The complexity of even the simplest known life forms makes efforts to synthesize living cells from inanimate components seem like a daunting task. However, recent progress toward the creation of synthetic cells, ranging from simple protocells to artificial cells approaching the complexity of bacteria, suggests that the synthesis of life is now a realistic goal. Protocell research, fueled by advances in the biophysics of primitive membranes and the chemistry of nucleic acid replication, is providing new insights into the origin of cellular life. Parallel efforts to construct more complex artificial cells, incorporating translational machinery and protein enzymes, are providing information about the requirements for protein-based life. We discuss recent advances and remaining challenges in the synthesis of artificial cells, the possibility of creating new forms of life distinct from existing biology, and the promise of this research for gaining a deeper understanding of the nature of living systems.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Hutchison C, Peterson S, Gill S, Cline R, White O. 1.  et al. 1999. Global transposon mutagenesis and a minimal mycoplasma genome. Science 286:2165–69 [Google Scholar]
  2. Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H. 2.  et al. 2008. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319:1215–20 [Google Scholar]
  3. Isaacs FJ, Carr PA, Wang HH, Lajoie MJ, Sterling B. 3.  et al. 2011. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333:348–53 [Google Scholar]
  4. Rich A.4.  1962. On the problems of evolution and biochemical information transfer. Horizons in Biochemistry: Albert Szent-Györgyi Dedicatory Volume M Kasha, B Pullman 103–26 San Diego: Academic [Google Scholar]
  5. Woese CR.5.  1967. The Genetic Code: The Molecular Basis for Genetic Expression New York: Harper & Row [Google Scholar]
  6. Orgel LE.6.  1968. Evolution of the genetic apparatus. J. Mol. Biol. 38:381–93 [Google Scholar]
  7. Crick FHC.7.  1968. The origin of the genetic code. J. Mol. Biol. 38:367–79 [Google Scholar]
  8. Schrum JP, Ricardo A, Krishnamurthy M, Blain JC, Szostak JW. 8.  2009. Efficient and rapid template-directed nucleic acid copying using 2′-amino-2′,3′-dideoxyribonucleoside-5′-phosphorimidazolide monomers. J. Am. Chem. Soc. 131:14560–70 [Google Scholar]
  9. Zhang S, Zhang N, Blain JC, Szostak JW. 9.  2013. Synthesis of N3′-P5′-linked phosphoramidate DNA by nonenzymatic template-directed primer extension. J. Am. Chem. Soc. 135:924–32 [Google Scholar]
  10. Kaiser A, Richert C. 10.  2013. Nucleotide-based copying of nucleic acid sequences without enzymes. J. Org. Chem. 78:793–99 [Google Scholar]
  11. Schramm G, Grotsch H, Pollman DW. 11.  1962. Non-enzymatic synthesis of polysaccharides, nucleosides and nucleic acids and the origin of self-reproducing systems. Angew. Chem. Int. Ed. 1:1–64 [Google Scholar]
  12. Naylor R, Gilham PT. 12.  1966. Studies on some interactions and reactions of oligonucleotides in aqueous solution. Biochemistry 5:2722–28 [Google Scholar]
  13. Sulston J, Lohrmann R, Orgel LE, Miles HT. 13.  1968. Nonenzymatic synthesis of oligoadenylates on a polyuridylic acid template. Proc. Natl. Acad. Sci. USA 59:726–33 [Google Scholar]
  14. Inoue T, Joyce GF, Grzeskowiak K, Orgel LE, Brown JM, Reese CB. 14.  1984. Template-directed synthesis on the pentanucleotide CpCpGpCpC. J. Mol. Biol. 178:669–76 [Google Scholar]
  15. Haertle T, Orgel LE. 15.  1986. Template-directed synthesis on the oligonucleotide d(C7-G-C7). J. Mol. Biol. 188:77–80 [Google Scholar]
  16. Joyce GF, Orgel LE. 16.  1986. Non-enzymic template-directed synthesis on RNA random copolymers. Poly(C,G) templates. J. Mol. Biol. 188:433–41 [Google Scholar]
  17. Wu TF, Orgel LE. 17.  1992. Nonenzymatic template-directed synthesis on hairpin oligonucleotides. 2. Templates containing cytidine and guanosine residues. J. Am. Chem. Soc. 114:5496–501 [Google Scholar]
  18. Wu TF, Orgel LE. 18.  1992. Nonenzymatic template-directed synthesis on hairpin oligonucleotides. 3. Incorporation of adenosine and uridine residues. J. Am. Chem. Soc. 114:7963–69 [Google Scholar]
  19. Rajamani S, Ichida JK, Antal T, Treco DA, Leu K. 19.  et al. 2010. Effect of stalling after mismatches on the error catastrophe in nonenzymatic nucleic acid replication. J. Am. Chem. Soc. 132:5880–85 [Google Scholar]
  20. Orgel LE.20.  2004. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. 39:99–123 [Google Scholar]
  21. Joyce G.21.  2002. The antiquity of RNA-based evolution. Nature 418:214–21 [Google Scholar]
  22. Renz M, Lohrmann R, Orgel LE. 22.  1971. Catalysts for the polymerization of adenosine cyclic 2′,3′-phosphate on a poly(U) template. Biochim. Biophys. Acta 240:463–71 [Google Scholar]
