1932

Abstract

RNA polymerase (Pol) III has a specialized role in transcribing the most abundant RNAs in eukaryotic cells, transfer RNAs (tRNAs), along with other ubiquitous small noncoding RNAs, many of which have functions related to the ribosome and protein synthesis. The high energetic cost of producing these RNAs and their central role in protein synthesis underlie the robust regulation of Pol III transcription in response to nutrients and stress by growth regulatory pathways. Downstream of Pol III, signaling impacts posttranscriptional processes affecting tRNA function in translation and tRNA cleavage into smaller fragments that are increasingly attributed with novel cellular activities. In this review, we consider how nutrients and stress control Pol III transcription via its factors and its negative regulator, Maf1. We highlight recent work showing that the composition of the tRNA population and the function of individual tRNAs is dynamically controlled and that unrestrained Pol III transcription can reprogram central metabolic pathways.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012624
2018-06-20
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-062917-012624.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012624&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Waldron C, Lacroute F 1975. Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast. J. Bacteriol. 122:3855–65
    [Google Scholar]
  2. 2.  Ludwig R, Oliver SG, McLaughlin CS 1977. The regulation of RNA synthesis in yeast II: amino acids shift-up experiments. Mol. Gen. Genet. 158:2117–22
    [Google Scholar]
  3. 3.  Zaragoza D, Ghavidel A, Heitman J, Schultz MC 1998. Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol. Cell. Biol. 18:84463–70
    [Google Scholar]
  4. 4.  Powers T, Walter P 1999. Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomycescerevisiae. Mol. Biol. Cell 10:4987–1000
    [Google Scholar]
  5. 5.  Mizuta K, Warner JR 1994. Continued functioning of the secretory pathway is essential for ribosome synthesis. Mol. Cell. Biol. 14:42493–502
    [Google Scholar]
  6. 6.  Nierras CR, Warner JR 1999. Protein kinase C enables the regulatory circuit that connects membrane synthesis to ribosome synthesis in Saccharomycescerevisiae. J. Biol. Chem. 274:1913235–41
    [Google Scholar]
  7. 7.  Li Y, Moir RD, Sethy-Coraci IK, Warner JR, Willis IM 2000. Repression of ribosome and tRNA synthesis in secretion-defective cells is signaled by a novel branch of the cell integrity pathway. Mol. Cell. Biol. 20:113843–51
    [Google Scholar]
  8. 8.  Pluta K, Lefebvre O, Martin NC, Smagowicz WJ, Stanford DR et al. 2001. Maf1p, a negative effector of RNA polymerase III in Saccharomycescerevisiae. Mol. Cell. Biol. 21:155031–40
    [Google Scholar]
  9. 9.  Upadhya R, Lee J, Willis IM 2002. Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription. Mol. Cell 10:61489–94
    [Google Scholar]
  10. 10.  Bonhoure N, Byrnes A, Moir RD, Hodroj W, Preitner F et al. 2015. Loss of the RNA polymerase III repressor Maf1 confers obesity resistance. Genes Dev 29:9934–47
    [Google Scholar]
  11. 11.  Moir RD, Willis IM 2013. Regulation of Pol III transcription by nutrient and stress signaling pathways. Biochim. Biophys. Acta 1829:3–4361–75
    [Google Scholar]
  12. 12.  Boguta M. 2013. Maf1, a general negative regulator of RNA polymerase III in yeast. Biochim. Biophys. Acta 1829:3–4376–84
    [Google Scholar]
  13. 13.  Desai N, Lee J, Upadhya R, Chu Y, Moir RD, Willis IM 2005. Two steps in Maf1-dependent repression of transcription by RNA polymerase III. J. Biol. Chem. 280:86455–62
    [Google Scholar]
  14. 14.  Cabart P, Lee J, Willis IM 2008. Facilitated recycling protects human RNA polymerase III from repression by Maf1 in vitro. J. Biol. Chem. 283:5236108–17
