Chlorophylls are magnesium-tetrapyrrole molecules that play essential roles in photosynthesis. All chlorophylls have similar five-membered ring structures, with variations in the side chains and/or reduction states. Formyl group substitutions on the side chains of chlorophyll result in the different absorption properties of chlorophyll , chlorophyll , and chlorophyll . These formyl substitution derivatives exhibit different spectral shifts according to the formyl substitution position. Not only does the presence of various types of chlorophylls allow the photosynthetic organism to harvest sunlight at different wavelengths to enhance light energy input, but the pigment composition of oxygenic photosynthetic organisms also reflects the spectral properties on the surface of the Earth. Two major environmental influencing factors are light and oxygen levels, which may play central roles in the regulatory pathways leading to the different chlorophylls. I review the biochemical processes of chlorophyll biosynthesis and their regulatory mechanisms.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Chen M, Scheer H. 1.  2013. Extending the limits of natural photosynthesis and implications of technical light harvesting. J. Porphyr. Phthalocyanines 17:1–15 [Google Scholar]
  2. Hoober JK, Eggink LL, Chen M. 2.  2007. Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts. Photosynth. Res. 94:387–400 [Google Scholar]
  3. Chen M, Blankenship RE. 3.  2011. Expanding the solar spectrum used by photosynthesis. Trends Plant Sci. 16:427–31 [Google Scholar]
  4. Goericke R, Repeta D. 4.  1992. The pigments of Prochlorococcus marines: the presence of divinylchlorophyll a and b in a marine prokaryote. Limnol. Oceanogr. 37:425–33 [Google Scholar]
  5. Manning WM, Strain H. 5.  1943. Pigments of algae. J. Biol. Chem. 151:1–19 [Google Scholar]
  6. Chen M, Schliep M, Willows R, Cai Z-L, Neilan BA. 6.  et al. 2010. A red-shifted chlorophyll. Science 329:1318–19 [Google Scholar]
  7. Tsuchiya T, Mizoguchi T, Akimoto S, Tomo T, Tamiaki H. 7.  et al. 2012. Metabolic engineering of the Chl d–dominated cyanobacterium Acaryochloris marina: production of a novel Chl species by the introduction of the chlorophyllide a oxygenase gene. Plant Cell Physiol. 53:518–27 [Google Scholar]
  8. Björn LO, Papageorgiou GC, Blankenship RE, Govindjee. 8.  2009. A viewpoint: why chlorophyll a?. Photosynth. Res. 99:85–98 [Google Scholar]
  9. Larkum T, Howe CJ. 9.  1997. Molecular aspects of light-harvesting processes in algae. Adv. Bot. Res. 27:258–30 [Google Scholar]
  10. Jeffrey SW, Vesk M. 10.  1997. Introduction to marine phytoplankton and their pigment signatures. Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods SW Jeffrey, RFC Mantoura, SW Wright 37–84 Paris: UNESCO Publ. [Google Scholar]
  11. Larkum AWD, Scaramuzzi C, Cox GC, Hiller RG, Turner AG. 11.  1994. Light-harvesting chlorophyll c–like pigment in Prochloron. Proc. Natl. Acad. Sci. USA 91:679–83 [Google Scholar]
  12. Zapata M, Garrido JL, Jeffrey SW. 12.  2006. Chlorophyll c pigments: current status. Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications B Grimm, R Porra, W Rüdiger, H Scheer 39–53 Dordrecht, Neth.: Springer [Google Scholar]
  13. Miyasita H, Adachi K, Kurano N, Ikemoto H, Chihara M. 13.  et al. 1996. Chlorophyll d as a major pigment. Nature 383:402 [Google Scholar]
  14. Chen M, Quinnell RG, Larkum AWD. 14.  2002. The major light-harvesting pigment protein of Acaryochloris marina. FEBS Lett. 514:149–52 [Google Scholar]
  15. Schiller H, Senger H, Miyashita H, Miyachi S, Dau H. 15.  1997. Light-harvesting in Acaryochloris marina—spectroscopic characterization of a chlorophyll d–dominated photosynthetic antenna system. FEBS Lett. 410:433–36 [Google Scholar]
  16. Chen M, Bibby TS, Nield J, Larkum AWD, Barber J. 16.  2005. Iron effects on function and localisation of antenna system binding with Chl d. Biochim. Biophys. Acta 1708:367–74 [Google Scholar]
