1932

Abstract

In this autobiographical article, I reflect on my Swedish background. Then I discuss endogenous DNA alterations and the base excision repair pathway and alternative repair strategies for some unusual DNA lesions. Endogenous DNA damage, such as loss of purine bases and cytosine deamination, is proposed as a major source of cancer-causing mutations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-071322-020214
2023-06-20
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/biochem/92/1/annurev-biochem-071322-020214.html?itemId=/content/journals/10.1146/annurev-biochem-071322-020214&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Lindahl T. 1982. DNA repair enzymes. Annu. Rev. Biochem. 51:61–87
    [Google Scholar]
  2. 2.
    Lindahl T. 1974. An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. PNAS 71:3649–53
    [Google Scholar]
  3. 3.
    Lindahl T. 1993. Instability and decay of the primary structure of DNA. Nature 362:709–15
    [Google Scholar]
  4. 4.
    Friedberg EC. 1997. Correcting the Blueprint of Life. An Historical Account of the Discovery of DNA Repair Mechanisms Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press
  5. 5.
    Strauss BS. 2018. Why is DNA double stranded? The discovery of DNA excision repair mechanisms. Genetics 209:357–66
    [Google Scholar]
  6. 6.
    Barnes DE, Lindahl T. 2004. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu. Rev. Genet. 38:445–76
    [Google Scholar]
  7. 7.
    Dianov GL, Hübscher U. 2013. Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res. 41:3483–90
    [Google Scholar]
  8. 8.
    Lindahl T. 2015. The intrinsic fragility of DNA. The Nobel Prizes 2015 K Grandin 73–84. Sagamore Beach, MA: Science History Publications/USA
    [Google Scholar]
  9. 9.
    Friedberg EC, Elledge SJ, Lehmann AR, Lindahl T, Muzi-Falconi M, eds. 2014. DNA Repair, Mutagenesis and Other Responses to DNA Damage Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press
  10. 10.
    Slupphaug G, Krokan HE, eds. 2018. Genomic Uracil, Evolution, Biology, Immunology and Disease Singapore: World Scientific Publishing Co.
  11. 11.
    Weston KM. 2014. Country life – repair and replication. Blue Skies and Bench Space. Adventures in Cancer Research81–121. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press
    [Google Scholar]
  12. 12.
    Tubbs A, Nussenzweig A. 2017. Endogenous DNA damage as a source of genomic instability in cancer. Cell 168:644–56
    [Google Scholar]
  13. 13.
    Weeks ME, Larson ME. 1937. JA Arfwedson and his services to chemistry. J. Chem. Edu. 14:403–7
    [Google Scholar]
  14. 14.
    Wood RD, Robins P, Lindahl T. 1988. Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts. Cell 53:97–106
    [Google Scholar]
  15. 15.
    Wood RD, Mitchell M, Sgouros J, Lindahl T. 2001. Human DNA repair genes. Science 291:1284–89
    [Google Scholar]
  16. 16.
    Wood RD, Lowery M. 2020. Human DNA repair genes. Wood Laboratory https://www.mdanderson.org/documents/Labs/Wood-Laboratory/human-dna-repair-genes.html
    [Google Scholar]
  17. 17.
    Olsson M, Lindahl T. 1980. Repair of alkylated DNA in Escherichia coli. Methyl group transfer from O6-methylguanine to a protein cysteine residue. J. Biol. Chem. 255:10569–71
    [Google Scholar]
  18. 18.
    Teo I, Sedgwick B, Kilpatrick MW, McCarthy TV, Lindahl T. 1986. The intracellular signal for induction of resistance to alkylating agents in E. coli. Cell 45:315–24
    [Google Scholar]
  19. 19.
    Lindahl T. 2016. The world of DNA in glycol solution. Nat. Rev. Mol. Cell Biol. 17:335–36
    [Google Scholar]
  20. 20.
    Hoeijmakers JH. 2009. DNA damage, aging, and cancer. N. Engl. J. Med. 361:1475–85
    [Google Scholar]
  21. 21.
    Niedernhofer LJ, Gurkar AU, Wang Y, Vijg J, Hoeijmakers JHJ, Robbins PD. 2018. Nuclear genomic instability and aging. Annu. Rev. Biochem. 87:295–322
    [Google Scholar]
  22. 22.