    [Google Scholar]
  15. 15.  Vannini A, Ringel R, Kusser AG, Berninghausen O, Kassavetis GA, Cramer P 2010. Molecular basis of RNA polymerase III transcription repression by Maf1. Cell 143:159–70
    [Google Scholar]
  16. 16.  Dieci G, Sentenac A 1996. Facilitated recycling pathway for RNA polymerase III. Cell 84:2245–52
    [Google Scholar]
  17. 17.  Hoffmann NA, Jakobi AJ, Moreno-Morcillo M, Glatt S, Kosinski J et al. 2015. Molecular structures of unbound and transcribing RNA polymerase III. Nature 528:7581231–36
    [Google Scholar]
  18. 18.  Soulard A, Cremonesi A, Moes S, Schütz F, Jenö P, Hall MN 2010. The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol. Biol. Cell 21:193475–86
    [Google Scholar]
  19. 19.  Chong YT, Koh JLY, Friesen H, Duffy SK, Cox MJ et al. 2015. Yeast proteome dynamics from single cell imaging and automated analysis. Cell 161:61413–24
    [Google Scholar]
  20. 20.  Wei Y, Tsang CK, Zheng XFS 2009. Mechanisms of regulation of RNA polymerase III-dependent transcription by TORC1. EMBO J 28:152220–30
    [Google Scholar]
  21. 21.  Kurischko C, Kuravi VK, Herbert CJ, Luca FC 2011. Nucleocytoplasmic shuttling of Ssd1 defines the destiny of its bound mRNAs. Mol. Microbiol. 81:3831–49
    [Google Scholar]
  22. 22.  Tudisca V, Recouvreux V, Moreno S, Boy-Marcotte E, Jacquet M, Portela P 2010. Differential localization to cytoplasm, nucleus or P-bodies of yeast PKA subunits under different growth conditions. Eur. J. Cell Biol. 89:4339–48
    [Google Scholar]
  23. 23.  Michels AA, Robitaille AM, Buczynski-Ruchonnet D, Hodroj W, Reina JH et al. 2010. mTORC1 directly phosphorylates and regulates human Maf1. Mol. Cell. Biol. 30:153749–57
    [Google Scholar]
  24. 24.  Shor B, Wu J, Shakey Q, Toral-Barza L, Shi C et al. 2010. Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells. J. Biol. Chem. 285:2015380–92
    [Google Scholar]
  25. 25.  Kantidakis T, Ramsbottom BA, Birch JL, Dowding SN, White RJ 2010. mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1. PNAS 107:2611823–28
    [Google Scholar]
  26. 26.  Chaveroux C, Eichner LJ, Dufour CR, Shatnawi A, Khoutorsky A et al. 2013. Molecular and genetic crosstalks between mTOR and ERRα are key determinants of rapamycin-induced nonalcoholic fatty liver. Cell Metab 17:4586–98
    [Google Scholar]
  27. 27.  Moir RD, Lee J, Haeusler RA, Desai N, Engelke DR, Willis IM 2006. Protein kinase A regulates RNA polymerase III transcription through the nuclear localization of Maf1. PNAS 103:4115044–49
    [Google Scholar]
  28. 28.  Huber A, Bodenmiller B, Uotila A, Stahl M, Wanka S et al. 2009. Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev 23:161929–43
    [Google Scholar]
  29. 29.  Lee J, Moir RD, McIntosh KB, Willis IM 2012. Tor signaling regulates ribosome and tRNA synthesis via LAMMER/Clk and GSK-3 family kinases. Mol. Cell 45:6836–43
    [Google Scholar]
  30. 30.  Landrieux E, Alic N, Ducrot C, Acker J, Riva M, Carles C 2006. A subcomplex of RNA polymerase III subunits involved in transcription termination and reinitiation. EMBO J 25:1118–28
    [Google Scholar]
  31. 31.  Wu C-C, Lin Y-C, Chen H-T 2011. The TFIIF-like Rpc37/53 dimer lies at the center of a protein network to connect TFIIIC, Bdp1, and the RNA polymerase III active center. Mol. Cell. Biol. 31:132715–28
    [Google Scholar]
  32. 32.  Kassavetis GA, Prakash P, Shim E 2010. The C53/C37 subcomplex of RNA polymerase III lies near the active site and participates in promoter opening. J. Biol. Chem. 285:42695–706
    [Google Scholar]
  33. 33.  Arimbasseri AG, Maraia RJ 2015. Mechanism of transcription termination by RNA polymerase III utilizes a non-template strand sequence-specific signal element. Mol. Cell 58:61124–32
    [Google Scholar]
