1932

Abstract

Three decades of studies on the multifunctional 6-deoxyerythronolide B synthase have laid a foundation for understanding the chemistry and evolution of polyketide antibiotic biosynthesis by a large family of versatile enzymatic assembly lines. Recent progress in applying chemical and structural biology tools to this prototypical assembly-line polyketide synthase (PKS) and related systems has highlighted several features of their catalytic cycles and associated protein dynamics. There is compelling evidence that multiple mechanisms have evolved in this enzyme family to channel growing polyketide chains along uniquely defined sequences of 10–100 active sites, each of which is used only once in the overall catalytic cycle of an assembly-line PKS. Looking forward, one anticipates major advances in our understanding of the mechanisms by which the free energy of a repetitive Claisen-like reaction is harnessed to guide the growing polyketide chain along the assembly line in a manner that is kinetically robust yet evolutionarily adaptable.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-080923-043654
2024-08-02
2024-12-01
Loading full text...

Full text loading...

/deliver/fulltext/biochem/93/1/annurev-biochem-080923-043654.html?itemId=/content/journals/10.1146/annurev-biochem-080923-043654&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Jenke-Kodama H, Sandmann A, Müller R, Dittmann E. 2005.. Evolutionary implications of bacterial polyketide synthases. . Mol. Biol. Evol. 22::202739
    [Crossref] [Google Scholar]
  2. 2.
    Grininger M. 2014.. Perspectives on the evolution, assembly and conformational dynamics of fatty acid synthase type I (FAS I) systems. . Curr. Opin. Struct. Biol. 25::4956
    [Crossref] [Google Scholar]
  3. 3.
    Smith S, Tsai S-C. 2007.. The type I fatty acid and polyketide synthases: a tale of two megasynthases. . Nat. Prod. Rep. 24::104172
    [Crossref] [Google Scholar]
  4. 4.
    Schreiber SL. 2021.. The rise of molecular glues. . Cell 184::39
    [Crossref] [Google Scholar]
  5. 5.
    Cortes J, Haydock SF, Roberts GA, Bevitt DJ, Leadlay PF. 1990.. An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. . Nature 348::17678
    [Crossref] [Google Scholar]
  6. 6.
    Donadio S, Staver MJ, McAlpine JB, Swanson SJ, Katz L. 1991.. Modular organization of genes required for complex polyketide biosynthesis. . Science 252::67579
    [Crossref] [Google Scholar]
  7. 7.
    Walsh CT. 2008.. The chemical versatility of natural-product assembly lines. . Acc. Chem. Res. 41::410
    [Crossref] [Google Scholar]
  8. 8.
    Gulder TAM, Freeman MF, Piel J. 2011.. The catalytic diversity of multimodular polyketide synthases: natural product biosynthesis beyond textbook assembly rules. . In Topics in Current Chemistry, ed. H Bayley, KN Houk, G Hughes, CA Hunter, K Ishihara , et al., pp. 153. Berlin:: Springer
    [Google Scholar]
  9. 9.
    Kishore S, Khosla C. 2023.. Genomic mining and diversity of assembly line polyketide synthases. . Open Biol. 13::230096
    [Crossref] [Google Scholar]
  10. 10.
    Nivina A, Yuet KP, Hsu J, Khosla C. 2019.. Evolution and diversity of assembly-line polyketide synthases. . Chem. Rev. 119::1252447
    [Crossref] [Google Scholar]
  11. 11.
    O'Brien RV, Davis RW, Khosla C, Hillenmeyer ME. 2014.. Computational identification and analysis of orphan assembly-line polyketide synthases. . J. Antibiot. 67::8997
    [Crossref] [Google Scholar]
  12. 12.
    Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, et al. 2021.. A genomic catalog of Earth's microbiomes. . Nat. Biotechnol. 39::499509
    [Crossref] [Google Scholar]
  13. 13.
    Keatinge-Clay AT. 2012.. The structures of type I polyketide synthases. . Nat. Prod. Rep. 29::105073
    [Crossref] [Google Scholar]
  14. 14.
