scholar]
  38. 38.  Panov KI, Panova TB, Gadal O, Nishiyama K, Saito T et al. 2006. RNA polymerase I-specific subunit CAST/hPAF49 has a role in the activation of transcription by upstream binding factor. Mol. Cell Biol. 26:5436–48
    [Google Scholar]
  39. 39.  Bell SP, Learned RM, Jantzen HM, Tjian R 1988. Functional cooperativity between transcription factors UBF1 and SL1 mediates human ribosomal RNA synthesis. Science 241:1192–97
    [Google Scholar]
  40. 40.  Hempel WM, Cavanaugh AH, Hannan RD, Taylor L, Rothblum LI 1996. The species-specific RNA polymerase I transcription factor SL-1 binds to upstream binding factor. Mol. Cell Biol. 16:557–63
    [Google Scholar]
  41. 41.  Drygin D, Rice WG, Grummt I 2010. The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu. Rev. Pharmacol. Toxicol. 50:131–56
    [Google Scholar]
  42. 42.  Heix J, Grummt I 1995. Species specificity of transcription by RNA polymerase I. Curr. Opin. Genet. Dev. 5:652–56
    [Google Scholar]
  43. 43.  Bodem J, Dobreva G, Hoffmann-Rohrer U, Iben S, Zentgraf H et al. 2000. TIF-IA, the factor mediating growth-dependent control of ribosomal RNA synthesis, is the mammalian homolog of yeast Rrn3p. EMBO Rep 1:171–75
    [Google Scholar]
  44. 44.  Moorefield B, Greene EA, Reeder RH 2000. RNA polymerase I transcription factor Rrn3 is functionally conserved between yeast and human. PNAS 97:4724–29
    [Google Scholar]
  45. 45.  Miller G, Panov KI, Friedrich JK, Trinkle-Mulcahy L, Lamond AI, Zomerdijk JC 2001. hRRN3 is essential in the SL1-mediated recruitment of RNA polymerase I to rRNA gene promoters. EMBO J 20:1373–82
    [Google Scholar]
  46. 46.  Yuan X, Zhao J, Zentgraf H, Hoffmann-Rohrer U, Grummt I 2002. Multiple interactions between RNA polymerase I, TIF-IA and TAFI subunits regulate preinitiation complex assembly at the ribosomal gene promoter. EMBO Rep 3:1082–87
    [Google Scholar]
  47. 47.  Gallagher JE, Dunbar DA, Granneman S, Mitchell BM, Osheim Y et al. 2004. RNA polymerase I transcription and pre-rRNA processing are linked by specific SSU processome components. Genes Dev 18:2506–17
    [Google Scholar]
  48. 48.  Turner AJ, Knox AA, Prieto JL, McStay B, Watkins NJ 2009. A novel small-subunit processome assembly intermediate that contains the U3 snoRNP, nucleolin, RRP5, and DBP4. Mol. Cell Biol. 29:3007–17
    [Google Scholar]
  49. 49.  Angelov D, Bondarenko VA, Almagro S, Menoni H, Mongelard F et al. 2006. Nucleolin is a histone chaperone with FACT-like activity and assists remodeling of nucleosomes. EMBO J 25:1669–79
    [Google Scholar]
  50. 50.  Chen S, Seiler J, Santiago-Reichelt M, Felbel K, Grummt I, Voit R 2013. Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Mol. Cell 52:303–13
    [Google Scholar]
  51. 51.  Chen S, Blank MF, Iyer A, Huang B, Wang L et al. 2016. SIRT7-dependent deacetylation of the U3-55k protein controls pre-rRNA processing. Nat. Commun. 7:10734
    [Google Scholar]
  52. 52.  Calo E, Flynn RA, Martin L, Spitale RC, Chang HY, Wysocka J 2015. RNA helicase DDX21 coordinates transcription and ribosomal RNA processing. Nature 518:249–53
    [Google Scholar]
  53. 53.  Sloan KE, Leisegang MS, Doebele C, Ramirez AS, Simm S et al. 2015. The association of late-acting snoRNPs with human pre-ribosomal complexes requires the RNA helicase DDX21. Nucleic Acids Res 43:553–64
    [Google Scholar]
  54. 54.  Xing YH, Yao RW, Zhang Y, Guo CJ, Jiang S et al. 2017. SLERT regulates DDX21 rings associated with Pol I transcription. Cell 169:664–78
    [Google Scholar]
  55. 55.  Morrison DK. 2012. MAP kinase pathways. Cold Spring Harb. Perspect. Biol. 4:a011254
    [Google Scholar]