  17. Chen M, Bibby TS, Nield J, Larkum AWD, Barber J. 17.  2005. Structure of a large photosystem II supercomplex from Acaryochloris marina. FEBS Lett. 579:1306–10 [Google Scholar]
  18. Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S. 18.  et al. 1998. A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 95:13319–23 [Google Scholar]
  19. Chen M, Telfer A, Lin S, Pascal A, Larkum AWD. 19.  et al. 2005. The nature of the photosystem II reaction centre in the chlorophyll d containing prokaryote, Acaryochloris marina. Photochem. Photobiol. Sci. 4:1060–64 [Google Scholar]
  20. Tomo T, Okubo T, Akimoto S, Yokono M, Miyashita H. 20.  et al. 2007. Identification of the special pair of photosystem II in a chlorophyll d–dominated cyanobacterium. Proc. Natl. Acad. Sci. USA 104:7283–88 [Google Scholar]
  21. Miller SR, Augustine S, Olson TL, Blankenship RE, Selker J. 21.  et al. 2005. Discovery of a free-living chlorophyll d–producing cyanobacterium with a hybrid proteobacterial cyanobacterial small-subunit rRNA gene. Proc. Natl. Acad. Sci. USA 102:850–55 [Google Scholar]
  22. Kashiyama Y, Miyashita H, Ohkubo S, Ogawa NO, Chikaraishi Y. 22.  et al. 2008. Evidence of global chlorophyll d. Science 321:658 [Google Scholar]
  23. Mohr R, Voss B, Schliep M, Kurz T, Maldener I. 23.  et al. 2010. Niche adaptation in a new chlorophyll d–containing cyanobacterium from the genus Acaryochloris. ISME J. 4:1456–69 [Google Scholar]
  24. Kühl M, Chen M, Ralph P, Schreiber U, Larkum AWD. 24.  2005. A niche for cyanobacteria containing chlorophyll d. Nature 433:820 [Google Scholar]
  25. Behrendt L, Larkum AWD, Norman A, Qvortrup K, Chen M. 25.  et al. 2011. Endolithic chlorophyll d containing phototrophs. ISME J. 5:1072–76 [Google Scholar]
  26. Chen M, Li Y, Birch D, Willows RD. 26.  2012. A cyanobacterium that contains chlorophyll f—a red-absorbing photopigment. FEBS Lett. 586:3249–54 [Google Scholar]
  27. Akutsu S, Fujinuma D, Furukawa H, Watanabe T, Ohnishi-Kameyama M. 27.  et al. 2011. Pigment analysis of a chlorophyll f–containing cyanobacterium strain KC1 isolated from Lake Biwa. Photomed. Photobiol. 33:35–40 [Google Scholar]
  28. Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB. 28.  et al. 1988. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–43 [Google Scholar]
  29. Partensky F, Hess WR, Vaulot D. 29.  1999. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63:106–27 [Google Scholar]
  30. Garczarek L, Dufresne A, Rousvoal S, West NJ, Mazard S. 30.  et al. 2007. High vertical and low horizontal diversity of Prochlorococcus ecotypes in the Mediterranean Sea in summer. FEMS Microbiol. Ecol. 60:189–206 [Google Scholar]
  31. Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P. 31.  et al. 2003. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–47 [Google Scholar]
  32. Woodward RB.32.  1960. The total synthesis of chlorophyll. Pure Appl. Chem. 2:383 [Google Scholar]
  33. Burrell JWK, Jackmann LM, Weedon BCL. 33.  1959. Stereochemistry and synthesis of phytol, geraniol and nerol. Proc. Chem. Soc. 1959:263–64 [Google Scholar]
  34. Xiong J, Bauer CE. 34.  2002. Complex evolution of photosynthesis. Annu. Rev. Plant Biol. 53:503–21 [Google Scholar]
  35. Stenbaek A, Jensen PE. 35.  2010. Redox regulation of chlorophyll biosynthesis. Phytochemistry 71:853–59 [Google Scholar]
  36. Reid JD, Hunter CN. 36.  2004. Magnesium dependent ATPase activity and cooperativity of magnesium chelatase from Synechocystis sp. PCC6803. J. Biol. Chem. 279:26893–99 [Google Scholar]
  37. Sawicki A, Willows RD. 37.  2008. Kinetic analyses of the magnesium chelatase provide insights into the mechanism, structure, and formation of the complex. J. Biol. Chem. 283:11652–60 [Google Scholar]
  38. Cornah JE, Roper JM, Singh DP, Smith AG. 38.  2002. Measurement of ferrochelatase activity using a novel assay suggests that plastids are the major site of heme biosynthesis in both photosynthetic and non-photosynthetic cells of pea (Pisum sativum L.). Biochem. J. 362:423–32 [Google Scholar]