    Dodge GJ, Maloney FP, Smith JL. 2018.. Protein–protein interactions in “cis-AT” polyketide synthases. . Nat. Prod. Rep. 35::108296
    [Crossref] [Google Scholar]
  15. 15.
    Klaus M, Grininger M. 2018.. Engineering strategies for rational polyketide synthase design. . Nat. Prod. Rep. 35::107081
    [Crossref] [Google Scholar]
  16. 16.
    Lowry B, Robbins T, Weng C-H, O'Brien RV, Cane DE, Khosla C. 2013.. In vitro reconstitution and analysis of the 6-deoxyerythronolide B synthase. . J. Am. Chem. Soc. 135::1680912
    [Crossref] [Google Scholar]
  17. 17.
    Moss SJ, Martin CJ, Wilkinson B. 2004.. Loss of co-linearity by modular polyketide synthases: a mechanism for the evolution of chemical diversity. . Nat. Prod. Rep. 21::57593
    [Crossref] [Google Scholar]
  18. 18.
    Zhang L, Hashimoto T, Qin B, Hashimoto J, Kozone I, et al. 2017.. Characterization of giant modular PKSs provides insight into genetic mechanism for structural diversification of aminopolyol polyketides. . Angew. Chem. Int. Ed. 56::174045
    [Crossref] [Google Scholar]
  19. 19.
    Dreier J, Khosla C. 2000.. Mechanistic analysis of a type II polyketide synthase. Role of conserved residues in the β-ketoacyl synthase−chain length factor heterodimer. . Biochemistry 39::208895
    [Crossref] [Google Scholar]
  20. 20.
    Keatinge-Clay AT. 2017.. The uncommon enzymology of cis-acyltransferase assembly lines. . Chem. Rev. 117::533466
    [Crossref] [Google Scholar]
  21. 21.
    Roberts GA, Staunton J, Leadlay PF. 1993.. Heterologous expression in Escherichia coli of an intact multienzyme component of the erythromycin-producing polyketide synthase. . Eur. J. Biochem. 214::30511
    [Crossref] [Google Scholar]
  22. 22.
    Pieper R, Luo G, Cane DE, Khosla C. 1995.. Cell-free synthesis of polyketides by recombinant erythromycin polyketide synthases. . Nature 378::26366
    [Crossref] [Google Scholar]
  23. 23.
    Staunton J, Caffrey P, Aparicio JF, Roberts GA, Bethell SS, Leadlay P. 1996.. Evidence for a double-helical structure for modular polyketide synthases. . Nat. Struct. Biol. 3::18892
    [Crossref] [Google Scholar]
  24. 24.
    Kao CM, Pieper R, Cane DE, Khosla C. 1996.. Evidence for two catalytically independent clusters of active sites in a functional modular polyketide synthase. . Biochemistry 35::1236368
    [Crossref] [Google Scholar]
  25. 25.
    Gokhale RS, Lau J, Cane DE, Khosla C. 1998.. Functional orientation of the acyltransferase domain in a module of the erythromycin polyketide synthase. . Biochemistry 37::252428
    [Crossref] [Google Scholar]
  26. 26.
    Lambalot RH, Gehring AM, Flugel RS, Zuber P, LaCelle M, et al. 1996.. A new enzyme superfamily – the phosphopantetheinyl transferases. . Chem. Biol. 3::92336
    [Crossref] [Google Scholar]
  27. 27.
    Tang Y, Kim C-Y, Mathews II, Cane DE, Khosla C. 2006.. The 2.7-Å crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase. . PNAS 103::1112429
    [Crossref] [Google Scholar]
  28. 28.
    Quadri LEN, Weinreb PH, Lei M, Nakano MM, Zuber P, Walsh CT. 1998.. Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. . Biochemistry 37::158595
    [Crossref] [Google Scholar]
  29. 29.
    Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD. 2014.. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. . Nat. Prod. Rep. 31::61108
    [Crossref] [Google Scholar]
  30. 30.