  23. Pitsch S, Krishnamurthy R, Bolli M, Wendeborn S, Holzner A. 23.  et al. 1995. Pyranosyl-RNA (“p-RNA”): base-pairing selectivity and potential to replicate. Helv. Chim. Acta 78:1621–35 [Google Scholar]
  24. Rohatgi R, Bartel DP, Szostak JW. 24.  1996. Kinetic and mechanistic analysis of nonenzymatic, template-directed oligoribonucleotide ligation. J. Am. Chem. Soc. 118:3332–39 [Google Scholar]
  25. Wasner M, Arion D, Borkow G, Noronha A, Uddin A. 25.  et al. 1998. Physicochemical and biochemical properties of 2′,5′-linked RNA and 2′,5′-RNA:3′,5′-RNA “hybrid” duplexes. Biochemistry 37:7478–86 [Google Scholar]
  26. Inoue T, Orgel LE. 26.  1981. Substituent control of the polyC-directed oligomerization of guanosine 5′-phosphorimidazolide. J. Am. Chem. Soc. 103:7666–67 [Google Scholar]
  27. Weimann BJ, Lohrmann R, Orgel LE, Schneider-Bernloehr H, Sulston JE. 27.  1968. Template-directed synthesis with adenosine-5′-phosphorimidazolide. Science 161:3839387 [Google Scholar]
  28. Prakash T, Roberts C, Switzer C. 28.  1997. Activity of 2′,5′-linked RNA in the template-directed oligomerization of mononucleotides. Angew. Chem. Int. Ed. 36:1522–23 [Google Scholar]
  29. Kanavarioti A, Bernasconi C, Doodokyan DL, Alberas DJ. 29.  1989. Magnesium-ion catalyzed P–N bond hydrolysis in imidazolide-activated nucleotides—relevance to template-directed synthesis of polynucleotides. J. Am. Chem. Soc. 111:7247–57 [Google Scholar]
  30. Stütz JAR, Kervio E, Deck C, Richert C. 30.  2007. Chemical primer extension: individual steps of spontaneous replication. Chem. Biodivers. 4:4784–802 [Google Scholar]
  31. Hagenbuch P, Kervio E, Hochgesand A, Plutowski U, Richert C. 31.  2005. Chemical primer extension: efficiently determining single nucleotides in DNA. Angew. Chem. Int. Ed. 44:6588–92 [Google Scholar]
  32. Vogel SR, Deck C, Richert C. 32.  2005. Accelerating chemical replication steps of RNA involving activated ribonucleotides and downstream-binding elements. Chem. Commun. 2005:4922–24 [Google Scholar]
  33. Carpino LA.33.  1993. 1-Hydroxy-7-azabenzotriazole—an efficient peptide coupling additive. J. Am. Chem. Soc. 115:4397–98 [Google Scholar]
  34. Röthlingshöfer M, Kervio E, Lommel T, Plutowski U, Hochgesand A, Richert C. 34.  2008. Chemical primer extension in seconds. Angew. Chem. Int. Ed. 47:6065–68 [Google Scholar]
  35. Prabahar KJ, Ferris JP. 35.  1997. Adenine derivatives as phosphate-activating groups for the regioselective formation of 3′,5′-linked oligoadenylates on montmorillonite: possible phosphate-activating groups for the prebiotic synthesis of RNA. J. Am. Chem. Soc. 119:4330–37 [Google Scholar]
  36. Loeb LA, Kunkel TA. 36.  1982. Fidelity of DNA synthesis. Annu. Rev. Biochem. 51:429–57 [Google Scholar]
  37. Petruska J, Sowers LC, Goodman MF. 37.  1986. Comparison of nucleotide interactions in water, proteins, and vacuum: model for DNA polymerase fidelity. Proc. Natl. Acad. Sci. USA 83:1559–62 [Google Scholar]
  38. Chen JL, Dishler AL, Kennedy SD, Yildirim I, Liu B. 38.  et al. 2012. Testing the nearest neighbor model for canonical RNA base pairs: revision of GU parameters. Biochemistry 51:3508–22 [Google Scholar]
  39. Leu K, Obermayer B, Rajamani S, Gerland U, Chen IA. 39.  2011. The prebiotic evolutionary advantage of transferring genetic information from RNA to DNA. Nucleic Acids Res. 39:8135–47 [Google Scholar]
  40. Chaput J, Sinha S, Switzer C. 40.  2002. 5-Propynyluracil-diaminopurine: an efficient base-pair for non-enzymatic transcription of DNA. Chem. Commun. 2002:1568–69 [Google Scholar]
  41. Budow S, Eickmeier H, Reuter H, Seela F. 41.  2009. 2′-Deoxy-5-propynyluridine: a nucleoside with two conformations in the asymmetric unit. Acta Crystallogr. C 65:645–48 [Google Scholar]
  42. Katritzky AR, Waring AJ. 42.  1962. Tautomeric azines. Part I. The tautomerism of 1-methyluracil and 5-bromo-1-methyluracil. J. Chem. Soc. 1962:1540–44 [Google Scholar]
  43. Testa SM, Disney MD, Turner DH, Kierzek R. 43.  1999. Thermodynamics of RNA–RNA duplexes with 2- or 4-thiouridines: implications for antisense design and targeting a group I intron. Biochemistry 38:16655–62 [Google Scholar]
  44. Sintim H, Kool E. 44.  2006. Enhanced base pairing and replication efficiency of thiothymidines, expanded-size variants of thymidine. J. Am. Chem. Soc. 128:396–97 [Google Scholar]
  45. Wojciechowski F, Leumann CJ. 45.  2011. Alternative DNA base-pairs: from efforts to expand the genetic code to potential material applications. Chem. Soc. Rev. 40:5669–79 [Google Scholar]
  46. Szostak JW.46.  2011. An optimal degree of physical and chemical heterogeneity for the origin of life?. Philos. Trans. R. Soc. B 366:2894–901 [Google Scholar]
  47. Lohrmann R, Bridson PK, Orgel LE. 47.  1981. Condensation of activated diguanylates on a poly(C) template. J. Mol. Evol. 17:303–6 [Google Scholar]