  34. 34.  Sanchez-Casalongue ME, Lee J, Diamond A, Shuldiner S, Moir RD, Willis IM 2015. Differential phosphorylation of a regulatory subunit of protein kinase CK2 by target of rapamycin complex 1 signaling and the Cdc-like kinase Kns1. J. Biol. Chem. 290:117221–33
    [Google Scholar]
  35. 35.  Hellerstedt ST, Nash RS, Weng S, Paskov KM, Wong ED et al. 2017. Curated protein information in the Saccharomyces genome database. Database 2017:bax011
    [Google Scholar]
  36. 36.  Ghavidel A, Schultz MC 1997. Casein kinase II regulation of yeast TFIIIB is mediated by the TATA-binding protein. Genes Dev 11:212780–89
    [Google Scholar]
  37. 37.  Ghavidel A, Schultz MC 2001. TATA binding protein-associated CK2 transduces DNA damage signals to the RNA polymerase III transcriptional machinery. Cell 106:5575–84
    [Google Scholar]
  38. 38.  Johnston IM, Allison SJ, Morton JP, Schramm L, Scott PH, White RJ 2002. CK2 forms a stable complex with TFIIIB and activates RNA polymerase III transcription in human cells. Mol. Cell. Biol. 22:113757–68
    [Google Scholar]
  39. 39.  Hu P, Wu S, Hernandez N 2003. A minimal RNA polymerase III transcription system from human cells reveals positive and negative regulatory roles for CK2. Mol. Cell 12:3699–709
    [Google Scholar]
  40. 40.  Hu P, Samudre K, Wu S, Sun Y, Hernandez N 2004. CK2 phosphorylation of Bdp1 executes cell cycle-specific RNA polymerase III transcription repression. Mol. Cell 16:181–92
    [Google Scholar]
  41. 41.  Graczyk D, Debski J, Muszyńska G, Bretner M, Lefebvre O, Boguta M 2011. Casein kinase II-mediated phosphorylation of general repressor Maf1 triggers RNA polymerase III activation. PNAS 108:124926–31
    [Google Scholar]
  42. 42.  St-Denis NA, Litchfield DW 2009. Protein kinase CK2 in health and disease. From birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival. Cell. Mol. Life Sci. 66:11–121817–29
    [Google Scholar]
  43. 43.  Moir RD, Lee J, Willis IM 2012. Recovery of RNA polymerase III transcription from the glycerol-repressed state: revisiting the role of protein kinase CK2 in Maf1 phosphoregulation. J. Biol. Chem. 287:3630833–41
    [Google Scholar]
  44. 44.  Kim H-S, Mukhopadhyay R, Rothbart SB, Silva AC, Vanoosthuyse V et al. 2014. Identification of a BET family bromodomain/casein kinase II/TAF-containing complex as a regulator of mitotic condensin function. Cell Rep 6:5892–905
    [Google Scholar]
  45. 45.  Lee J, Moir RD, Willis IM 2015. Differential phosphorylation of RNA polymerase III and the initiation factor TFIIIB in Saccharomycescerevisiae. PLOS ONE 10:5e0127225
    [Google Scholar]
  46. 46.  Panse VG, Hardeland U, Werner T, Kuster B, Hurt E 2004. A proteome-wide approach identifies sumoylated substrate proteins in yeast. J. Biol. Chem. 279:4041346–51
    [Google Scholar]
  47. 47.  Wohlschlegel JA, Johnson ES, Reed SI, Yates JR 2004. Global analysis of protein sumoylation in Saccharomycescerevisiae. J. Biol. Chem. 279:4445662–68
    [Google Scholar]
  48. 48.  Zhou W, Ryan JJ, Zhou H 2004. Global analyses of sumoylated proteins in Saccharomycescerevisiae. Induction of protein sumoylation by cellular stresses. J. Biol. Chem. 279:3132262–68
    [Google Scholar]
  49. 49.  Hannich JT, Lewis A, Kroetz MB, Li S-J, Heide H et al. 2005. Defining the SUMO-modified proteome by multiple approaches in Saccharomycescerevisiae. J. Biol. Chem. 280:64102–10
    [Google Scholar]
  50. 50.  Neyret-Kahn H, Benhamed M, Ye T, Le Gras S, Cossec J-C et al. 2013. Sumoylation at chromatin governs coordinated repression of a transcriptional program essential for cell growth and proliferation. Genome Res 23:101563–79
    [Google Scholar]
  51. 51.  Chymkowitch P, Nguéa P A, Aanes H, Koehler CJ, Thiede B et al. 2015. Sumoylation of Rap1 mediates the recruitment of TFIID to promote transcription of ribosomal protein genes. Genome Res 25:6897–906