  56. 56.  Stefanovsky VY, Pelletier G, Hannan R, Gagnon-Kugler T, Rothblum LI, Moss T 2001. An immediate response of ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF. Mol. Cell 8:1063–73
    [Google Scholar]
  57. 57.  Zhao J, Yuan X, Frodin M, Grummt I 2003. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth. Mol. Cell 11:405–13
    [Google Scholar]
  58. 58.  Hers I, Vincent EE, Tavare JM 2011. Akt signalling in health and disease. Cell Signal. 23:1515–27
    [Google Scholar]
  59. 59.  Nguyen LX, Mitchell BS 2013. Akt activation enhances ribosomal RNA synthesis through casein kinase II and TIF-IA. PNAS 110:20681–86
    [Google Scholar]
  60. 60.  Bierhoff H, Dundr M, Michels AA, Grummt I 2008. Phosphorylation by casein kinase 2 facilitates rRNA gene transcription by promoting dissociation of TIF-IA from elongating RNA polymerase I. Mol. Cell Biol. 28:4988–98
    [Google Scholar]
  61. 61.  Lin CY, Navarro S, Reddy S, Comai L 2006. CK2-mediated stimulation of Pol I transcription by stabilization of UBF-SL1 interaction. Nucleic Acids Res 34:4752–66
    [Google Scholar]
  62. 62.  Panova TB, Panov KI, Russell J, Zomerdijk JC 2006. Casein kinase 2 associates with initiation-competent RNA polymerase I and has multiple roles in ribosomal DNA transcription. Mol. Cell Biol. 26:5957–68
    [Google Scholar]
  63. 63.  Drakas R, Tu X, Baserga R 2004. Control of cell size through phosphorylation of upstream binding factor 1 by nuclear phosphatidylinositol 3-kinase. PNAS 101:9272–76
    [Google Scholar]
  64. 64.  Laplante M, Sabatini DM 2013. Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 126:1713–19
    [Google Scholar]
  65. 65.  Hannan KM, Brandenburger Y, Jenkins A, Sharkey K, Cavanaugh A et al. 2003. mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol. Cell Biol. 23:8862–77
    [Google Scholar]
  66. 66.  Mayer C, Zhao J, Yuan X, Grummt I 2004. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev 18:423–34
    [Google Scholar]
  67. 67.  Shimobayashi M, Hall MN 2014. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat. Rev. Mol. Cell Biol. 15:155–62
    [Google Scholar]
  68. 68.  Hoppe S, Bierhoff H, Cado I, Weber A, Tiebe M et al. 2009. AMP-activated protein kinase adapts rRNA synthesis to cellular energy supply. PNAS 106:17781–86
    [Google Scholar]
  69. 69.  Mayer C, Bierhoff H, Grummt I 2005. The nucleolus as a stress sensor: JNK2 inactivates the transcription factor TIF-IA and down-regulates rRNA synthesis. Genes Dev 19:933–41
    [Google Scholar]
  70. 70.  Zhao Z, Dammert MA, Hoppe S, Bierhoff H, Grummt I 2016. Heat shock represses rRNA synthesis by inactivation of TIF-IA and lncRNA-dependent changes in nucleosome positioning. Nucleic Acids Res 44:8144–52
    [Google Scholar]
  71. 71.  Conconi A, Sogo JM, Ryan CA 1992. Ribosomal gene clusters are uniquely proportioned between open and closed chromatin structures in both tomato leaf cells and exponentially growing suspension cultures. PNAS 89:5256–60
    [Google Scholar]
  72. 72.  Bierhoff H, Schmitz K, Maass F, Ye J, Grummt I 2010. Noncoding transcripts in sense and antisense orientation regulate the epigenetic state of ribosomal RNA genes. Cold Spring Harb. Symp. Quant. Biol. 75:357–64
    [Google Scholar]
  73. 73.  Bierhoff H, Dammert MA, Brocks D, Dambacher S, Schotta G, Grummt I 2014. Quiescence-induced lncRNAs trigger H4K20 trimethylation and transcriptional silencing. Mol. Cell 54:675–82
    [Google Scholar]
  74. 74.  Zhao Z, Dammert MA, Grummt I, Bierhoff H 2016. lncRNA-induced nucleosome repositioning reinforces transcriptional repression of rRNA genes upon hypotonic stress. Cell Rep 14:1876–82