  48. James KD, Ellington AD. 48.  1997. Surprising fidelity of template-directed chemical ligation of oligonucleotides. Chem. Biol. 4:595–605 [Google Scholar]
  49. Rohatgi R, Bartel DP, Szostak JW. 49.  1996. Nonenzymatic, template-directed ligation of oligoribonucleotides is highly regioselective for the formation of 3′–5′ phosphodiester bonds. J. Am. Chem. Soc. 118:3340–44 [Google Scholar]
  50. Sievers D, von Kiedrowski G. 50.  1994. Self-replication of complementary nucleotide-based oligomers. Nature 369:221–24 [Google Scholar]
  51. Leu K, Kervio E, Obermayer B, Turk-MacLeod RM, Yuan C. 51.  et al. 2013. Cascade of reduced speed and accuracy after errors in enzyme-free copying of nucleic acid sequences. J. Am. Chem. Soc. 135:354–66 [Google Scholar]
  52. Lohrmann R, Orgel LE. 52.  1976. Template-directed synthesis of high molecular weight polynucleotide analogues. Nature 261:342–44 [Google Scholar]
  53. Zielinski WS, Orgel LE. 53.  1985. Oligomerization of activated derivatives of 3′-amino-3′-deoxyguanosine on poly(C) and poly(dC) templates. Nucleic Acids Res. 13:2469–84 [Google Scholar]
  54. Zielinski WS, Orgel LE. 54.  1987. Oligoaminonucleoside phosphoramidates. Oligomerization of dimers of 3′-amino-3′-deoxy-nucleotides (GC and CG) in aqueous solution. Nucleic Acids Res. 15:1699–715 [Google Scholar]
  55. Tohidi M, Zielinski WS, Chen CH, Orgel LE. 55.  1987. Oligomerization of 3′-amino-3′-deoxyguanosine-5′-phosphorimidazolidate on a d(CpCpCpCpC) template. J. Mol. Evol. 25:97–99 [Google Scholar]
  56. Kaiser A, Spies S, Lommel T, Richert C. 56.  2012. Template-directed synthesis in 3′- and 5′-direction with reversible termination. Angew. Chem. Int. Ed. 51:8299–303 [Google Scholar]
  57. Kervio E, Hochgesand A, Steiner UE, Richert C. 57.  2010. Templating efficiency of naked DNA. Proc. Natl. Acad. Sci. USA 107:12074–79 [Google Scholar]
  58. Deck C, Jauker M, Richert C. 58.  2011. Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA. Nat. Chem. 3:603–8 [Google Scholar]
  59. Zhang S, Blain JC, Zielinska D, Gryaznov S, Szostak JW. 59.  2013. Fast and accurate non-enzymatic copying of an RNA-like synthetic genetic polymer. Proc. Natl. Acad. Sci. USA 110:17732–37 [Google Scholar]
  60. Hill D, Mio M, Prince R, Hughes T, Moore J. 60.  2001. A field guide to foldamers. Chem. Rev. 101:3893–4011 [Google Scholar]
  61. Eschenmoser A.61.  1999. Chemical etiology of nucleic acid structure. Science 284:2118–24 [Google Scholar]
  62. Schöning K, Scholz P, Guntha S, Wu X, Krishnamurthy R, Eschenmoser A. 62.  2000. Chemical etiology of nucleic acid structure: the α-threofuranosyl-(3′→2′) oligonucleotide system. Science 290:1347–51 [Google Scholar]
  63. Heuberger BD, Switzer C. 63.  2006. Nonenzymatic oligomerization of RNA by TNA templates. Org. Lett. 8:5809–11 [Google Scholar]
  64. Yu H, Zhang S, Chaput JC. 64.  2012. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nat. Chem. 4:183–87 [Google Scholar]
  65. Hendrix C, Rosemeyer H, De Bouvere B, Van Aerschot A, Seela F, Herdewijn P. 65.  1997. 1′,5′-Anhydrohexitol oligonucleotides: hybridisation and strand displacement with oligoribonucleotides, interaction with RNase H and HIV reverse transcriptase. Chem. Eur. J. 3:1513–20 [Google Scholar]
  66. Allart B, Khan K, Rosemeyer H, Schepers G, Hendrix C. 66.  et al. 1999. D-Altritol nucleic acids (ANA): hybridisation properties, stability, and initial structural analysis. Chem. Eur. J. 5:2424–31 [Google Scholar]
  67. Kozlov I, Zielinski M, Allart B, Kerremans L, Van Aerschot A. 67.  et al. 2000. Nonenzymatic template-directed reactions on altritol oligomers, preorganized analogues of oligonucleotides. Chem. Eur. J. 6:151–55 [Google Scholar]
  68. Nielsen PE.68.  1999. Peptide nucleic acid. A molecule with two identities. Acc. Chem. Res. 32:624–30 [Google Scholar]
  69. Wittung P, Nielsen PE, Buchardt O, Egholm M, Nordén B. 69.  1994. DNA-like double helix formed by peptide nucleic acid. Nature 368:561–63 [Google Scholar]
  70. Schmidt JG, Christensen L, Nielsen PE, Orgel LE. 70.  1997. Information transfer from DNA to peptide nucleic acids by template-directed syntheses. Nucleic Acids Res. 25:4792–96 [Google Scholar]
  71. Kleiner RE, Brudno Y, Birnbaum ME, Liu DR. 71.  2008. DNA-templated polymerization of side-chain-functionalized peptide nucleic acid aldehydes. J. Am. Chem. Soc. 130:4646–59 [Google Scholar]
  72. Schmidt JG, Nielsen PE, Orgel LE. 72.  1997. Information transfer from peptide nucleic acids to RNA by template-directed syntheses. Nucleic Acids Res. 25:4797–802 [Google Scholar]
  73. Heemstra JM, Liu DR. 73.  2009. Templated synthesis of peptide nucleic acids via sequence-selective base-filling reactions. J. Am. Chem. Soc. 131:11347–49 [Google Scholar]