  39. Chew AG, Bryant DA. 39.  2007. Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu. Rev. Microbiol. 61:113–29 [Google Scholar]
  40. Willows RD, Gibson LC, Kanangara CG, Hunter CN, von Wettstein D. 40.  1996. Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides. Eur. J. Biochem. 235:438–43 [Google Scholar]
  41. Qian P, Marklew CJ, Viney J, Davison PA, Brindley AA. 41.  et al. 2012. Structure of the cyanobacterial magnesium chelatase H subunit determined by single particle reconstruction and small-angle X-ray scattering. J. Biol. Chem. 287:4946–56 [Google Scholar]
  42. Jensen PE, Gibson LC, Hunter CN. 42.  1999. ATPase activity associated with the magnesium–protoporphyrin IX chelatase enzyme of Synechocystis PCC6803: evidence for ATP hydrolysis during Mg2+ insertion, and the MgATP-dependent interaction of the ChlI and ChlD subunits. Biochem. J. 339:127–34 [Google Scholar]
  43. Fodje MN, Hansson A, Hansson M, Oslen JG, Gough S. 43.  et al. 2001. Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J. Mol. Biol. 311:111–22 [Google Scholar]
  44. Lundqvist J, Elmlund H, Wulff RP, Berglund L, Elmlund D. 44.  et al. 2010. ATP-induced conformational dynamics in the AAA+ motor unit of magnesium chelatase. Structure 18:354–65 [Google Scholar]
  45. Reid JD, Siebert CA, Bullough PA, Hunter CN. 45.  2003. The ATPase activity of the Ch1I subunit of magnesium chelatase and formation of a heptameric AAA+ ring. Biochemistry 42:6912–20 [Google Scholar]
  46. Willows RD, Hansson A, Birch D, Al-Karadaghi S, Hansson M. 46.  2004. EM single particle analysis of the ATP-dependent BchI complex of magnesium chelatase: an AAA+ hexamer. J. Struct. Biol. 146:227–33 [Google Scholar]
  47. Willows RD, Lake V, Roberts TH, Beale SI. 47.  2003. Inactivation of Mg chelatase during transition from anaerobic to aerobic growth in Rhodobacter capsulatus. J. Bacteriol. 185:3249–58 [Google Scholar]
  48. Masuda TT.48.  2008. Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. Photosynth. Res. 96:121–43 [Google Scholar]
  49. Mochizuki N, Tanaka R, Grimm B, Masuda T, Moulin M. 49.  et al. 2010. The cell biology of tetrapyrroles: a life and death struggle. Trends Plant Sci. 15:488–98 [Google Scholar]
  50. Ishijima S, Uchibori A, Takagi H, Maki R, Ohnishi M. 50.  2003. Light-induced increase in free Mg2+ concentration in spinach chloroplasts: measurement of free Mg2+ by using a fluorescent probe and necessity of stromal alkalinization. Arch. Biochem. Biophys. 412:126–32 [Google Scholar]
  51. Nakayama M, Masuda T, Bando T, Yamagata H, Ohta H. 51.  et al. 1998. Cloning and expression of the soybean chlH gene encoding a subunit of Mg-chelatase and localization of the Mg2+ concentration–dependent ChlH protein within the chloroplast. Plant Cell Physiol. 39:275–84 [Google Scholar]
  52. Watanabe N, Che F-S, Iwano M, Takayama S, Yoshida S. 52.  et al. 2001. Dual targeting of spinach protoporphyrinogen oxidase II to mitochondria and chloroplasts by alternative use of two in-frame initiation codons. J. Biol. Chem. 276:20474–81 [Google Scholar]
  53. Jensen PE, Reid JD, Hunter CN. 53.  2000. Modification of cysteine residues in the ChlI and ChlH subunits of magnesium chelatase results in enzyme inactivation. Biochem. J. 352:435–41 [Google Scholar]
  54. Ikegami A, Yoshimura N, Motohashi K, Takahashi S, Romano PG. 54.  et al. 2007. The CHLI1 subunit of Arabidopsis thaliana magnesium chelatase is a target protein of the chloroplast thioredoxin. J. Biol. Chem. 282:19282–91 [Google Scholar]
  55. Tanaka R, Tanaka A. 55.  2007. Tetrapyrrole biosynthesis in higher plants. Annu. Rev. Plant Biol. 58:321–46 [Google Scholar]
  56. Luo T, Fan T, Liu Y, Rothbart M, Yu J. 56.  et al. 2012. Thioredoxin redox-regulates ATPase activity of Mg chelatase CHLI subunit and modulates redox-mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants. Plant Physiol. 159:118–30 [Google Scholar]
  57. Rissler H, Collakova E, DellaPenna D, Pogson BJ. 57.  2002. Chlorophyll biosynthesis: Characterization of the CHL I subunit of the magnesium chelatase in Arabidopsis reveals two gene products with different properties. Plant Physiol. 128:770–79 [Google Scholar]