    Khosla C, Gokhale RS, Jacobsen JR, Cane DE. 1999.. Tolerance and specificity of polyketide synthases. . Annu. Rev. Biochem. 68::21953
    [Crossref] [Google Scholar]
  31. 31.
    Kao CM, Katz L, Khosla C. 1994.. Engineered biosynthesis of a complete macrolactone in a heterologous host. . Science 265::50912
    [Crossref] [Google Scholar]
  32. 32.
    Pfeifer BA, Admiraal SJ, Gramajo H, Cane DE, Khosla C. 2001.. Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. . Science 291::179092
    [Crossref] [Google Scholar]
  33. 33.
    Bycroft M, Weissman KJ, Staunton J, Leadlay PF. 2000.. Efficient purification and kinetic characterization of a bimodular derivative of the erythromycin polyketide synthase. . Eur. J. Biochem. 267::52026
    [Crossref] [Google Scholar]
  34. 34.
    Pieper R, Ebert-Khosla S, Cane D, Khosla C. 1996.. Erythromycin biosynthesis: kinetic studies on a fully active modular polyketide synthase using natural and unnatural substrates. . Biochemistry 35::205460
    [Crossref] [Google Scholar]
  35. 35.
    Cogan DP, Zhang K, Li X, Li S, Pintilie GD, et al. 2021.. Mapping the catalytic conformations of an assembly-line polyketide synthase module. . Science 374::72934
    [Crossref] [Google Scholar]
  36. 36.
    Admiraal SJ, Walsh CT, Khosla C. 2001.. The loading module of rifamycin synthetase is an adenylation-thiolation didomain with substrate tolerance for substituted benzoates. . Biochemistry 40::611623
    [Crossref] [Google Scholar]
  37. 37.
    Chen H, O'Connor S, Cane DE, Walsh CT. 2001.. Epothilone biosynthesis: assembly of the methylthiazolylcarboxy starter unit on the EpoB subunit. . Chem. Biol. 8::899912
    [Crossref] [Google Scholar]
  38. 38.
    Beck BJ, Aldrich CC, Fecik RA, Reynolds KA, Sherman DH. 2003.. Iterative chain elongation by a pikromycin monomodular polyketide synthase. . J. Am. Chem. Soc. 125::468283
    [Crossref] [Google Scholar]
  39. 39.
    Kuo J, Lynch SR, Liu CW, Xiao X, Khosla C. 2016.. Partial in vitro reconstitution of an orphan polyketide synthase associated with clinical cases of nocardiosis. . ACS Chem. Biol. 11::263641
    [Crossref] [Google Scholar]
  40. 40.
    Yuet KP, Liu CW, Lynch SR, Kuo J, Michaels W, et al. 2020.. Complete reconstitution and deorphanization of the 3 MDa nocardiosis-associated polyketide synthase. . J. Am. Chem. Soc. 142::595257
    [Crossref] [Google Scholar]
  41. 41.
    Cane DE, Yang C-C. 1987.. Macrolide biosynthesis. 4. Intact incorporation of a chain-elongation intermediate into erythromycin. . J. Am. Chem. Soc. 109::125557
    [Crossref] [Google Scholar]
  42. 42.
    Yue S, Duncan JS, Yamamoto Y, Hutchinson CR. 1987.. Macrolide biosynthesis. Tylactone formation involves the processive addition of three carbon units. . J. Am. Chem. Soc. 109::125355
    [Crossref] [Google Scholar]
  43. 43.
    Jacobsen JR, Hutchinson CR, Cane DE, Khosla C. 1997.. Precursor-directed biosynthesis of erythromycin analogs by an engineered polyketide synthase. . Science 277::36769
    [Crossref] [Google Scholar]
  44. 44.
    Wu N, Tsuji SY, Cane DE, Khosla C. 2001.. Assessing the balance between protein–protein interactions and enzyme–substrate interactions in the channeling of intermediates between polyketide synthase modules. . J. Am. Chem. Soc. 123::646574
    [Crossref] [Google Scholar]
  45. 45.