  74. Ura Y, Beierle JM, Leman LJ, Orgel LE, Ghadiri MR. 74.  2009. Self-assembling sequence-adaptive peptide nucleic acids. Science 325:73–77 [Google Scholar]
  75. Nielsen PE, Egholm M, Berg RH, Buchardt O. 75.  1991. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–500 [Google Scholar]
  76. Egholm M, Buchardt O, Nielsen PE, Berg RH. 76.  1992. Peptide nucleic acids (PNA). Oligonucleotide analogues with an achiral peptide backbone. J. Am. Chem. Soc. 114:1895–97 [Google Scholar]
  77. Mittapalli GK, Reddy KR, Xiong H, Munoz O, Han B. 77.  et al. 2007. Mapping the landscape of potentially primordial informational oligomers: oligodipeptides and oligodipeptoids tagged with triazines as recognition elements. Angew. Chem. Int. Ed. 46:2470–77 [Google Scholar]
  78. Szostak JW.78.  2012. The eightfold path to non-enzymatic RNA replication. J. Syst. Chem. 3:2 [Google Scholar]
  79. McCall MJ, Hendry P, Mir AA, Conaty J, Brown G, Lockett TJ. 79.  2000. Small, efficient hammerhead ribozymes. Mol. Biotechnol. 14:5–17 [Google Scholar]
  80. Xia T, SantaLucia J Jr, Burkard M, Kierzek R, Schroeder S. 80.  et al. 1998. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson–Crick base pairs. Biochemistry 37:14719–35 [Google Scholar]
  81. Gryaznov S, Lloyd DH, Chen JK, Schultz RG, DeDionisio LA. 81.  et al. 1995. Oligonucleotide N3′-P5′ phosphoramidates. Proc. Natl. Acad. Sci. USA 92:5798–802 [Google Scholar]
  82. Engelhart AE, Powner MW, Szostak JW. 82.  2013. Functional RNAs exhibit tolerance for non-heritable 2′–5′ versus 3′–5′ backbone heterogeneity. Nat. Chem. 5:390–94 [Google Scholar]
  83. Adamala K, Szostak JW. 83.  2013. Non-enzymatic template-directed RNA synthesis inside model protocells. Science 342:1098–100 [Google Scholar]
  84. Ferris JP, Huang CH, Hagan WJ. 84.  1989. N-Cyanoimidazole and diimidazole imine: water-soluble condensing agents for the formation of the phosphodiester bond. Nucleosides Nucleotides 8:407–14 [Google Scholar]
  85. Dolinnaya NG, Sokolova NI, Ashirbekova DT, Shabarova ZA. 85.  1991. The use of BrCN for assembling modified DNA duplexes and DNA–RNA hybrids: comparison with water-soluble carbodiimide. Nucleic Acids Res. 19:3067–72 [Google Scholar]
  86. Gilham PT.86.  1962. An addition reaction specific for uridine and guanosine nucleotides and its application to the modification of ribonuclease action. J. Am. Chem. Soc. 84:687–88 [Google Scholar]
  87. Chu BC, Wahl GM, Orgel LE. 87.  1983. Derivatization of unprotected polynucleotides. Nucleic Acids Res. 11:6513–29 [Google Scholar]
  88. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR. 88.  1982. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell 31:147–57 [Google Scholar]
  89. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S. 89.  1983. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–57 [Google Scholar]
  90. Gilbert W.90.  1986. The RNA world. Nature 319:618 [Google Scholar]
  91. Been MD, Cech TR. 91.  1988. RNA as an RNA polymerase: net elongation of an RNA primer catalyzed by the tetrahymena ribozyme. Science 239:1412–16 [Google Scholar]
  92. Doudna J, Szostak JW. 92.  1989. RNA-catalyzed synthesis of complementary-strand RNA. Nature 339:519–22 [Google Scholar]
  93. Bartel DP, Doudna JA, Usman N, Szostak JW. 93.  1991. Template-directed primer extension catalyzed by the tetrahymena ribozyme. Mol. Cell. Biol. 11:3390–94 [Google Scholar]
  94. Doudna J, Couture S, Szostak JW. 94.  1991. A multisubunit ribozyme that is a catalyst of and template for complementary strand RNA synthesis. Science 251:1605–8 [Google Scholar]
  95. Green R, Szostak JW. 95.  1992. Selection of a ribozyme that functions as a superior template in a self-copying reaction. Science 258:1910–15 [Google Scholar]
  96. Bartel DP, Szostak JW. 96.  1993. Isolation of new ribozymes from a large pool of random sequences. Science 261:1411–18 [Google Scholar]
  97. Ekland E, Bartel DP. 97.  1996. RNA-catalysed RNA polymerization using nucleoside triphosphates. Nature 382:373–76 [Google Scholar]
  98. McGinness K, Wright M, Joyce G. 98.  2002. Continuous in vitro evolution of a ribozyme that catalyzes three successive nucleotidyl addition reactions. Chem. Biol. 9:585–96 [Google Scholar]
  99. Johnston W, Unrau P, Lawrence M, Glasner M, Bartel DP. 99.  2001. RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292:1319–25 [Google Scholar]
  100. Zaher HS, Unrau PJ. 100.  2007. Selection of an improved RNA polymerase ribozyme with superior extension and fidelity. RNA 13:1017–26 [Google Scholar]
  101. Wochner A, Attwater J, Coulson A, Holliger P. 101.  2011. Ribozyme-catalyzed transcription of an active ribozyme. Science 332:209–12 [Google Scholar]
  102. Lawrence M, Bartel DP. 102.  2003. Processivity of ribozyme-catalyzed RNA polymerization. Biochemistry 42:8748–55 [Google Scholar]