    [Google Scholar]
  52. 52.  Hendriks IA, Lyon D, Young C, Jensen LJ, Vertegaal ACO, Nielsen ML 2017. Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nat. Struct. Mol. Biol. 24:3325–36
    [Google Scholar]
  53. 53.  Chymkowitch P, Nguéa PA, Aanes H, Robertson J, Klungland A, Enserink JM 2017. TORC1-dependent sumoylation of Rpc82 promotes RNA polymerase III assembly and activity. PNAS 114:51039–44
    [Google Scholar]
  54. 54.  Roberts DN, Stewart AJ, Huff JT, Cairns BR 2003. The RNA polymerase III transcriptome revealed by genome-wide localization and activity-occupancy relationships. PNAS 100:2514695–700
    [Google Scholar]
  55. 55.  Rohira AD, Chen C-Y, Allen JR, Johnson DL 2013. Covalent small ubiquitin-like modifier (SUMO) modification of Maf1 protein controls RNA polymerase III-dependent transcription repression. J. Biol. Chem. 288:2619288–95
    [Google Scholar]
  56. 56.  Rosonina E, Akhter A, Dou Y, Babu J, Sri Theivakadadcham VS 2017. Regulation of transcription factors by sumoylation. Transcription 8:4220–31
    [Google Scholar]
  57. 57.  Hietakangas V, Anckar J, Blomster HA, Fujimoto M, Palvimo JJ et al. 2006. PDSM, a motif for phosphorylation-dependent SUMO modification. PNAS 103:145–50
    [Google Scholar]
  58. 58.  Jouffe C, Cretenet G, Symul L, Martin E, Atger F et al. 2013. The circadian clock coordinates ribosome biogenesis. PLOS Biol 11:1e1001455
    [Google Scholar]
  59. 59.  Atger F, Gobet C, Marquis J, Martin E, Wang J et al. 2015. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver. PNAS 112:47E6579–88
    [Google Scholar]
  60. 60.  Mange F, Praz V, Migliavacca E, Willis IM, Schütz F et al. 2017. Diurnal regulation of RNA polymerase III transcription is under the control of both the feeding-fasting response and the circadian clock. Genome Res 27:6973–84
    [Google Scholar]
  61. 61.  Sinturel F, Gerber A, Mauvoisin D, Wang J, Gatfield D et al. 2017. Diurnal oscillations in liver mass and cell size accompany ribosome assembly cycles. Cell 169:4651–63.e14
    [Google Scholar]
  62. 62.  Schibler U, Gotic I, Saini C, Gos P, Curie T et al. 2015. Clock-talk: interactions between central and peripheral circadian oscillators in mammals. Cold Spring Harb. Symp. Quant. Biol. 80:223–32
    [Google Scholar]
  63. 63.  Asher G, Sassone-Corsi P 2015. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 161:184–92
    [Google Scholar]
  64. 64.  Atger F, Mauvoisin D, Weger B, Gobet C, Gachon F 2017. Regulation of mammalian physiology by interconnected circadian and feeding rhythms. Front. Endocrinol. 8:42
    [Google Scholar]
  65. 65.  Wang J, Mauvoisin D, Martin E, Atger F, Galindo AN et al. 2017. Nuclear proteomics uncovers diurnal regulatory landscapes in mouse liver. Cell Metab 25:1102–17
    [Google Scholar]
  66. 66.  White RJ. 2005. RNA polymerases I and III, growth control and cancer. Nat. Rev. Mol. Cell Biol. 6:169–78
    [Google Scholar]
  67. 67.  White RJ. 2008. RNA polymerases I and III, non-coding RNAs and cancer. Trends Genet 24:12622–29
    [Google Scholar]
  68. 68.  Gjidoda A, Henry RW 2013. RNA polymerase III repression by the retinoblastoma tumor suppressor protein. Biochim. Biophys. Acta 1829:3–4385–92
    [Google Scholar]
  69. 69.  Grewal SS. 2015. Why should cancer biologists care about tRNAs? tRNA synthesis, mRNA translation and the control of growth. Biochim. Biophys. Acta 1849:7898–907
    [Google Scholar]
  70. 70.  Johnson SAS, Dubeau L, Johnson DL 2008. Enhanced RNA polymerase III-dependent transcription is required for oncogenic transformation. J. Biol. Chem. 283:2819184–91
    [Google Scholar]
  71. 71.  Palian BM, Rohira AD, Johnson SAS, He L, Zheng N et al. 2014. Maf1 is a novel target of pPTEN and PI3K signaling that negatively regulates oncogenesis and lipid metabolism. PLOS Genet 10:12e1004789