  58. Kobayashi K, Mochizuki N, Yoshimura N, Motohashi K, Hisabori T. 58.  et al. 2008. Functional analysis of Arabidopsis thaliana isoforms of the Mg-chelatase CHLI subunit. Photochem. Photobiol. Sci. 7:1188–95 [Google Scholar]
  59. Aarti DP, Tanaka R, Tanaka A. 59.  2006. Effects of oxidative stress on chlorophyll biosynthesis in cucumber (Cucumis sativus) cotyledons. Physiol. Plant 128:186–97 [Google Scholar]
  60. Larkin RM, Alonso JM, Ecker JR, Chory J. 60.  2003. GUN4, a regulator of chlorophyll synthesis and intracellular signalling. Science 299:902–6 [Google Scholar]
  61. Zhou S, Sawicki A, Willows RD, Luo M. 61.  2012. C-terminal residues of Oryza sativa GUN4 are required for the activation of the ChlH subunit of magnesium chelatase in chlorophyll synthesis. FEBS Lett. 586:205–10 [Google Scholar]
  62. Wilder A, Mikolajczyk S, Alawady A, Lokstein H, Grimm B. 62.  2004. The gun4 gene is essential for cyanobacterial porphyrin metabolism. FEBS Lett. 571:119–23 [Google Scholar]
  63. Adhikari ND, Fröhlich JE, Strand DD, Buck SM, Kramer DM. 63.  et al. 2011. GUN4–porphyrin complexes bind the ChlH/GUN5 subunit of Mg-chelatase and promote chlorophyll biosynthesis in Arabidopsis. Plant Cell 23:1449–67 [Google Scholar]
  64. Davison PA, Schubert HL, Reid JD, Iorg CD, Heroux A. 64.  et al. 2005. Structural and biochemical characterization of Gun4 suggests a mechanism for its role in chlorophyll biosynthesis. Biochemistry 44:7603–12 [Google Scholar]
  65. Verdecia MA, Larkin RM, Ferrer IJ, Riek R, Chory J. 65.  et al. 2005. Structure of the Mg-chelatase cofactor GUN4 reveals a novel hand-shaped fold for porphyrin binding. PLoS Biol. 3:e151 [Google Scholar]
  66. Peter E, Grimm B. 66.  2009. GUN4 is required for posttranslational control of plant tetrapyrrole biosynthesis. Mol. Plant 2:1198–210 [Google Scholar]
  67. Bouvier F, Linka N, Isner J-C, Mutterer J, Weber APM. 67.  et al. 2006. Arabidopsis SAMT1 defines a plastid transporter regulating plastid biogenesis and plant development. Plant Cell 18:3088–105 [Google Scholar]
  68. Van Wilder V, De Brouwer V, Loizeau K, Gambonnet B, Albrieux C. 68.  et al. 2009. C1 metabolism and chlorophyll synthesis: The Mg–protoporphyrin IX methyltransferase activity is dependent on the folate status. New Physiol. 182:137–45 [Google Scholar]
  69. Gorchein A, Gibson LC, Hunter CN. 69.  1993. Gene expression and control of enzymes for synthesis of magnesium protoporphyrin monomethyl ester in Rhodobacter sphaeroides. Biochem. Soc. Trans. 21:201S [Google Scholar]
  70. Hinchigeri SB, Hundle B, Richards WR. 70.  1997. Demonstration that the BchH protein of Rhodobacter capsulatus activates S-adenosyl-L-methionine: magnesium protoporphyrin methyltransferase. FEBS Lett. 407:337–42 [Google Scholar]
  71. Shepherd M, McLean S, Hunter CN. 71.  2005. Kinetic basis for linking the first two enzymes of chlorophyll biosynthesis. FEBS J. 272:4532–39 [Google Scholar]
  72. Alawady A, Reski R, Yaronskaya E, Grimm B. 72.  2004. Cloning and expression of tobacco Mg protoporphyrin IX methyltransferase and its interaction with Mg chelatase. Plant Mol. Biol. 57:679–91 [Google Scholar]
  73. Pontier D, Albrieux C, Joyard J, Lagrange T, Block MA. 73.  2007. Knock-out of the magnesium protoporphyrin IX methyltransferase gene in Arabidopsis. Effects on chloroplast development and on chloroplast-to-nucleus signalling. J. Biol. Chem. 282:2297–304 [Google Scholar]
  74. Alawady A, Grimm B. 74.  2005. Tobacco Mg protoporphyrin IX methyltransferase is involved in inverse activation of Mg porphyrin and protoheme synthesis. Plant J. 41:282–90 [Google Scholar]
  75. Ouchane S, Steunou AS, Picaud M, Astier C. 75.  2004. Aerobic and anaerobic Mg protoporphyrin monomethyl ester cyclases in purple bacteria: a strategy adopted to bypass the repressive oxygen control system. J. Biol. Chem. 279:6385–94 [Google Scholar]