  103. Shechner DM, Grant RA, Bagby SC, Koldobskaya Y, Piccirilli JA, Bartel DP. 103.  2009. Crystal structure of the catalytic core of an RNA-polymerase ribozyme. Science 326:1271–75 [Google Scholar]
  104. Shechner DM, Bartel DP. 104.  2011. The structural basis of RNA-catalyzed RNA polymerization. Nat. Struct. Mol. Biol. 18:1036–42 [Google Scholar]
  105. Wang QS, Cheng LKL, Unrau PJ. 105.  2011. Characterization of the B6.61 polymerase ribozyme accessory domain. RNA 17:469–77 [Google Scholar]
  106. Lawrence M, Bartel DP. 106.  2005. New ligase-derived RNA polymerase ribozymes. RNA 11:1173–80 [Google Scholar]
  107. McGinness KE, Joyce GF. 107.  2002. RNA-catalyzed RNA ligation on an external RNA template. Chem. Biol. 9:297–307 [Google Scholar]
  108. Vicens Q, Cech TR. 108.  2009. A natural ribozyme with 3′,5′ RNA ligase activity. Nat. Chem. Biol. 5:97–99 [Google Scholar]
  109. Rogers J, Joyce GF. 109.  2001. The effect of cytidine on the structure and function of an RNA ligase ribozyme. RNA 7:395–404 [Google Scholar]
  110. Paul N, Joyce GF. 110.  2002. A self-replicating ligase ribozyme. Proc. Natl. Acad. Sci. USA 99:12733–40 [Google Scholar]
  111. Kim D-E, Joyce GF. 111.  2004. Cross-catalytic replication of an RNA ligase ribozyme. Chem. Biol. 11:1505–12 [Google Scholar]
  112. Lincoln TA, Joyce GF. 112.  2009. Self-sustained replication of an RNA enzyme. Science 323:1229–32 [Google Scholar]
  113. Ferretti AC, Joyce GF. 113.  2013. Kinetic properties of an RNA enzyme that undergoes self-sustained exponential amplification. Biochemistry 52:1227–35 [Google Scholar]
  114. Sczepanski JT, Joyce GF. 114.  2012. Synthetic evolving systems that implement a user-specified genetic code of arbitrary design. Chem. Biol. 19:1324–32 [Google Scholar]
  115. Riley CA, Lehman N. 115.  2003. Generalized RNA-directed recombination of RNA. Chem. Biol. 10:1233–43 [Google Scholar]
  116. Hayden EJ, Lehman N. 116.  2006. Self-assembly of a group I intron from inactive oligonucleotide fragments. Chem. Biol. 13:909–18 [Google Scholar]
  117. Hayden EJ, von Kiedrowski G, Lehman N. 117.  2008. Systems chemistry on ribozyme self-construction: evidence for anabolic autocatalysis in a recombination network. Angew. Chem. Int. Ed. 47:8424–28 [Google Scholar]
  118. Vaidya N, Manapat ML, Chen IA, Xulvi-Brunet R, Hayden EJ, Lehman N. 118.  2012. Spontaneous network formation among cooperative RNA replicators. Nature 491:72–77 [Google Scholar]
  119. Chen I, Roberts R, Szostak JW. 119.  2004. The emergence of competition between model protocells. Science 305:1474–76 [Google Scholar]
  120. Oberholzer T, Albrizio M, Luisi PL. 120.  1995. Polymerase chain reaction in liposomes. Chem. Biol. 2:677–82 [Google Scholar]
  121. Oberholzer T, Wick R, Luisi PL, Biebricher CK. 121.  1995. Enzymatic RNA replication in self-reproducing vesicles: an approach to a minimal cell. Biochem. Biophys. Res. 207:250–57 [Google Scholar]
  122. Guatelli JC, Whitfield KM, Kwoh DY, Barringer KJ, Richman DD, Gingeras TR. 122.  1990. Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc. Natl. Acad. Sci. USA 87:1874–78 [Google Scholar]
  123. Wright M, Joyce G. 123.  1997. Continuous in vitro evolution of catalytic function. Science 276:614–17 [Google Scholar]
  124. Kurihara K, Tamura M, Shohda K-I, Toyota T, Suzuki K, Sugawara T. 124.  2011. Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nat. Chem. 3:775–81 [Google Scholar]
  125. Chakrabarti AC, Breaker RR, Joyce GF, Deamer DW. 125.  1994. Production of RNA by a polymerase protein encapsulated within phospholipid vesicles. J. Mol. Evol. 39:555–59 [Google Scholar]
  126. Haruna I, Spiegelman S. 126.  1965. Autocatalytic synthesis of a viral RNA in vitro. Science 150:884–86 [Google Scholar]
  127. Mills D, Peterson R, Spiegelman S. 127.  1967. An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc. Natl. Acad. Sci. USA 58:217–24 [Google Scholar]
  128. Kita H, Matsuura T, Sunami T, Hosoda K, Ichihashi N. 128.  et al. 2008. Replication of genetic information with self-encoded replicase in liposomes. ChemBioChem 9:2403–10 [Google Scholar]
  129. Ichihashi N, Matsuura T, Kita H, Hosoda K, Sunami T. 129.  et al. 2008. Importance of translation-replication balance for efficient replication by the self-encoded replicase. ChemBioChem 9:3023–28 [Google Scholar]
  130. Urabe H, Ichihashi N, Matsuura T, Hosoda K, Kazuta Y. 130.  et al. 2010. Compartmentalization in a water-in-oil emulsion repressed the spontaneous amplification of RNA by Qβ replicase. Biochemistry 49:1809–13 [Google Scholar]
  131. Bansho Y, Ichihashi N, Kazuta Y, Matsuura T, Suzuki H, Yomo T. 131.  2012. Importance of parasite RNA species repression for prolonged translation-coupled RNA self-replication. Chem. Biol. 19:478–87 [Google Scholar]