    [Google Scholar]
  75. 75.  Murayama A, Ohmori K, Fujimura A, Minami H, Yasuzawa-Tanaka K et al. 2008. Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133:627–39
    [Google Scholar]
  76. 76.  Yang L, Song T, Chen L, Kabra N, Zheng H et al. 2013. Regulation of SirT1-nucleomethylin binding by rRNA coordinates ribosome biogenesis with nutrient availability. Mol. Cell Biol. 33:3835–48
    [Google Scholar]
  77. 77.  Yuan X, Feng W, Imhof A, Grummt I, Zhou Y 2007. Activation of RNA polymerase I transcription by Cockayne syndrome group B protein and histone methyltransferase G9a. Mol. Cell 27:585–95
    [Google Scholar]
  78. 78.  Vaquero A, Scher M, Erdjument-Bromage H, Tempst P, Serrano L, Reinberg D 2007. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 450:440–44
    [Google Scholar]
  79. 79.  Hackett JA, Surani MA 2014. Regulatory principles of pluripotency: from the ground state up. Cell Stem Cell 15:416–30
    [Google Scholar]
  80. 80.  Schlesinger S, Selig S, Bergman Y, Cedar H 2009. Allelic inactivation of rDNA loci. Genes Dev 23:2437–47
    [Google Scholar]
  81. 81.  Savic N, Bar D, Leone S, Frommel SC, Weber FA et al. 2014. lncRNA maturation to initiate heterochromatin formation in the nucleolus is required for exit from pluripotency in ESCs. Cell Stem Cell 15:720–34
    [Google Scholar]
  82. 82.  Woolnough JL, Atwood BL, Liu Z, Zhao R, Giles KE 2016. The regulation of rRNA gene transcription during directed differentiation of human embryonic stem cells. PLOS ONE 11:e0157276
    [Google Scholar]
  83. 83.  Watanabe-Susaki K, Takada H, Enomoto K, Miwata K, Ishimine H et al. 2014. Biosynthesis of ribosomal RNA in nucleoli regulates pluripotency and differentiation ability of pluripotent stem cells. Stem Cells 32:3099–111
    [Google Scholar]
  84. 84.  Zentner GE, Balow SA, Scacheri PC 2014. Genomic characterization of the mouse ribosomal DNA locus. G3 4:243–54
    [Google Scholar]
  85. 85.  Young DW, Hassan MQ, Pratap J, Galindo M, Zaidi SK et al. 2007. Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2. Nature 445:442–46
    [Google Scholar]
  86. 86.  Ali SA, Zaidi SK, Dacwag CS, Salma N, Young DW et al. 2008. Phenotypic transcription factors epigenetically mediate cell growth control. PNAS 105:6632–37
    [Google Scholar]
  87. 87.  Bywater MJ, Pearson RB, McArthur GA, Hannan RD 2013. Dysregulation of the basal RNA polymerase transcription apparatus in cancer. Nat. Rev. Cancer 13:299–314
    [Google Scholar]
  88. 88.  Voit R, Schafer K, Grummt I 1997. Mechanism of repression of RNA polymerase I transcription by the retinoblastoma protein. Mol. Cell Biol. 17:4230–37
    [Google Scholar]
  89. 89.  Hannan KM, Hannan RD, Smith SD, Jefferson LS, Lun M, Rothblum LI 2000. Rb and p130 regulate RNA polymerase I transcription: Rb disrupts the interaction between UBF and SL-1. Oncogene 19:4988–99
    [Google Scholar]
  90. 90.  Budde A, Grummt I 1999. p53 represses ribosomal gene transcription. Oncogene 18:1119–24
    [Google Scholar]
  91. 91.  Zhai W, Comai L 2000. Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol. Cell Biol. 20:5930–38
    [Google Scholar]
  92. 92.  Ayrault O, Andrique L, Larsen CJ, Seite P 2004. Human Arf tumor suppressor specifically interacts with chromatin containing the promoter of rRNA genes. Oncogene 23:8097–104
    [Google Scholar]
  93. 93.  Zhang C, Comai L, Johnson DL 2005. PTEN represses RNA Polymerase I transcription by disrupting the SL1 complex. Mol. Cell Biol. 25:6899–911
    [Google Scholar]
  94. 94.  Zhai W, Tuan JA, Comai L 1997. SV40 large T antigen binds to the TBP-TAFI complex SL1 and coactivates ribosomal RNA transcription. Genes Dev 11:1605–17