  76. Raymond J, Blankenship RE. 76.  2004. Biosynthetic pathways, gene replacement and the antiquity of life. Geobiology 2:199–203 [Google Scholar]
  77. Minamizaki K, Mizoguchi T, Goto T, Tamiaki H, Fujita Y. 77.  2008. Identification of two homologous genes, chlAI and chlAII, that are differentially involved in isocyclic ring formation of chlorophyll a in the cyanobacterium Synechocystis sp. PCC 6803. J. Biol. Chem. 283:2684–92 [Google Scholar]
  78. Peter E, Salinas A, Wallner T, Jeske D, Dienst D. 78.  et al. 2009. Differential requirement of two homologous proteins encoded by sll1214 and sll1874 for the reaction of Mg protoporphyrin monomethylester oxidative cyclase under aerobic and micro-oxic growth conditions. Biochim. Biophys. Acta 1787:1458–67 [Google Scholar]
  79. Wong YS, Castelfranco PA, Goff DA, Smith KM. 79.  1985. Intermediates in the formation of the chlorophyll isocyclic ring. Plant Physiol. 79:725–29 [Google Scholar]
  80. Bollivar DW, Beale SI. 80.  1996. The chlorophyll biosynthetic enzyme Mg–protoporphyrin IX monomethyl ester (oxidative) cyclase: characterization and partial purification from Chlamydomonas reinhardtii and Synechocystis sp PCC 6803. Plant Physiol. 112:105–14 [Google Scholar]
  81. Hollingshead S, Kopečná J, Jackson PJ, Canniffe DP, Davison PA. 81.  et al. 2012. Conserved chloroplast open-reading frame ycf54 is required for activity of the magnesium protoporphyrin monomethylester oxidative cyclase in Synechocystis PCC 6803. J. Biol. Chem. 287:27823–33 [Google Scholar]
  82. Nagata N, Tanaka R, Satoh S, Tanaka A. 82.  2005. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17:233–40 [Google Scholar]
  83. Wang P, Wan C, Xu Z, Wang P, Wang W. 83.  et al. 2013. One divinyl reductase reduces the 8-vinyl groups in various intermediates of chlorophyll biosynthesis in a given higher plant species, but the isozyme differs between species. Plant Physiol. 161:521–34 [Google Scholar]
  84. Kolossov VL, Bohnert HJ, Rebeiz CA. 84.  2006. Chloroplast biogenesis 92: in situ screening for divinyl chlorophyll(ide) a reductase mutants by spectrofluorometry. Anal. Biochem. 348:192–97 [Google Scholar]
  85. Liu Z, Bryant DA. 85.  2011. Multiple types of 8-vinyl reductases for (bacterio)chlorophyll biosynthesis occur in many green sulfur bacteria. J. Biol. Chem. 193:4996–98 [Google Scholar]
  86. Ito H, Yokono M, Tanaka R, Tanaka A. 86.  2008. Identification of a novel vinyl reductase gene essential for the biosynthesis of monovinyl chlorophyll in Synechocystis sp. PCC6803. J. Biol. Chem. 283:9002–11 [Google Scholar]
  87. Islam MR, Aikawa S, Midorikawa T, Kashino Y, Satoh K, Koike H. 87.  2008. slr1923 of Synechocystis sp. PCC6803 is essential for conversion of 3,8-divinyl(proto)chlorophyll(ide) to 3-monovinyl(proto)chlorophyll(ide). Plant Physiol. 148:1068–81 [Google Scholar]
  88. Heyes DJ, Kruk J, Hunter CN. 88.  2006. Spectroscopic and kinetic characterization of the light-dependent enzyme protochlorophyllide oxidoreductase (POR) using monovinyl and divinyl substrates. Biochem. J. 394:243–48 [Google Scholar]
  89. Kownallik KV, Stoebe B, Schaffran I, Kroth-Pancie P, Freier U. 89.  1995. The chloroplast genome of a chlorophyll a+c–containing alga, Odontella sinensis. Plant Mol. Biol. Rep. 13:336–42 [Google Scholar]
  90. Oudot–Le Secq MP, Grimwood J, Shapiro H, Armbrust EV. 90.  et al. 2007. Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: comparison with other plastid genomes of the red lineage. Mol. Genet. Genomics 277:427–39 [Google Scholar]
  91. Puerta MV, Bachvaroff TR, Delwiche CF. 91.  2005. The complete plastid genome sequence of the haptophyte Emiliania huxleyi: a comparison to other plastid genomes. DNA Res. 12:151–56 [Google Scholar]
  92. Douglas SE, Penny SL. 92.  1999. The plastid genome of the cryptophyte alga, Guillardia theta: Complete sequence and conserved synteny groups confirm its common ancestry with red algae. J. Mol. Evol. 48:236–44 [Google Scholar]