  132. Oberholzer T, Nierhaus KH, Luisi PL. 132.  1999. Protein expression in liposomes. Biochem. Biophys. Res. 261:238–41 [Google Scholar]
  133. Noireaux V, Libchaber A. 133.  2004. A vesicle bioreactor as a step toward an artificial cell assembly. Proc. Natl. Acad. Sci. USA 101:17669–74 [Google Scholar]
  134. Forster AC, Church GM. 134.  2006. Towards synthesis of a minimal cell. Mol. Syst. Biol. 2:45 [Google Scholar]
  135. Luisi PL, Ferri F, Stano P. 135.  2005. Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93:1–13 [Google Scholar]
  136. Szathmáry E, Smith JM. 136.  1995. The major evolutionary transitions. Nature 374:227–32 [Google Scholar]
  137. Haines TH.137.  1983. Anionic lipid headgroups as a proton-conducting pathway along the surface of membranes: a hypothesis. Proc. Natl. Acad. Sci. USA 80:160–64 [Google Scholar]
  138. Cistola DP, Hamilton JA, Jackson D, Small DM. 138.  1988. Ionization and phase behavior of fatty acids in water: application of the Gibbs phase rule. Biochemistry 27:1881–88 [Google Scholar]
  139. Tanford C.139.  1980. The Hydrophobic Effect: Formation of Micelles and Biological Membranes New York: Wiley [Google Scholar]
  140. Chen IA, Szostak JW. 140.  2004. A kinetic study of the growth of fatty acid vesicles. Biophys. J. 87:988–98 [Google Scholar]
  141. Budin I, Szostak JW. 141.  2011. Physical effects underlying the transition from primitive to modern cell membranes. Proc. Natl. Acad. Sci. USA 108:5249–54 [Google Scholar]
  142. Walde P, Goto A, Monnard PA, Wessicken M, Luisi PL. 142.  1994. Oparin's reactions revisited: enzymatic synthesis of poly(adenylic acid) in micelles and self-reproducing vesicles. J. Am. Chem. Soc. 116:7541–47 [Google Scholar]
  143. Zhu TF, Szostak JW. 143.  2009. Coupled growth and division of model protocell membranes. J. Am. Chem. Soc. 131:5705–13 [Google Scholar]
  144. Zhu TF, Adamala K, Zhang N, Szostak JW. 144.  2012. Photochemically driven redox chemistry induces protocell membrane pearling and division. Proc. Natl. Acad. Sci. USA 109:9828–32 [Google Scholar]
  145. Budin I, Debnath A, Szostak JW. 145.  2012. Concentration-driven growth of model protocell membranes. J. Am. Chem. Soc. 134:20812–19 [Google Scholar]
  146. Hanczyc MM, Fujikawa SM, Szostak JW. 146.  2003. Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302:618–22 [Google Scholar]
  147. Mansy SS, Schrum JP, Krishnamurthy M, Tobé S, Treco DA, Szostak JW. 147.  2008. Template-directed synthesis of a genetic polymer in a model protocell. Nature 454:122–25 [Google Scholar]
  148. Sacerdote M, Szostak JW. 148.  2005. Semipermeable lipid bilayers exhibit diastereoselectivity favoring ribose. Proc. Natl. Acad. Sci. USA 102:6004–8 [Google Scholar]
  149. Mansy SS, Szostak JW. 149.  2008. Thermostability of model protocell membranes. Proc. Natl. Acad. Sci. USA 105:13351–55 [Google Scholar]
  150. Monnard PA, Apel CL, Kanavarioti A, Deamer DW. 150.  2002. Influence of ionic inorganic solutes on self-assembly and polymerization processes related to early forms of life: implications for a prebiotic aqueous medium. Astrobiology 2:139–52 [Google Scholar]
  151. Bruckner RJ, Mansy SS, Ricardo A, Mahadevan L, Szostak JW. 151.  2009. Flip-flop-induced relaxation of bending energy: implications for membrane remodeling. Biophys. J. 97:3113–22 [Google Scholar]
  152. Apel CL, Deamer DW, Mautner MN. 152.  2002. Self-assembled vesicles of monocarboxylic acids and alcohols: conditions for stability and for the encapsulation of biopolymers. Biochim. Biophys. Acta 1559:1–9 [Google Scholar]
  153. Yuen GU, Kvenvolden KA. 153.  1973. Monocarboxylic acids in Murray and Murchison carbonaceous meteorites. Nature 246:301–3 [Google Scholar]
  154. Naraoka H, Shimoyama A, Harada K. 154.  1999. Molecular distribution of monocarboxylic acids in Asuka carbonaceous chondrites from Antarctica. Orig. Life Evol. B 29:187–201 [Google Scholar]
  155. Rushdi AI, Simoneit BR. 155.  2001. Lipid formation by aqueous Fischer–Tropsch-type synthesis over a temperature range of 100 to 400 degrees C. Orig. Life Evol. B 31:103–18 [Google Scholar]
  156. Deamer DW, Barchfield GL. 156.  1982. Encapsulation of macromolecules by lipid vesicles under simulated prebiotic conditions. J. Mol. Evol. 18:203–6 [Google Scholar]
  157. Jesorka A, Orwar O. 157.  2008. Liposomes: technologies and analytical applications. Annu. Rev. Anal. Chem. 1:801–32 [Google Scholar]
  158. Müller M, Zschörnig O, Ohki S, Arnold K. 158.  2003. Fusion, leakage and surface hydrophobicity of vesicles containing phosphoinositides: influence of steric and electrostatic effects. J. Membr. Biol. 192:33–43 [Google Scholar]
  159. Terasawa H, Nishimura K, Suzuki H, Matsuura T, Yomo T. 159.  2012. Coupling of the fusion and budding of giant phospholipid vesicles containing macromolecules. Proc. Natl. Acad. Sci. USA 109:5942–47 [Google Scholar]