    [Google Scholar]
  95. 95.  Bakshi R, Zaidi SK, Pande S, Hassan MQ, Young DW et al. 2008. The leukemogenic t(8;21) fusion protein AML1-ETO controls rRNA genes and associates with nucleolar-organizing regions at mitotic chromosomes. J. Cell Sci. 121:3981–90
    [Google Scholar]
  96. 96.  Arabi A, Wu S, Ridderstrale K, Bierhoff H, Shiue C et al. 2005. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat. Cell Biol. 7:303–10
    [Google Scholar]
  97. 97.  Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA et al. 2005. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat. Cell Biol. 7:311–18
    [Google Scholar]
  98. 98.  Bywater MJ, Poortinga G, Sanij E, Hein N, Peck A et al. 2012. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell 22:51–65
    [Google Scholar]
  99. 99.  Kim DW, Wu N, Kim YC, Cheng PF, Basom R et al. 2016. Genetic requirement for Mycl and efficacy of RNA Pol I inhibition in mouse models of small cell lung cancer. Genes Dev 30:1289–99
    [Google Scholar]
  100. 100.  Justilien V, Ali SA, Jamieson L, Yin N, Cox AD et al. 2017. Ect2-dependent rRNA synthesis is required for KRAS-TRP53-driven lung adenocarcinoma. Cancer Cell 31:256–69
    [Google Scholar]
  101. 101.  Peltonen K, Colis L, Liu H, Trivedi R, Moubarek MS et al. 2014. A targeting modality for destruction of RNA polymerase I that possesses anticancer activity. Cancer Cell 25:77–90
    [Google Scholar]
  102. 102.  Hannan KM, Sanij E, Rothblum LI, Hannan RD, Pearson RB 2013. Dysregulation of RNA polymerase I transcription during disease. Biochim. Biophys. Acta 1829:342–60
    [Google Scholar]
  103. 103.  Yelick PC, Trainor PA 2015. Ribosomopathies: global process, tissue specific defects. Rare Dis 3:e1025185
    [Google Scholar]
  104. 104.  Trainor PA, Dixon J, Dixon MJ 2009. Treacher Collins syndrome: etiology, pathogenesis and prevention. Eur. J. Hum. Genet. 17:275–83
    [Google Scholar]
  105. 105. Treacher Collins Syndr. Collab. Group, Dixon J, Edwards SJ, Gladwin AJ, Dixon MJ et al. 1996. Positional cloning of a gene involved in the pathogenesis of Treacher Collins syndrome. Nat. Genet. 12:130–36
    [Google Scholar]
  106. 106.  Valdez BC, Henning D, So RB, Dixon J, Dixon MJ 2004. The Treacher Collins syndrome (TCOF1) gene product is involved in ribosomal DNA gene transcription by interacting with upstream binding factor. PNAS 101:10709–14
    [Google Scholar]
  107. 107.  Gonzales B, Henning D, So RB, Dixon J, Dixon MJ, Valdez BC 2005. The Treacher Collins syndrome (TCOF1) gene product is involved in pre-rRNA methylation. Hum. Mol. Genet. 14:2035–43
    [Google Scholar]
  108. 108.  Dauwerse JG, Dixon J, Seland S, Ruivenkamp CA, van Haeringen A et al. 2011. Mutations in genes encoding subunits of RNA polymerases I and III cause Treacher Collins syndrome. Nat. Genet. 43:20–22
    [Google Scholar]
  109. 109.  Jones NC, Lynn ML, Gaudenz K, Sakai D, Aoto K et al. 2008. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat. Med. 14:125–33
    [Google Scholar]
  110. 110.  Skibbens RV, Colquhoun JM, Green MJ, Molnar CA, Sin DN et al. 2013. Cohesinopathies of a feather flock together. PLOS Genet 9:e1004036
    [Google Scholar]
  111. 111.  Bose T, Lee KK, Lu S, Xu B, Harris B et al. 2012. Cohesin proteins promote ribosomal RNA production and protein translation in yeast and human cells. PLOS Genet 8:e1002749
    [Google Scholar]
  112. 112.  Harris B, Bose T, Lee KK, Wang F, Lu S et al. 2014. Cohesion promotes nucleolar structure and function. Mol. Biol. Cell 25:337–46
    [Google Scholar]