    Wu N, Kudo F, Cane DE, Khosla C. 2000.. Analysis of the molecular recognition features of individual modules derived from the erythromycin polyketide synthase. . J. Am. Chem. Soc. 122::484752
    [Crossref] [Google Scholar]
  46. 46.
    Hartung IV, Rude MA, Schnarr NA, Hunziker D, Khosla C. 2005.. Stereochemical assignment of intermediates in the rifamycin biosynthetic pathway by precursor-directed biosynthesis. . J. Am. Chem. Soc. 127::112023
    [Crossref] [Google Scholar]
  47. 47.
    Hunziker D, Wu N, Kinoshita K, Cane DE, Khosla C. 1999.. Precursor directed biosynthesis of novel 6-deoxyerythronolide B analogs containing non-natural oxygen substituents and reactive functionalities. . Tetrahedron Lett. 40::63538
    [Crossref] [Google Scholar]
  48. 48.
    Worthington AS, Rivera H, Torpey JW, Alexander MD, Burkart MD. 2006.. Mechanism-based protein cross-linking probes to investigate carrier protein-mediated biosynthesis. . ACS Chem. Biol. 1::68791
    [Crossref] [Google Scholar]
  49. 49.
    Nguyen C, Haushalter RW, Lee DJ, Markwick PRL, Bruegger J, et al. 2014.. Trapping the dynamic acyl carrier protein in fatty acid biosynthesis. . Nature 505::42731
    [Crossref] [Google Scholar]
  50. 50.
    Kapur S, Worthington A, Tang Y, Cane DE, Burkart MD, Khosla C. 2008.. Mechanism based protein crosslinking of domains from the 6-deoxyerythronolide B synthase. . Bioorg. Med. Chem. Lett. 18::303438
    [Crossref] [Google Scholar]
  51. 51.
    Kim C-Y, Alekseyev VY, Chen AY, Tang Y, Cane DE, Khosla C. 2004.. Reconstituting modular activity from separated domains of 6-deoxyerythronolide B synthase. . Biochemistry 43::1389298
    [Crossref] [Google Scholar]
  52. 52.
    Chen AY, Cane DE, Khosla C. 2007.. Structure-based dissociation of a type I polyketide synthase module. . Chem. Biol. 14::78492
    [Crossref] [Google Scholar]
  53. 53.
    Gay DC, Gay G, Axelrod AJ, Jenner M, Kohlhaas C, et al. 2014.. A close look at a ketosynthase from a trans-acyltransferase modular polyketide synthase. . Structure 22::44451
    [Crossref] [Google Scholar]
  54. 54.
    Keatinge-Clay AT, Stroud RM. 2006.. The structure of a ketoreductase determines the organization of the β-carbon processing enzymes of modular polyketide synthases. . Structure 14::73748
    [Crossref] [Google Scholar]
  55. 55.
    McCullough TM, Dhar A, Akey DL, Konwerski JR, Sherman DH, Smith JL. 2023.. Structure of a modular polyketide synthase reducing region. . Structure 31::110920.e3
    [Crossref] [Google Scholar]
  56. 56.
    Bagde SR, Mathews II, Fromme JC, Kim C-Y. 2021.. Modular polyketide synthase contains two reaction chambers that operate asynchronously. . Science 374::72329
    [Crossref] [Google Scholar]
  57. 57.
    Li X, Sevillano N, La Greca F, Deis L, Liu Y-C, et al. 2018.. Structure–function analysis of the extended conformation of a polyketide synthase module. . J. Am. Chem. Soc. 140::651821
    [Crossref] [Google Scholar]
  58. 58.
    Guzman KM, Cogan DP, Brodsky KL, Soohoo AM, Li X, et al. 2023.. Discovery and characterization of antibody probes of module 2 of the 6-deoxyerythronolide B synthase. . Biochemistry 62::158993
    [Crossref] [Google Scholar]
  59. 59.