  160. Johnson JM, Ha T, Chu S, Boxer SG. 160.  2002. Early steps of supported bilayer formation probed by single vesicle fluorescence assays. Biophys. J. 83:3371–79 [Google Scholar]
  161. Sunami T, Caschera F, Morita Y, Toyota T, Nishimura K. 161.  et al. 2010. Detection of association and fusion of giant vesicles using a fluorescence-activated cell sorter. Langmuir 26:15098–103 [Google Scholar]
  162. Kuruma Y, Stano P, Ueda T, Luisi PL. 162.  2009. A synthetic biology approach to the construction of membrane proteins in semi-synthetic minimal cells. Biochim. Biophys. Acta 1788:567–74 [Google Scholar]
  163. Murtas G.163.  2010. Internal lipid synthesis and vesicle growth as a step toward self-reproduction of the minimal cell. Syst. Synth. Biol. 4:85–93 [Google Scholar]
  164. Andes-Koback M, Keating CD. 164.  2011. Complete budding and asymmetric division of primitive model cells to produce daughter vesicles with different interior and membrane compositions. J. Am. Chem. Soc. 133:9545–55 [Google Scholar]
  165. Staneva G, Angelova MI, Koumanov K. 165.  2004. Phospholipase A2 promotes raft budding and fission from giant liposomes. Chem. Phys. Lipids 129:53–62 [Google Scholar]
  166. Takakura K, Sugawara T. 166.  2004. Membrane dynamics of a myelin-like giant multilamellar vesicle applicable to a self-reproducing system. Langmuir 20:3832–34 [Google Scholar]
  167. Takakura K, Toyota T, Sugawara T. 167.  2003. A novel system of self-reproducing giant vesicles. J. Am. Chem. Soc. 125:8134–40 [Google Scholar]
  168. Takahashi H, Kageyama Y, Kurihara K, Takakura K, Murata S, Sugawara T. 168.  2009. Autocatalytic membrane-amplification on a pre-existing vesicular surface. Chem. Commun. 46:8791–93 [Google Scholar]
  169. Kamat NP, Katz JS, Hammer DA. 169.  2011. Engineering polymersome protocells. J. Phys. Chem. Lett. 2:1612–23 [Google Scholar]
  170. Discher BM, Won YY, Ege DS, Lee JC, Bates FS. 170.  et al. 1999. Polymersomes: tough vesicles made from diblock copolymers. Science 284:1143–46 [Google Scholar]
  171. Holowka EP, Pochan DJ, Deming TJ. 171.  2005. Charged polypeptide vesicles with controllable diameter. J. Am. Chem. Soc. 127:12423–28 [Google Scholar]
  172. Percec V, Wilson DA, Leowanawat P, Wilson CJ, Hughes AD. 172.  et al. 2010. Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science 328:1009–14 [Google Scholar]
  173. Robbins GP, Jimbo M, Swift J, Therien MJ, Hammer DA, Dmochowski IJ. 173.  2009. Photoinitiated destruction of composite porphyrin-protein polymersomes. J. Am. Chem. Soc. 131:3872–74 [Google Scholar]
  174. Mabrouk E, Cuvelier D, Brochard-Wyart F, Nassoy P, Li M-H. 174.  2009. Bursting of sensitive polymersomes induced by curling. Proc. Natl. Acad. Sci. USA 106:7294–98 [Google Scholar]
  175. Kamat NP, Robbins GP, Rawson JS, Therien MJ, Dmochowski IJ, Hammer DA. 175.  2010. A generalized system for photo-responsive membrane rupture in polymersomes. Adv. Funct. Mater. 20:2588–96 [Google Scholar]
  176. Tawfik DS, Griffiths AD. 176.  1998. Man-made cell-like compartments for molecular evolution. Nat. Biotechnol. 16:652–56 [Google Scholar]
  177. Pietrini AV, Luisi PL. 177.  2004. Cell-free protein synthesis through solubilisate exchange in water/oil emulsion compartments. ChemBioChem 5:1055–62 [Google Scholar]
  178. Ichihashi N, Usui K, Kazuta Y, Sunami T, Matsuura T, Yomo T. 178.  2013. Darwinian evolution of a translation-coupled RNA self-replication system in a cell-like compartment. Nat. Commun. 4:2494 [Google Scholar]
  179. Attwater J, Wochner A, Pinheiro VB, Coulson A, Holliger P. 179.  2010. Ice as a protocellular medium for RNA replication. Nat. Commun. 1:76 [Google Scholar]
  180. Monnard PA, Kanavarioti A, Deamer DW. 180.  2003. Eutectic phase polymerization of activated ribonucleotide mixtures yields quasi-equimolar incorporation of purine and pyrimidine nucleobases. J. Am. Chem. Soc. 125:13734–40 [Google Scholar]
  181. Strulson CA, Molden RC, Keating CD, Bevilacqua PC. 181.  2012. RNA catalysis through compartmentalization. Nat. Chem. 4:941–46 [Google Scholar]
  182. Koga S, Williams DS, Perriman AW, Mann S. 182.  2011. Peptide–nucleotide microdroplets as a step towards a membrane-free protocell model. Nat. Chem. 3:720–24 [Google Scholar]
  183. Szostak JW, Bartel DP, Luisi PL. 183.  2001. Synthesizing life. Nature 409:387–90 [Google Scholar]
  184. Fukuda H, Goto A, Yoshioka H, Goto R, Morigaki K, Walde P. 184.  2001. Electron spin resonance study of the pH-induced transformation of micelles to vesicles in an aqueous oleic acid/oleate system. Langmuir 17:4223–31 [Google Scholar]
  185. Maurer SE, Deamer DW, Boncella JM, Monnard PA. 185.  2009. Chemical evolution of amphiphiles: glycerol monoacyl derivatives stabilize plausible prebiotic membranes. Astrobiology 9:979–87 [Google Scholar]