    [Google Scholar]
  72. 72.  Johnson SS, Zhang C, Fromm J, Willis IM, Johnson DL 2007. Mammalian Maf1 is a negative regulator of transcription by all three nuclear RNA polymerases. Mol. Cell 26:3367–79
    [Google Scholar]
  73. 73.  Li Y, Tsang CK, Wang S, Li X-X, Yang Y et al. 2016. Maf1 suppresses AKT-mTOR signaling and liver cancer through activation of PTEN transcription. Hepatology 63:61928–42
    [Google Scholar]
  74. 74.  Johnson DL, Stiles BL 2016. Maf1, a new PTEN target linking RNA and lipid metabolism. Trends Endocrinol. Metab. 27:10742–50
    [Google Scholar]
  75. 75.  Pavon-Eternod M, Gomes S, Geslain R, Dai Q, Rosner MR, Pan T 2009. tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res 37:217268–80
    [Google Scholar]
  76. 76.  Zhou Y, Goodenbour JM, Godley LA, Wickrema A, Pan T 2009. High levels of tRNA abundance and alteration of tRNA charging by bortezomib in multiple myeloma. Biochem. Biophys. Res. Commun. 385:2160–64
    [Google Scholar]
  77. 77.  Dittmar KA, Goodenbour JM, Pan T 2006. Tissue-specific differences in human transfer RNA expression. PLOS Genet 2:12e221
    [Google Scholar]
  78. 78.  Gingold H, Tehler D, Christoffersen NR, Nielsen MM, Asmar F et al. 2014. A dual program for translation regulation in cellular proliferation and differentiation. Cell 158:61281–92
    [Google Scholar]
  79. 79.  Subramaniam AR, Pan T, Cluzel P 2013. Environmental perturbations lift the degeneracy of the genetic code to regulate protein levels in bacteria. PNAS 110:62419–24
    [Google Scholar]
  80. 80.  Quax TEF, Claassens NJ, Söll D, van der Oost J 2015. Codon bias as a means to fine-tune gene expression. Mol. Cell 59:2149–61
    [Google Scholar]
  81. 81.  Novoa EM, Ribas de Pouplana L 2012. Speeding with control: codon usage, tRNAs, and ribosomes. Trends Genet 28:11574–81
    [Google Scholar]
  82. 82.  Kirchner S, Ignatova Z 2015. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat. Rev. Genet. 16:298–112
    [Google Scholar]
  83. 83.  Rudolph KLM, Schmitt BM, Villar D, White RJ, Marioni JC et al. 2016. Codon-driven translational efficiency is stable across diverse mammalian cell states. PLOS Genet 12:5e1006024
    [Google Scholar]
  84. 84.  Goodarzi H, Nguyen HCB, Zhang S, Dill BD, Molina H, Tavazoie SF 2016. Modulated expression of specific tRNAs drives gene expression and cancer progression. Cell 165:61416–27
    [Google Scholar]
  85. 85.  Pavon-Eternod M, Gomes S, Rosner MR, Pan T 2013. Overexpression of initiator methionine tRNA leads to global reprogramming of tRNA expression and increased proliferation in human epithelial cells. RNA 19:4461–66
    [Google Scholar]
  86. 86.  Rideout EJ, Marshall L, Grewal SS 2012. Drosophila RNA polymerase III repressor Maf1 controls body size and developmental timing by modulating tRNAiMet synthesis and systemic insulin signaling. PNAS 109:41139–44
    [Google Scholar]
  87. 87.  Clarke CJ, Berg TJ, Birch J, Ennis D, Mitchell L et al. 2016. The initiator methionine tRNA drives secretion of type II collagen from stromal fibroblasts to promote tumor growth and angiogenesis. Curr. Biol. 26:6755–65
    [Google Scholar]
  88. 88.  Birch J, Clarke CJ, Campbell AD, Campbell K, Mitchell L et al. 2016. The initiator methionine tRNA drives cell migration and invasion leading to increased metastatic potential in melanoma. Biol. Open 5:101371–79
    [Google Scholar]
  89. 89.  Huang H-Y, Hopper AK 2016. Multiple layers of stress-induced regulation in tRNA biology. Life 6:216
    [Google Scholar]
  90. 90.  Flavahan WA, Gaskell E, Bernstein BE 2017. Epigenetic plasticity and the hallmarks of cancer. Science 357:6348eaal2380
    [Google Scholar]
  91. 91.  Canella D, Praz V, Reina JH, Cousin P, Hernandez N 2010. Defining the RNA polymerase III transcriptome: genome-wide localization of the RNA polymerase III transcription machinery in human cells. Genome Res 20:6710–21