  93. Kořený L, Sobotka R, Janouškovec J, Keeling PJ, Oborník M. 93.  2011. Tetrapyrrole synthesis of photosynthetic chromerids is likely homologous to the unusual pathway of apicomplexan parasites. Plant Cell 23:3454–62 [Google Scholar]
  94. Choquet Y, Rahire M, Girard-Bascou J, Erickson J, Rochaix JD. 94.  1992. A chloroplast gene is required for the light-independent accumulation of chlorophyll in Chlamydomonas reinhardtii. EMBO J. 11:1697–704 [Google Scholar]
  95. Shi C, Shi X. 95.  2006. Characterization of three genes encoding the subunits of light-independent protochlorophyllide reductase in Chlorella protothecoides CS-41. Biotechnol. Prog. 22:1050–55 [Google Scholar]
  96. Kohchi T, Shirai H, Fukuzawa H, Sano T, Komano T. 96.  et al. 1988. Structure and organization of Marchantia olymorpha chloroplast genome. IV. Inverted repeat and small single copy regions. J. Mol. Biol. 203:353–72 [Google Scholar]
  97. Stirewalt VL, Michalowski CB, Loffelhardt W, Bohnert HJ, Bryant DA. 97.  1995. Nucleotide sequence of the cyanelle genome from Cyanophora paradoxa. Plant Mol. Biol. Rep. 13:327–32 [Google Scholar]
  98. Reith ME, Munholland J. 98.  1995. Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol. Biol. Rep. 13:333–35 [Google Scholar]
  99. Fong A, Archibald MA. 99.  2008. Evolutionary dynamics of light-independent protochlorophyllide oxidoreductase genes in the secondary plastids of cryotophyte algae. Eukaryot. Cell 7:550–53 [Google Scholar]
  100. Muraki N, Nomata J, Ebata K, Mizoguchi T, Shiba T. 100.  et al. 2010. X-ray crystal structure of the light-independent protochlorophyllide reductase. Nature 465:110–14 [Google Scholar]
  101. Raymond J, Siefert J, Staples C, Blankenship RE. 101.  2004. The natural history of nitrogen fixation. Mol. Biol. Evol. 21:541–54 [Google Scholar]
  102. Zhaxybayeva O, Gogarten JP, Charlebois RL, Doolittle WF, Papke RT. 102.  2006. Phylogenetic analysis of cyanobacterial genomic quantification of horizontal gene transfer events. Genome Res. 16:1099–108 [Google Scholar]
  103. Heyes DJ, Hunter N. 103.  2005. Making light work of enzyme catalysis: protochlorophyllide oxidoreductase. Trends Biochem. Sci. 30:642–49 [Google Scholar]
  104. Lebedev N, Timko MP. 104.  1998. Protochlorophyllide photoreduction. Photosynth. Res. 58:5–23 [Google Scholar]
  105. Sytina OA, van Stokkum IHM, Heyes DJ, Hunter CN, Groot ML. 105.  2012. Spectroscopic characterization of the first ultrafast catalytic intermediate in protochlorophyllide oxidoreductase. Phys. Chem. Chem. Phys. 14:616–25 [Google Scholar]
  106. Reinbothe C, Buhr F, Bartsch S, Desvignes C, Quigley F. 106.  et al. 2006. In vitro mutagenesis of NADPH:protochlorophyllide oxidoreductase B: Two distinctive protochlorophyllide binding sites participate in enzyme catalysis and assembly. Mol. Genet. Genomics 275:540–52 [Google Scholar]
  107. Armstrong GA, Runge S, Frick G, Sperling U, Apel K. 107.  1995. Identification of NADPH: protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol. 108:1505–17 [Google Scholar]
  108. Oosawa N, Masuda T, Awai K, Fusada N, Shimada H. 108.  et al. 2000. Identification and light-induced expression of a novel gene of NADPH–protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. FEBS Lett. 474:133–36 [Google Scholar]
  109. Pollmann S, Springer A, Buhr F, Lahroussi A, Samol I. 109.  et al. 2007. A plant porphyria related to defects in plastid import of protochlorophyllide oxidoreductase A. Proc. Natl. Acad. Sci. USA 104:2019–23 [Google Scholar]
  110. Buhr F, Bakkouri EI, Valdez O, Pollmann S, Lebedev N. 110.  et al. 2008. Photoprotective role of NADPH:protochlorophyllide oxidoreductase A. Proc. Natl. Acad. Sci. USA 105:12629–34 [Google Scholar]
  111. Fusada N, Masuda T, Kuroda H, Shiraishi T, Shimada H. 111.  et al. 2000. NADPH-protochlorophyllide oxidoreductase in cucumber is encoded by a single gene and its expression is transcriptionally enhanced by illumination. Photosynth. Res. 64:147–54 [Google Scholar]
  112. Sundqvist C, Dahlin C. 112.  1997. With chlorophyll pigment from prolamellar bodies to light harvesting complexes. Physiol. Plant. 100:748–59 [Google Scholar]