    Al Zouabi L, Bardin AJ 2020. Stem cell DNA damage and genome mutation in the context of aging and cancer initiation. Cold Spring Harb. Perspect. Biol. 12:a036210
    [Google Scholar]
  23. 23.
    Abascal F, Harvey LMR, Mitchell E, Lawson ARJ, Lensing SV et al. 2021. Somatic mutation landscapes at single-molecule resolution. Nature 593:405–10
    [Google Scholar]
  24. 24.
    Cagan A, Baez-Ortega A, Brzozowska N, Abascal F, Coorens THH et al. 2022. Somatic mutation rates scale with lifespan across mammals. Nature 604:517–24
    [Google Scholar]
  25. 25.
    Cleaver JE. 1968. Defective repair replication of DNA in xeroderma pigmentosum. Nature 218:652–56
    [Google Scholar]
  26. 26.
    Rydberg B, Lindahl T. 1982. Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction. EMBO J. 1:211–16
    [Google Scholar]
  27. 27.
    Sedgwick B, Bates PA, Paik J, Jacobs SC, Lindahl T. 2007. Repair of alkylated DNA: recent advances. DNA Repair. 6:429–42
    [Google Scholar]
  28. 28.
    Pontel LB, Rosado IV, Burgos-Barragan G, Garaycoechea JI, Yu R et al. 2015. Endogenous formaldehyde is a hematopoietic stem cell genotoxin and metabolic carcinogen. Mol. Cell 60:177–88
    [Google Scholar]
  29. 29.
    Garaycoechea JI, Crossan GP, Langevin F, Mulderrig L, Louzada S et al. 2018. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature 553:171–77
    [Google Scholar]
  30. 30.
    Xia J, Chiu LY, Nehring RB, Bravo Núñez MA, Mei Q et al. 2019. Bacteria-to-human protein networks reveal origins of endogenous DNA damage. Cell 176:127–43
    [Google Scholar]
  31. 31.
    Trewick SC, Henshaw TF, Hausinger RP, Lindahl T, Sedgwick B. 2002. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature 419:174–78
    [Google Scholar]
  32. 32.
    Falnes , Johansen RF, Seeberg E. 2002. AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature 419:178–82
    [Google Scholar]
  33. 33.
    Jia G, Fu Y, Zhao X, Dai Q, Zheng G et al. 2011. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7:885–87
    [Google Scholar]
  34. 34.
    Rada C, Williams GT, Nilsen H, Barnes DE, Lindahl T, Neuberger MS. 2002. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr. Biol. 12:1748–55
    [Google Scholar]
  35. 35.
    Truini A, Germano G, Bardelli A. 2018. Inactivation of DNA repair prospects for boosting cancer immune surveillance. Genome Med. 10:91–93
    [Google Scholar]
  36. 36.
    Lindahl T, Adams A, Bjursell G, Bornkamm GW, Kaschka-Dierich C, Jehn U. 1976. Covalently closed circular duplex DNA of Epstein-Barr virus in a human lymphoid cell line. J. Mol. Biol. 102:511–30
    [Google Scholar]
  37. 37.
    Kaschka-Dierich C, Adams A, Lindahl T, Bornkamm GW, Bjursell G et al. 1976. Intracellular forms of Epstein-Barr virus DNA in human tumour cells in vivo. Nature 260:302–6
    [Google Scholar]
  38. 38.
    Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ et al. 2022. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375:296–301
    [Google Scholar]
  39. 39.
    Yang YG, Lindahl T, Barnes DE. 2007. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131:873–86
    [Google Scholar]
  40. 40.
    Lindahl T, Barnes DE, Yang YG, Robins P. 2009. Biochemical properties of mammalian TREX1 and its association with DNA replication and inherited inflammatory disease. Biochem. Soc. Trans. 37:Part 3535–38
    [Google Scholar]
  41. 41.
    Prasad R, Longley MJ, Sharief FS, Hou EW, Copeland WC, Wilson SH. 2009. Human DNA polymerase theta possesses 5′-dRP lyase activity and functions in single-nucleotide base excision repair in vitro. Nucleic Acids Res. 37:1868–77
    [Google Scholar]
  42. 42.
    Satoh MS, Lindahl T. 1992. Role of poly(ADP-ribose) formation in DNA repair. Nature 356:356–58
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-071322-020214
Loading
/content/journals/10.1146/annurev-biochem-071322-020214
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error