    Cogan DP, Li X, Sevillano N, Mathews II, Matsui T, et al. 2020.. Antibody probes of module 1 of the 6-deoxyerythronolide B synthase reveal an extended conformation during ketoreduction. . J. Am. Chem. Soc. 142::1493339
    [Crossref] [Google Scholar]
  60. 60.
    Li X, Sevillano N, La Greca F, Hsu J, Mathews II, et al. 2018.. Discovery and characterization of a thioesterase-specific monoclonal antibody that recognizes the 6-deoxyerythronolide B synthase. . Biochemistry 57::62018
    [Crossref] [Google Scholar]
  61. 61.
    Khosla C, Tang Y, Chen AY, Schnarr NA, Cane DE. 2007.. Structure and mechanism of the 6-deoxyerythronolide B synthase. . Annu. Rev. Biochem. 76::195221
    [Crossref] [Google Scholar]
  62. 62.
    Gokhale RS, Tsuji SY, Cane DE, Khosla C. 1999.. Dissecting and exploiting intermodular communication in polyketide synthases. . Science 284::48285
    [Crossref] [Google Scholar]
  63. 63.
    Tsuji SY, Cane DE, Khosla C. 2001.. Selective protein–protein interactions direct channeling of intermediates between polyketide synthase modules. . Biochemistry 40::232631
    [Crossref] [Google Scholar]
  64. 64.
    Wu N, Cane DE, Khosla C. 2002.. Quantitative analysis of the relative contributions of donor acyl carrier proteins, acceptor ketosynthases, and linker regions to intermodular transfer of intermediates in hybrid polyketide synthases. . Biochemistry 41::505666
    [Crossref] [Google Scholar]
  65. 65.
    Broadhurst RW, Nietlispach D, Wheatcroft MP, Leadlay PF, Weissman KJ. 2003.. The structure of docking domains in modular polyketide synthases. . Chem. Biol. 10::72331
    [Crossref] [Google Scholar]
  66. 66.
    Kumar P, Li Q, Cane DE, Khosla C. 2003.. Intermodular communication in modular polyketide synthases: structural and mutational analysis of linker mediated protein–protein recognition. . J. Am. Chem. Soc. 125::4097102
    [Crossref] [Google Scholar]
  67. 67.
    Tang Y, Chen AY, Kim C-Y, Cane DE, Khosla C. 2007.. Structural and mechanistic analysis of protein interactions in module 3 of the 6-deoxyerythronolide B synthase. . Chem. Biol. 14::93143
    [Crossref] [Google Scholar]
  68. 68.
    Whicher JR, Smaga SS, Hansen DA, Brown WC, Gerwick WH, et al. 2013.. Cyanobacterial polyketide synthase docking domains: a tool for engineering natural product biosynthesis. . Chem. Biol. 20::134051
    [Crossref] [Google Scholar]
  69. 69.
    Dickinson MS, Miyazawa T, McCool RS, Keatinge-Clay AT. 2022.. Priming enzymes from the pikromycin synthase reveal how assembly-line ketosynthases catalyze carbon-carbon chemistry. . Structure 30::133139
    [Crossref] [Google Scholar]
  70. 70.
    Lohman JR, Ma M, Osipiuk J, Nocek B, Kim Y, et al. 2015.. Structural and evolutionary relationships of “AT-less” type I polyketide synthase ketosynthases. . PNAS 112::1269398
    [Crossref] [Google Scholar]
  71. 71.
    Gay DC, Wagner DT, Meinke JL, Zogzas CE, Gay GR, Keatinge-Clay AT. 2016.. The LINKS motif zippers trans-acyltransferase polyketide synthase assembly lines into a biosynthetic megacomplex. . J. Struct. Biol. 193::196205
    [Crossref] [Google Scholar]
  72. 72.
    Tittes YU, Herbst DA, Martin SFX, Munoz-Hernandez H, Jakob RP, Maier T. 2022.. The structure of a polyketide synthase bimodule core. . Sci. Adv. 8::eabo6918
    [Crossref] [Google Scholar]
  73. 73.