  113. Shalygo N, Czarnecki O, Peter E, Grimm B. 113.  2009. Expression of chlorophyll synthesis is also involved in feedback control of chlorophyll biosynthesis. Plant Mol. Biol. 71:425–36 [Google Scholar]
  114. von Wettstein D, Gough S, Kannangara CG. 114.  1995. Chlorophyll biosynthesis. Plant Cell 7:1039–57 [Google Scholar]
  115. Schliep M, Crossett B, Willows RD, Chen M. 115.  2010. 18O-labelling of chlorophyll d in Acaryochloris marina reveals chlorophyll a and molecular oxygen are precursors. J. Biol. Chem. 285:28450–56 [Google Scholar]
  116. Kräutler B.116.  2011. A new factor in life's quest for energy. Angew. Chem. Int. Ed. 50:2439–41 [Google Scholar]
  117. Larkum AWD.117.  2006. The evolution of chlorophylls and photosynthesis. Chlorophylls and Bacteriochlorophylls: Advances in Photosynthesis and Respiration B Grimm, RJ Porra, W Rüdiger, H Scheer 261–82 Berlin: Springer [Google Scholar]
  118. Kashiyama Y, Ogawa NO, Shiro M, Tada R, Kitazato H. 118.  et al. 2008. Reconstruction of the biogeochemistry and ecology of photoautotrophs based on the nitrogen and carbon isotopic compositions of vanadyl porphyrins from Miocene siliceous sediments. Biogeosciences Discuss. 5:361–409 [Google Scholar]
  119. Schneegurt MA, Beale IS. 119.  1992. Origin of chlorophyll b formyl oxygen in Chlorella vulgaris. Biochemistry 31:11677–83 [Google Scholar]
  120. Porra RJ, Schäfer W, Cmiel E, Katheder I, Scheer H. 120.  1994. The derivation of the formyl group oxygen of chlorophyll b in higher plants from molecular oxygen: achievement of high enrichment of the 7-formyl group oxygen from 18O2 in greening maize leaves. Eur. J. Biochem. 219:671–79 [Google Scholar]
  121. Tanaka A, Itoh H, Tanaka R, Tanaka NK, Yoshida K. 121.  et al. 1998. Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc. Natl. Acad. Sci. USA 95:12719–23 [Google Scholar]
  122. Chen M, Willows R, Blankenship RE. 122.  2011. Gene constructs comprising nucleic acids that modulate chlorophyll biosynthesis and uses thereof. WO Patent 2,011,143,716 A1 [Google Scholar]
  123. Tomitani A, Okada K, Miyashita H, Matthijs HCP, Ohno T. 123.  et al. 1999. Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400:159–62 [Google Scholar]
  124. Oster U, Tanaka R, Tanaka A, Rüdiger W. 124.  2000. Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J. 21:305–10 [Google Scholar]
  125. Reinbothe C, Bartsch S, Eggink LL, Hoober JK, Brusslan J. 125.  et al. 2006. A role for chlorophyllide a oxygenase in the regulated import and stabilization of light-harvesting chlorophyll a/b proteins. Proc. Natl. Acad. Sci. USA 103:4777–82 [Google Scholar]
  126. Masuda T, Tanaka A, Melis A. 126.  2003. Chlorophyll antenna size adjustments by irradiance in Dunaliella salina involve coordinate regulation of chlorophyll a oxygenase (CAO) and Lhcb gene expression. Plant Mol. Biol. 51:757–71 [Google Scholar]
  127. Chen M, Bibby TS. 127.  2005. Photosynthetic apparatus of antenna-reaction centres supercomplexes in oxyphotobacteria: insight through significance of Pcb/IsiA proteins. Photosynth. Res. 86:165–73 [Google Scholar]
  128. Chen M, Zhang Y, Blankenship RE. 128.  2008. Nomenclature for membrane-bound light-harvesting complexes of cyanobacteria. Photosynth. Res. 95:147–54 [Google Scholar]
  129. Hirashima M, Satoh S, Tanaka R, Tanaka A. 129.  2006. Pigment shuffling in antenna systems achieved by expressing prokaryotic chlorophytide a oxygenase in Arabidopsis. J. Biol. Chem. 281:15385–393 [Google Scholar]
  130. Xu H, Vavilin D, Vermaas W. 130.  2001. Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria. Proc. Natl. Acad. Sci. USA 98:14168–73 [Google Scholar]
  131. Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM. 131.  et al. 2003. Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc. Natl. Acad. Sci. USA 100:10020–25 [Google Scholar]
  132. Satoh S, Tanaka A. 132.  2006. Identification of chlorophyllide a oxygenase in the Prochlorococcus genome by a comparative genomic approach. Plant Cell Physiol. 47:1622–29 [Google Scholar]