  186. Wu TF, Orgel LE. 186.  1992. Nonenzymatic template-directed synthesis on oligodeoxycytidylate sequences in hairpin oligonucleotides. J. Am. Chem. Soc. 114:317–22 [Google Scholar]
  187. Paula S, Volkov AG, Van Hoek AN, Haines TH, Deamer DW. 187.  1996. Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys. J. 70:339–48 [Google Scholar]
  188. Kanehisa MI, Tsong TY. 188.  1978. Cluster model of lipid phase transitions with application to passive permeation of molecules and structure relaxations in lipid bilayers. J. Am. Chem. Soc. 100:424–32 [Google Scholar]
  189. Monnard PA, Luptak A, Deamer DW. 189.  2007. Models of primitive cellular life: polymerases and templates in liposomes. Philos. Trans. R. Soc. B 362:1741–50 [Google Scholar]
  190. Yoshimoto M, Wang S, Fukunaga K, Fournier D, Walde P. 190.  et al. 2005. Novel immobilized liposomal glucose oxidase system using the channel protein OmpF and catalase. Biotechnol. Bioeng. 90:231–38 [Google Scholar]
  191. Nourian Z, Roelofsen W, Danelon C. 191.  2012. Triggered gene expression in fed-vesicle microreactors with a multifunctional membrane. Angew. Chem. Int. Ed. 51:3114–18 [Google Scholar]
  192. Treyer M, Walde P, Oberholzer T. 192.  2002. Permeability enhancement of lipid vesicles to nucleotides by use of sodium cholate: basic studies and application to an enzyme-catalyzed reaction occurring inside the vesicles. Langmuir 18:1043–50 [Google Scholar]
  193. Sunami T, Hosoda K, Suzuki H, Matsuura T, Yomo T. 193.  2010. Cellular compartment model for exploring the effect of the lipidic membrane on the kinetics of encapsulated biochemical reactions. Langmuir 26:8544–51 [Google Scholar]
  194. Adamala K, Szostak JW. 194.  2013. Competition between model protocells driven by an encapsulated catalyst. Nat. Chem. 5:495–501 [Google Scholar]
  195. Pohorille A, Deamer DW. 195.  2002. Artificial cells: prospects for biotechnology. Trends Biotechnol. 20:123–28 [Google Scholar]
  196. Yu W, Sato K, Wakabayashi M, Nakaishi T, Ko-Mitamura EP. 196.  et al. 2001. Synthesis of functional protein in liposome. J. Biosci. Bioeng. 92:590–93 [Google Scholar]
  197. Nomura SM, Tsumoto K, Hamada T, Akiyoshi K, Nakatani Y, Yoshikawa K. 197.  2003. Gene expression within cell-sized lipid vesicles. ChemBioChem 4:1172–75 [Google Scholar]
  198. Murtas G, Kuruma Y, Bianchini P, Diaspro A, Luisi PL. 198.  2007. Protein synthesis in liposomes with a minimal set of enzymes. Biochem. Biophys. Res. 363:12–17 [Google Scholar]
  199. Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T. 199.  et al. 2001. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19:751–55 [Google Scholar]
  200. Kuruma Y, Suzuki T, Ono S, Yoshida M, Ueda T. 200.  2012. Functional analysis of membranous Fo-a subunit of F1Fo-ATP synthase by in vitroprotein synthesis. Biochem. J. 442:631–38 [Google Scholar]
  201. Leaver M, Domínguez-Cuevas P, Coxhead JM, Daniel RA, Errington J. 201.  2009. Life without a wall or division machine in Bacillus subtilis. Nature 457:849–53 [Google Scholar]
  202. Allan EJ, Hoischen C, Gumpert J. 202.  2009. Bacterial L-forms. Adv. Appl. Microbiol. 68:1–39 [Google Scholar]
  203. Ricardo A, Szostak JW. 203.  2009. Origin of life on earth. Sci. Am. 301:54–61 [Google Scholar]
  204. Lee JF, Hesselberth JR, Meyers LA, Ellington AD. 204.  2004. Aptamer database. Nucleic Acids Res. 32:D95–100 [Google Scholar]
  205. Liu J, Cao Z, Lu Y. 205.  2009. Functional nucleic acid sensors. Chem. Rev. 109:1948–98 [Google Scholar]
  206. Ke Y, Ong LL, Shih WM, Yin P. 206.  2012. Three-dimensional structures self-assembled from DNA bricks. Science 338:1177–83 [Google Scholar]
  207. Qian L, Winfree E. 207.  2011. Scaling up digital circuit computation with DNA strand displacement cascades. Science 332:1196–201 [Google Scholar]
  208. Hagan CL, Westwood DB, Kahne D. 208.  2013. Bam lipoproteins assemble BamA in vitro. Biochemistry 52:6108–13 [Google Scholar]
  209. Bohannon J.209.  2010. Mirror-image cells could transform science—or kill us all. Wired Nov. 29. http://www.wired.com/magazine/2010/11/ff_mirrorlife/ [Google Scholar]
  210. Leduc PR, Wong MS, Ferreira PM, Groff RE, Haslinger K. 210.  et al. 2007. Towards an in vivo biologically inspired nanofactory. Nat. Nanotechnol. 2:3–7 [Google Scholar]
  211. Ro D, Paradise E, Ouellet M, Fisher K, Newman K. 211.  et al. 2006. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–43 [Google Scholar]
  212. Rabinovitch-Deere CA, Oliver JWK, Rodriguez GM, Atsumi S. 212.  2013. Synthetic biology and metabolic engineering approaches to produce biofuels. Chem. Rev. 113:4611–32 [Google Scholar]
  213. Chang TM.213.  1999. Future prospects for artificial blood. Trends Biotechnol. 17:61–67 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error