    [Google Scholar]
  92. 92.  Moqtaderi Z, Wang J, Raha D, White RJ, Snyder M et al. 2010. Genomic binding profiles of functionally distinct RNA polymerase III transcription complexes in human cells. Nat. Struct. Mol. Biol. 17:5635–40
    [Google Scholar]
  93. 93.  Barski A, Chepelev I, Liko D, Cuddapah S, Fleming AB et al. 2010. Pol II and its associated epigenetic marks are present at Pol III-transcribed noncoding RNA genes. Nat. Struct. Mol. Biol. 17:5629–34
    [Google Scholar]
  94. 94.  Oler AJ, Alla RK, Roberts DN, Wong A, Hollenhorst PC et al. 2010. Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors. Nat. Struct. Mol. Biol. 17:5620–28
    [Google Scholar]
  95. 95.  Orioli A, Praz V, Lhôte P, Hernandez N 2016. Human Maf1 targets and represses active RNA polymerase III genes by preventing recruitment rather than inducing long-term transcriptional arrest. Genome Res 26:5624–35
    [Google Scholar]
  96. 96.  Alla RK, Cairns BR 2014. RNA polymerase III transcriptomes in human embryonic stem cells and induced pluripotent stem cells, and relationships with pluripotency transcription factors. PLOS ONE 9:1e85648
    [Google Scholar]
  97. 97.  Schmitt BM, Rudolph KLM, Karagianni P, Fonseca NA, White RJ et al. 2014. High-resolution mapping of transcriptional dynamics across tissue development reveals a stable mRNA-tRNA interface. Genome Res 24:111797–807
    [Google Scholar]
  98. 98.  Turowski TW, Leśniewska E, Delan-Forino C, Sayou C, Boguta M, Tollervey D 2016. Global analysis of transcriptionally engaged yeast RNA polymerase III reveals extended tRNA transcripts. Genome Res 26:7933–44
    [Google Scholar]
  99. 99.  Hopper AK. 2013. Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomycescerevisiae. Genetics 194:143–67
    [Google Scholar]
  100. 100.  Megel C, Morelle G, Lalande S, Duchêne A-M, Small I, Maréchal-Drouard L 2015. Surveillance and cleavage of eukaryotic tRNAs. Int. J. Mol. Sci. 16:11873–93
    [Google Scholar]
  101. 101.  Gu C, Begley TJ, Dedon PC 2014. tRNA modifications regulate translation during cellular stress. FEBS Lett 588:234287–96
    [Google Scholar]
  102. 102.  Czech A, Wende S, Mörl M, Pan T, Ignatova Z 2013. Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress. PLOS Genet 9:8e1003767
    [Google Scholar]
  103. 103.  Kumar P, Kuscu C, Dutta A 2016. Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem. Sci. 41:8679–89
    [Google Scholar]
  104. 104.  Gudipati RK, Xu Z, Lebreton A, Séraphin B, Steinmetz LM et al. 2012. Extensive degradation of RNA precursors by the exosome in wild-type cells. Mol. Cell 48:3409–21
    [Google Scholar]
  105. 105.  Schneider C, Kudla G, Wlotzka W, Tuck A, Tollervey D 2012. Transcriptome-wide analysis of exosome targets. Mol. Cell 48:3422–33
    [Google Scholar]
  106. 106.  Porrua O, Libri D 2013. RNA quality control in the nucleus: the angels’ share of RNA. Biochim. Biophys. Acta 1829:6–7604–11
    [Google Scholar]
  107. 107.  Maraia RJ, Lamichhane TN 2011. 3′ processing of eukaryotic precursor tRNAs. Wiley Interdiscip. Rev. RNA 2:3362–75
    [Google Scholar]
  108. 108.  Skowronek E, Grzechnik P, Späth B, Marchfelder A, Kufel J 2014. tRNA 3′ processing in yeast involves tRNAse Z, Rex1, and Rrp6. RNA 20:1115–30
    [Google Scholar]
  109. 109.  Foretek D, Wu J, Hopper AK, Boguta M 2016. Control of Saccharomycescerevisiae pre-tRNA processing by environmental conditions. RNA 22:3339–49
    [Google Scholar]
  110. 110.  Foretek D, Nuc P, Żywicki M, Karlowski WM, Kudla G, Boguta M 2017. Maf1-mediated regulation of yeast RNA polymerase III is correlated with CCA addition at the 3′ end of tRNA precursors. Gene 612:12–18
    [Google Scholar]