    Wong FT, Jin X, Mathews II, Cane DE, Khosla C. 2011.. Structure and mechanism of the trans-acting acyltransferase from the disorazole synthase. . Biochemistry 50::653948
    [Crossref] [Google Scholar]
  74. 74.
    Keatinge-Clay A. 2008.. Crystal structure of the erythromycin polyketide synthase dehydratase. . J. Mol. Biol. 384::94153
    [Crossref] [Google Scholar]
  75. 75.
    Zheng J, Gay DC, Demeler B, White MA, Keatinge-Clay AT. 2012.. Divergence of multimodular polyketide synthases revealed by a didomain structure. . Nat. Chem. Biol. 8::61521
    [Crossref] [Google Scholar]
  76. 76.
    Alekseyev VY, Liu CW, Cane DE, Puglisi JD, Khosla C. 2007.. Solution structure and proposed domain–domain recognition interface of an acyl carrier protein domain from a modular polyketide synthase. . Protein Sci. 16::2093107
    [Crossref] [Google Scholar]
  77. 77.
    Kapur S, Lowry B, Yuzawa S, Kenthirapalan S, Chen AY, et al. 2012.. Reprogramming a module of the 6-deoxyerythronolide B synthase for iterative chain elongation. . PNAS 109::411015
    [Crossref] [Google Scholar]
  78. 78.
    Tsai S-C, Miercke LJW, Krucinski J, Gokhale R, Chen JC-H, et al. 2001.. Crystal structure of the macrocycle-forming thioesterase domain of the erythromycin polyketide synthase: versatility from a unique substrate channel. . PNAS 98::1480813
    [Crossref] [Google Scholar]
  79. 79.
    Tsai S-C, Lu H, Cane DE, Khosla C, Stroud RM. 2002.. Insights into channel architecture and substrate specificity from crystal structures of two macrocycle-forming thioesterases of modular polyketide synthases. . Biochemistry 41::12598606
    [Crossref] [Google Scholar]
  80. 80.
    Edwards AL, Matsui T, Weiss TM, Khosla C. 2014.. Architectures of whole-module and bimodular proteins from the 6-deoxyerythronolide B synthase. . J. Mol. Biol. 426::222945
    [Crossref] [Google Scholar]
  81. 81.
    Dutta S, Whicher JR, Hansen DA, Hale WA, Chemler JA, et al. 2014.. Structure of a modular polyketide synthase. . Nature 510::51217
    [Crossref] [Google Scholar]
  82. 82.
    Whicher JR, Dutta S, Hansen DA, Hale WA, Chemler JA, et al. 2014.. Structural rearrangements of a polyketide synthase module during its catalytic cycle. . Nature 510::56064
    [Crossref] [Google Scholar]
  83. 83.
    Maier T, Jenni S, Ban N. 2006.. Architecture of mammalian fatty acid synthase at 4.5 Å resolution. . Science 311::125862
    [Crossref] [Google Scholar]
  84. 84.
    Maier T, Leibundgut M, Ban N. 2008.. The crystal structure of a mammalian fatty acid synthase. . Science 321::131522
    [Crossref] [Google Scholar]
  85. 85.
    Chen AY, Schnarr NA, Kim C-Y, Cane DE, Khosla C. 2006.. Extender unit and acyl carrier protein specificity of ketosynthase domains of the 6-deoxyerythronolide B synthase. . J. Am. Chem. Soc. 128::306774
    [Crossref] [Google Scholar]
  86. 86.
    Nivina A, Herrera Paredes S, Fraser HB, Khosla C. 2021.. GRINS: genetic elements that recode assembly-line polyketide synthases and accelerate their diversification. . PNAS 118::e2100751118
    [Crossref] [Google Scholar]
  87. 87.