  113. 113.  Lu S, Lee KK, Harris B, Xiong B, Bose T et al. 2014. The cohesin acetyltransferase Eco1 coordinates rDNA replication and transcription. EMBO Rep 15:609–17
    [Google Scholar]
  114. 114.  Gartenberg MR, Smith JS 2016. The nuts and bolts of transcriptionally silent chromatin in Saccharomyces cerevisiae. Genetics 203:1563–99
    [Google Scholar]
  115. 115.  Kobayashi T, Ganley AR 2005. Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science 309:1581–84
    [Google Scholar]
  116. 116.  Ghidelli S, Donze D, Dhillon N, Kamakaka RT 2001. Sir2p exists in two nucleosome-binding complexes with distinct deacetylase activities. EMBO J 20:4522–35
    [Google Scholar]
  117. 117.  Tanny JC, Kirkpatrick DS, Gerber SA, Gygi SP, Moazed D 2004. Budding yeast silencing complexes and regulation of Sir2 activity by protein-protein interactions. Mol. Cell Biol. 24:6931–46
    [Google Scholar]
  118. 118.  Defossez PA, Prusty R, Kaeberlein M, Lin SJ, Ferrigno P et al. 1999. Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol. Cell 3:447–55
    [Google Scholar]
  119. 119.  Kaeberlein M, McVey M, Guarente L 1999. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–80
    [Google Scholar]
  120. 120.  Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB et al. 2009. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459:802–7
    [Google Scholar]
  121. 121.  Sinclair DA, Guarente L 1997. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91:1033–42
    [Google Scholar]
  122. 122.  Sinclair DA, Mills K, Guarente L 1997. Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 277:1313–16
    [Google Scholar]
  123. 123.  Ide S, Miyazaki T, Maki H, Kobayashi T 2010. Abundance of ribosomal RNA gene copies maintains genome integrity. Science 327:693–96
    [Google Scholar]
  124. 124.  Flach J, Bakker ST, Mohrin M, Conroy PC, Pietras EM et al. 2014. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 512:198–202
    [Google Scholar]
  125. 125.  Ren R, Deng L, Xue Y, Suzuki K, Zhang W et al. 2017. Visualization of aging-associated chromatin alterations with an engineered TALE system. Cell Res 27:483–504
    [Google Scholar]
  126. 126.  Salminen A, Kaarniranta K 2009. SIRT1 regulates the ribosomal DNA locus: epigenetic candles twinkle longevity in the Christmas tree. Biochem. Biophys. Res. Commun. 378:6–9
    [Google Scholar]
  127. 127.  Killen MW, Stults DM, Adachi N, Hanakahi L, Pierce AJ 2009. Loss of Bloom syndrome protein destabilizes human gene cluster architecture. Hum. Mol. Genet. 18:3417–28
    [Google Scholar]
  128. 128.  Postepska-Igielska A, Krunic D, Schmitt N, Greulich-Bode KM, Boukamp P, Grummt I 2013. The chromatin remodelling complex NoRC safeguards genome stability by heterochromatin formation at telomeres and centromeres. EMBO Rep 14:704–10
    [Google Scholar]
  129. 129.  Fontana L, Partridge L 2015. Promoting health and longevity through diet: from model organisms to humans. Cell 161:106–18
    [Google Scholar]
  130. 130.  Pan H, Finkel T 2017. Key proteins and pathways that regulate lifespan. J. Biol. Chem. 292:6452–60
    [Google Scholar]
  131. 131.  Garelick MG, Mackay VL, Yanagida A, Academia EC, Schreiber KH et al. 2013. Chronic rapamycin treatment or lack of S6K1 does not reduce ribosome activity in vivo. Cell Cycle 12:2493–504
    [Google Scholar]
  132. 132.  Cai X, Gao L, Teng L, Ge J, Oo ZM et al. 2015. Runx1 deficiency decreases ribosome biogenesis and confers stress resistance to hematopoietic stem and progenitor cells. Cell Stem Cell 17:165–77
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012612
Loading
/content/journals/10.1146/annurev-biochem-062917-012612
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error