  111. 111.  Kramer EB, Hopper AK 2013. Retrograde transfer RNA nuclear import provides a new level of tRNA quality control in Saccharomycescerevisiae. PNAS 110:5221042–47
    [Google Scholar]
  112. 112.  Agris PF. 2004. Decoding the genome: a modified view. Nucleic Acids Res 32:1223–38
    [Google Scholar]
  113. 113.  Endres L, Dedon PC, Begley TJ 2015. Codon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses. RNA Biol 12:6603–14
    [Google Scholar]
  114. 114.  Schaefer M, Kapoor U, Jantsch MF 2017. Understanding RNA modifications: the promises and technological bottlenecks of the “epitranscriptome.”. Open Biol 7:5170077
    [Google Scholar]
  115. 115.  Arimbasseri AG, Blewett NH, Iben JR, Lamichhane TN, Cherkasova V et al. 2015. RNA polymerase III output is functionally linked to tRNA dimethyl-G26 modification. PLOS Genet 11:12e1005671
    [Google Scholar]
  116. 116.  Alexandrov A, Chernyakov I, Gu W, Hiley SL, Hughes TR et al. 2006. Rapid tRNA decay can result from lack of nonessential modifications. Mol. Cell 21:187–96
    [Google Scholar]
  117. 117.  Duechler M, Leszczyńska G, Sochacka E, Nawrot B 2016. Nucleoside modifications in the regulation of gene expression: focus on tRNA. Cell. Mol. Life Sci. 73:163075–95
    [Google Scholar]
  118. 118.  Dong C, Niu L, Song W, Xiong X, Zhang X et al. 2016. tRNA modification profiles of the fast-proliferating cancer cells. Biochem. Biophys. Res. Commun. 476:4340–45
    [Google Scholar]
  119. 119.  Chan CTY, Pang YLJ, Deng W, Babu IR, Dyavaiah M et al. 2012. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat. Commun. 3:937
    [Google Scholar]
  120. 120.  Liu F, Clark W, Luo G, Wang X, Fu Y et al. 2016. ALKB1-mediated tRNA demethylation regulates translation. Cell 167:3816–28.e16
    [Google Scholar]
  121. 121.  Yamasaki S, Ivanov P, Hu G-F, Anderson P 2009. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J. Cell Biol. 185:135–42
    [Google Scholar]
  122. 122.  Fu H, Feng J, Liu Q, Sun F, Tie Y et al. 2009. Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett 583:2437–42
    [Google Scholar]
  123. 123.  Saikia M, Krokowski D, Guan B-J, Ivanov P, Parisien M et al. 2012. Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress. J. Biol. Chem. 287:5142708–25
    [Google Scholar]
  124. 124.  Mesitov MV, Soldatov RA, Zaichenko DM, Malakho SG, Klementyeva TS et al. 2017. Differential processing of small RNAs during endoplasmic reticulum stress. Sci. Rep. 7:46080
    [Google Scholar]
  125. 125.  Thompson DM, Parker R 2009. The RNAse Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomycescerevisiae. J. Cell Biol. 185:143–50
    [Google Scholar]
  126. 126.  Lyons SM, Fay MM, Akiyama Y, Anderson PJ, Ivanov P 2017. RNA biology of angiogenin: current state and perspectives. RNA Biol 14:2171–78
    [Google Scholar]
  127. 127.  Thompson DM, Parker R 2009. Stressing out over tRNA cleavage. Cell 138:2215–19
    [Google Scholar]
  128. 128.  Luhtala N, Parker R 2012. Structure-function analysis of Rny1 in tRNA cleavage and growth inhibition. PLOS ONE 7:7e41111
    [Google Scholar]
  129. 129.  Huang H, Kawamata T, Horie T, Tsugawa H, Nakayama Y et al. 2015. Bulk RNA degradation by nitrogen starvation-induced autophagy in yeast. EMBO J 34:2154–68
    [Google Scholar]
  130. 130.  Dhahbi JM, Spindler SR, Atamna H, Yamakawa A, Boffelli D et al. 2013. 5′ tRNA halves are present as abundant complexes in serum, concentrated in blood cells, and modulated by aging and calorie restriction. BMC Genom 14:298
    [Google Scholar]
  131. 131.  Yeri A, Courtright A, Reiman R, Carlson E, Beecroft T et al. 2017. Total extracellular small RNA profiles from plasma, saliva, and urine of healthy subjects. Sci. Rep. 7:44061
    [Google Scholar]
  132. 132.  Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG et al. 2016. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351:6271391–96