    Dunn BJ, Cane DE, Khosla C. 2013.. Mechanism and specificity of an acyltransferase domain from a modular polyketide synthase. . Biochemistry 52::183941
    [Crossref] [Google Scholar]
  88. 88.
    Dunn BJ, Watts KR, Robbins T, Cane DE, Khosla C. 2014.. Comparative analysis of the substrate specificity of trans- versus cis-acyltransferases of assembly line polyketide synthases. . Biochemistry 53::3796806
    [Crossref] [Google Scholar]
  89. 89.
    Wong FT, Chen AY, Cane DE, Khosla C. 2010.. Protein–protein recognition between acyltransferases and acyl carrier proteins in multimodular polyketide synthases. . Biochemistry 49::95102
    [Crossref] [Google Scholar]
  90. 90.
    Li Y, Zhang W, Zhang H, Tian W, Wu L, et al. 2018.. Structural basis of a broadly selective acyltransferase from the polyketide synthase of splenocin. . Angew. Chem. Int. Ed. 57::582327
    [Crossref] [Google Scholar]
  91. 91.
    Haydock SF, Aparicio JF, Molnár I, Schwecke T, Khaw LE, et al. 1995.. Divergent sequence motifs correlated with the substrate specificity of (methyl)malonyl-CoA:acyl carrier protein transacylase domains in modular polyketide synthases. . FEBS Lett. 374::24648
    [Crossref] [Google Scholar]
  92. 92.
    Lau J, Fu H, Cane DE, Khosla C. 1999.. Dissecting the role of acyltransferase domains of modular polyketide synthases in the choice and stereochemical fate of extender units. . Biochemistry 38::164351
    [Crossref] [Google Scholar]
  93. 93.
    Reeves CD, Murli S, Ashley GW, Piagentini M, Hutchinson CR, McDaniel R. 2001.. Alteration of the substrate specificity of a modular polyketide synthase acyltransferase domain through site-specific mutations. . Biochemistry 40::1546470
    [Crossref] [Google Scholar]
  94. 94.
    Mathews II, Allison K, Robbins T, Lyubimov AY, Uervirojnangkoorn M, et al. 2017.. The conformational flexibility of the acyltransferase from the disorazole polyketide synthase is revealed by an X-ray free-electron laser using a room-temperature sample delivery method for serial crystallography. . Biochemistry 56::475156
    [Crossref] [Google Scholar]
  95. 95.
    Feng Y, Zhang F, Huang S, Deng Z, Bai L, Zheng J. 2022.. Structural visualization of transient interactions between the cis-acting acyltransferase and acyl carrier protein of the salinomycin modular polyketide synthase. . Acta Crystallogr. D. Struct. Biol. 78::77991
    [Crossref] [Google Scholar]
  96. 96.
    Miyanaga A, Ouchi R, Ishikawa F, Goto E, Tanabe G, et al. 2018.. Structural basis of protein–protein interactions between a trans-acting acyltransferase and acyl carrier protein in polyketide disorazole biosynthesis. . J. Am. Chem. Soc. 140::797078
    [Crossref] [Google Scholar]
  97. 97.
    Miyanaga A, Iwasawa S, Shinohara Y, Kudo F, Eguchi T. 2016.. Structure-based analysis of the molecular interactions between acyltransferase and acyl carrier protein in vicenistatin biosynthesis. . PNAS 113::18027
    [Crossref] [Google Scholar]
  98. 98.
    Celmer WD. 1965.. Macrolide stereochemistry. III. A configurational model for macrolide antibiotics. . J. Am. Chem. Soc. 87::18012
    [Crossref] [Google Scholar]
  99. 99.
    Keatinge-Clay AT. 2016.. Stereocontrol within polyketide assembly lines. . Nat. Prod. Rep. 33::14149
    [Crossref] [Google Scholar]
  100. 100.
    Cane DE. 2010.. Programming of erythromycin biosynthesis by a modular polyketide synthase. . J. Biol. Chem. 285::2751723
    [Crossref] [Google Scholar]
  101. 101.