  133. Rüdiger W.133.  2002. Biosynthesis of chlorophyll b and the chlorophyll cycle. Photosynth. Res. 74:187–93 [Google Scholar]
  134. Pattanayak GK, Biswal AK, Reddy VS, Tripathy BC. 134.  2005. Light-dependent regulation of chlorophyll b biosynthesis in chlorophyllide a oxygenase (CAO) overexpressing tobacco plants. Biochem. Biophys. Res. Commun. 326:466–71 [Google Scholar]
  135. Tanaka R, Tanaka A. 135.  2005. Effects of chlorophyllide a oxygenase overexpression on light acclimation in Arabidopsis thaliana. Photosynth. Res. 85:327–40 [Google Scholar]
  136. Yamasato A, Nagata N, Tanaka R, Tanaka A. 136.  2005. The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll b accumulation in Arabidopsis. Plant Cell 17:1585–97 [Google Scholar]
  137. Leong TY, Anderson JM. 137.  1984. Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. I. Study on the distribution of chlorophyll–protein complexes. Photosynth. Res. 5:105–15 [Google Scholar]
  138. Hoober JK, Eggink LL. 138.  2001. A potential role of chlorophylls b and c in assembly of light-harvesting complexes. FEBS Lett. 489:1–3 [Google Scholar]
  139. Murakami A, Miyashita H, Iseki M, Adachi K, Mimuro M. 139.  2004. Chlorophyll d in an epiphytic cyanobacterium of red algae. Science 303:1633 [Google Scholar]
  140. Loughlin P, Lin Y, Chen M. 140.  2013. Chlorophyll d and Acaryochloris marina: current status. Photosynth. Res. 116:277–93 [Google Scholar]
  141. Swingley WD, Chen M, Cheung PC, Conrad AL, Dejesa LC. 141.  et al. 2008. Genome expansion in the chlorophyll d–producing cyanobacterium Acaryochloris marina. Proc. Natl. Acad. Sci. USA 105:2005–10 [Google Scholar]
  142. Chen M, Eggink LL, Hoober JK, Larkum AWD. 142.  2005. Influence of structure on binding of chlorophylls to peptide ligands. J. Am. Chem. Soc. 127:2052–53 [Google Scholar]
  143. Sytina OA, Heyes DJ, Hunter CN, Alexandre MT, van Stokkum IHM. 143.  et al. 2008. Conformational changes in an ultrafast light-driven enzyme determine catalytic activity. Nature 456:1001–5 [Google Scholar]
  144. Tanaka R, Tanaka A. 144.  2011. Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochim. Biophys. Acta 1807:968–76 [Google Scholar]
  145. Czarnecki O, Grimm B. 145.  2012. Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. J. Exp. Bot. 63:1675–87 [Google Scholar]
  146. Samuilov VD.146.  2005. Energy problems in life evolution. Biochemistry 70:246–50 [Google Scholar]
  147. Hohmann-Marriott MF, Blankenship RE. 147.  2011. Evolution of photosynthesis. Annu. Rev. Plant Biol. 62:515–48 [Google Scholar]
  148. Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ. 148.  2005. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 102:11131–36 [Google Scholar]
  149. Obornik M, Green BR. 149.  2005. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol. Biol. Evol. 22:2343–53 [Google Scholar]
  150. Knox RS, Spring BQ. 150.  2003. Dipole strengths in the chlorophylls. Photochem. Photobiol. 77:497–501 [Google Scholar]
  151. Chen M, Cai Z-L. 151.  2007. Theoretical study on the thermodynamic properties of chlorophyll d–peptides coordinating ligand. Biochim. Biophys. Acta 1767:603–9 [Google Scholar]
  152. Yamazaki S, Nomata J, Fujita Y. 152.  2006. Differential operation of dual protochlorophyllide reductases for chlorophyll biosynthesis in response to environmental oxygen levels in the cyanobacterium Leptolyngbya boryana. Plant Physiol. 142:911–22 [Google Scholar]
  153. Fujita Y, Takagi H, Hase T. 153.  1998. Cloning of the gene encoding a protochlorophyllide reductase: the physiological significance of the co-existence of light-dependent and -independent protochlorophyllide reduction systems in the cyanobacterium Plectonema boryanum. Plant Cell Physiol. 39:177–85 [Google Scholar]
  154. Biswal A, Pattanayak GK, Pandey SS, Leelavathi S, Reddy VS. 154.  et al. 2012. Light intensity–dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase (CAO). Plant Physiol. 159:433–49 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error