    [Google Scholar]
  133. 133.  Peng H, Shi J, Zhang Y, Zhang H, Liao S et al. 2012. A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res 22:111609–12
    [Google Scholar]
  134. 134.  Keam SP, Hutvagner G 2015. tRNA-derived fragments (tRFs): emerging new roles for an ancient RNA in the regulation of gene expression. Life 5:41638–51
    [Google Scholar]
  135. 135.  Gebetsberger J, Polacek N 2013. Slicing tRNAs to boost functional ncRNA diversity. RNA Biol 10:121798–806
    [Google Scholar]
  136. 136.  Zhou J, Liu S, Chen Y, Fu Y, Silver AJ et al. 2017. Identification of two novel functional tRNA-derived fragments induced in response to respiratory syncytial virus infection. J. Gen. Virol. 98:71600–10
    [Google Scholar]
  137. 137.  Wang Q, Lee I, Ren J, Ajay SS, Lee YS, Bao X 2013. Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Mol. Ther. 21:2368–79
    [Google Scholar]
  138. 138.  Honda S, Kirino Y 2016. SHOT-RNAs: a novel class of tRNA-derived functional RNAs expressed in hormone-dependent cancers. Mol. Cell. Oncol. 3:2e1079672
    [Google Scholar]
  139. 139.  Goodarzi H, Liu X, Nguyen HCB, Zhang S, Fish L, Tavazoie SF 2015. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 161:4790–802
    [Google Scholar]
  140. 140.  Chen Q, Yan M, Cao Z, Li X, Zhang Y et al. 2016. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351:6271397–400
    [Google Scholar]
  141. 141.  Warner JR. 1999. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24:11437–40
    [Google Scholar]
  142. 142.  Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB et al. 2000. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11:124241–57
    [Google Scholar]
  143. 143.  Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C et al. 2016. A global genetic interaction network maps a wiring diagram of cellular function. Science 353:6306aaf1420
    [Google Scholar]
  144. 144.  Oie S, Matsuzaki K, Yokoyama W, Tokunaga S, Waku T et al. 2014. Hepatic rRNA transcription regulates high-fat-diet-induced obesity. Cell Rep 7:3807–20
    [Google Scholar]
  145. 145.  Willis IM. 2018. Maf1 phenotypes and cell physiology. Biochim. Biophys. Acta 4:330–37
    [Google Scholar]
  146. 146.  Bonhoure N, Bounova G, Bernasconi D, Praz V, Lammers F et al. 2014. Quantifying ChIP-seq data: a spiking method providing an internal reference for sample-to-sample normalization. Genome Res 24:71157–68
    [Google Scholar]
  147. 147.  Lane AN, Fan TW-M 2015. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res 4342466–85
    [Google Scholar]
  148. 148.  Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H et al. 2015. A roadmap for interpreting 13C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34:189–201
    [Google Scholar]
  149. 149.  Geiduschek EP, Kassavetis GA 2001. The RNA polymerase III transcription apparatus. J. Mol. Biol. 310:11–26
    [Google Scholar]
  150. 150.  Schramm L, Hernandez N 2002. Recruitment of RNA polymerase III to its target promoters. Genes Dev 16:202593–620
    [Google Scholar]
  151. 151.  Dumay-Odelot H, Durrieu-Gaillard S, El Ayoubi L, Parrot C, Teichmann M 2014. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription. Transcription 5:1e27526
    [Google Scholar]
  152. 152.  Khatter H, Vorländer MK, Müller CW 2017. RNA polymerase I and III: similar yet unique. Curr. Opin. Struct. Biol. 47:88–94
    [Google Scholar]
  153. 153.  Khoo S-K, Wu C-C, Lin Y-C, Lee J-C, Chen H-T 2014. Mapping the protein interaction network for TFIIIB-related factor Brf1 in the RNA polymerase III preinitiation complex. Mol. Cell. Biol. 34:3551–59
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012624
Loading
/content/journals/10.1146/annurev-biochem-062917-012624
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error