    Marsden AF, Caffrey P, Aparicio JF, Loughran MS, Staunton J, Leadlay PF. 1994.. Stereospecific acyl transfers on the erythromycin-producing polyketide synthase. . Science 263::37880
    [Crossref] [Google Scholar]
  102. 102.
    Weissman KJ, Timoney M, Bycroft M, Grice P, Hanefeld U, et al. 1997.. The molecular basis of Celmer's rules: the stereochemistry of the condensation step in chain extension on the erythromycin polyketide synthase. . Biochemistry 36::1384955
    [Crossref] [Google Scholar]
  103. 103.
    Castonguay R, He W, Chen AY, Khosla C, Cane DE. 2007.. Stereospecificity of ketoreductase domains of the 6-deoxyerythronolide B synthase. . J. Am. Chem. Soc. 129::1375869
    [Crossref] [Google Scholar]
  104. 104.
    Kao CM, McPherson M, McDaniel RN, Fu H, Cane DE, Khosla C. 1998.. Alcohol stereochemistry in polyketide backbones is controlled by the β-ketoreductase domains of modular polyketide synthases. . J. Am. Chem. Soc. 120::247879
    [Crossref] [Google Scholar]
  105. 105.
    Valenzano CR, You Y-O, Garg A, Keatinge-Clay A, Khosla C, Cane DE. 2010.. Stereospecificity of the dehydratase domain of the erythromycin polyketide synthase. . J. Am. Chem. Soc. 132::1469799
    [Crossref] [Google Scholar]
  106. 106.
    Gay D, You Y-O, Keatinge-Clay A, Cane DE. 2013.. Structure and stereospecificity of the dehydratase domain from the terminal module of the rifamycin polyketide synthase. . Biochemistry 52::891628
    [Crossref] [Google Scholar]
  107. 107.
    Shah DD, You Y-O, Cane DE. 2017.. Stereospecific formation of E- and Z-disubstituted double bonds by dehydratase domains from modules 1 and 2 of the fostriecin polyketide synthase. . J. Am. Chem. Soc. 139::1432230
    [Crossref] [Google Scholar]
  108. 108.
    Kwan DH, Sun Y, Schulz F, Hong H, Popovic B, et al. 2008.. Prediction and manipulation of the stereochemistry of enoylreduction in modular polyketide synthases. . Chem. Biol. 15::123140
    [Crossref] [Google Scholar]
  109. 109.
    Klaus M, Ostrowski MP, Austerjost J, Robbins T, Lowry B, et al. 2016.. Protein-protein interactions, not substrate recognition, dominate the turnover of chimeric assembly line polyketide synthases. . J. Biol. Chem. 291::1640415
    [Crossref] [Google Scholar]
  110. 110.
    Kapur S, Chen AY, Cane DE, Khosla C. 2010.. Molecular recognition between ketosynthase and acyl carrier protein domains of the 6-deoxyerythronolide B synthase. . PNAS 107::2206671
    [Crossref] [Google Scholar]
  111. 111.
    Jencks WP. 1980.. The utilization of binding energy in coupled vectorial processes. . Adv. Enzymol. Relat. Areas Mol. Biol. 51::75106
    [Google Scholar]
  112. 112.
    Lowry B, Li X, Robbins T, Cane DE, Khosla C. 2016.. A turnstile mechanism for the controlled growth of biosynthetic intermediates on assembly line polyketide synthases. . ACS Cent. Sci. 2::1420
    [Crossref] [Google Scholar]
  113. 113.
    Bonhomme S, Contreras-Martel C, Dessen A, Macheboeuf P. 2023.. Architecture of a PKS-NRPS hybrid megaenzyme involved in the biosynthesis of the genotoxin colibactin. . Structure 31::70012
    [Crossref] [Google Scholar]
  114. 114.
    Zalatan JG, Herschlag D. 2009.. The far reaches of enzymology. . Nat. Chem. Biol. 5::51620
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biochem-080923-043654
Loading
/content/journals/10.1146/annurev-biochem-080923-043654
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error