This retrospective recounts the hunt for the mechanism of mitochondrial ATP synthesis, the early days of research on mitochondrial formation, and some of the colorful personalities dominating these often dramatic and emotional efforts. The narrative is set against the backdrop of postwar Austria and Germany and the stream of young scientists who had to leave their countries to receive postdoctoral training abroad. Many of them—including the author—chose the laboratory of a scientist their country had expelled a few decades before. The article concludes with some thoughts on the uniqueness of U.S. research universities and a brief account of the struggles to revive science in Europe.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Beinert H, Stumpf PK, Wakil SJ. 1.  2003. David Ezra Green. Biographical Memoirs 841–34 Washington, DC: Natl. Acad. Sci. [Google Scholar]
  2. Ernster L, Schatz G. 2.  1981. Mitochondria: a historical review. J. Cell Biol. 91:s227–55 [Google Scholar]
  3. McLean JR, Cohn GL, Brandt IK, Simpson MV. 3.  1958. Incorporation of amino acids into the protein of isolated mitochondria. J. Biol. Chem. 233:657–63 [Google Scholar]
  4. Ephrussi B. 4.  1953. Nucleo-Cytoplasmic Relationships in Microorganisms Oxford: Clarendon [Google Scholar]
  5. Slonimski PP. 5.  1953. La Formation des Enzymes Respiratoires chez la Levure Paris: Masson [Google Scholar]
  6. Schatz G, Haslbrunner E, Tuppy H. 6.  1964. Deoxyribonucleic acid associated with yeast mitochondria. Biochem. Biophys. Res. Commun. 15:127–32 [Google Scholar]
  7. Nass S, Nass MMK. 7.  1963. Intramitochondrial fibers with DNA characteristics II. Enzymatic and other hydrolytic treatments. J. Cell Biol. 19:613–29 [Google Scholar]
  8. Pullman ME, Penefsky HS, Datta A, Racker E. 8.  1960. Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase. J. Biol. Chem. 235:3322–29 [Google Scholar]
  9. Penefsky HS, Pullman ME, Datta A, Racker E. 9.  1960. Partial resolution of the enzymes catalyzing oxidative phosphorylation. II. Participation of a soluble adenosine triphosphatase in oxidative phosphorylation. J. Biol. Chem. 235:3330–36 [Google Scholar]
  10. Mitchell P. 10.  1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–48 [Google Scholar]
  11. Pullman ME, Schatz G. 11.  1967. Mitochondrial oxidation and energy coupling. Annu. Rev. Biochem. 36:530–610 [Google Scholar]
  12. Boyer PD, Chance B, Ernster L, Mitchell P, Racker E, Slater EC. 12.  1977. Oxidative phosphorylation and photophosphorylation. Annu. Rev. Biochem. 46:955–1026 [Google Scholar]
  13. Schatz G, Penefsky HS, Racker E. 13.  1967. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XIV. Interaction of purified mitochondrial adenosine triphosphatase from baker's yeast with submitochondrial particles from beef heart. J. Biol. Chem. 242:2552–60 [Google Scholar]
  14. Schatz G. 14.  1968. Impaired binding of mitochondrial adenosine triphosphatase in the cytoplasmic “petite” mutant of Saccharomyces cerevisiae. J. Biol. Chem. 243:2192–99 [Google Scholar]
  15. Linnane AW, Vitols E, Nowland PG. 15.  1962. Studies on the origin of yeast mitochondria. J. Cell Biol. 13:345–50 [Google Scholar]
  16. Wallace PG, Linnane AW. 16.  1964. Oxygen-induced synthesis of yeast mitochondria. Nature 201:1191–94 [Google Scholar]
  17. Criddle RS, Schatz G. 17.  1969. Promitochondria of anaerobically grown yeast. I. Isolation and biochemical properties. Biochemistry 8:322–34 [Google Scholar]
  18. Plattner H, Schatz G. 18.  1969. Promitochondria of anaerobically grown yeast. III. Morphology. Biochemistry 8:339–43 [Google Scholar]
  19. Swift H, Rabinowitz M, Getz G. 19.  1968. Cytochemical studies on mitochondrial nucleic acids. Biochemical Aspects of the Biogenesis of Mitochondria EC Slater, JM Tager, S Papa, E Quagliarello 3–19 Bari, Italy: Adriatica Editrice [Google Scholar]
  20. Plattner H, Salpeter MM, Saltzgaber J, Schatz G. 20.  1970. Promitochondria of anaerobically grown yeast. IV. Conversion into respiring mitochondria. Proc. Natl. Acad. Sci. USA 66:1252–59 [Google Scholar]
  21. Yaffe M, Schatz G. 21.  1984. Two nuclear mutations which block mitochondrial protein import in yeast. Proc. Natl. Acad. Sci. USA 81:4819–23 [Google Scholar]
  22. Schatz G, Saltzgaber J. 22.  1969. Protein synthesis by yeast promitochondria in vivo. Biochem. Biophys. Res. Commun. 37:996–1001 [Google Scholar]
  23. Kužela S, Smigan P, Kováč L. 23.  1969. Biochemical characteristics of respiration-deficient yeast mutants differing in buoyant densities of mitochondrial DNA. Experientia 25:1042–43 [Google Scholar]
  24. Mason TL, Ebner E, Poyton RO, Wharton DC, Mennucci L, Schatz G. 24.  1972. Participation of mitochondrial and cytoplasmic protein synthesis in mitochondrial formation. Mitochondria: Biogenesis and Bioenergetics P Borst, EC Slater, GS van den Bergh 53–69 Amsterdam: North Holland [Google Scholar]
  25. Mason TL, Schatz G. 25.  1973. Cytochrome c oxidase of baker's yeast. II. Site of translation of the protein components. J. Biol. Chem. 248:1355–60 [Google Scholar]
  26. Weiss H, Sebald W, Bücher T. 26.  1971. Cycloheximide-resistant incorporation of amino acids into a polypeptide of the cytochrome oxidase of Neurospora crassa. Eur. J. Biochem. 22:19–26 [Google Scholar]
  27. Rubin MS, Tzagoloff A. 27.  1973. Assembly of the mitochondrial membrane system. X. Mitochondrial synthesis of three of the subunit proteins of yeast cytochrome oxidase. J. Biol. Chem. 248:4275–79 [Google Scholar]
  28. Schatz G. 28.  1997. The hunt for mitochondrially synthesized proteins. Protein Sci. 6:728–34 [Google Scholar]
  29. Tzagoloff A. 29.  1971. Assembly of the mitochondrial membrane system. IV. Role of mitochondrial and cytoplasmic protein synthesis in the biosynthesis of the rutamycin-sensitive adenosine triphosphatase. J. Biol. Chem. 246:3050–56 [Google Scholar]
  30. Ebner E, Mason TL, Schatz G. 30.  1973. Mitochondrial assembly in respiration-deficient mutants of Saccharomyces cerevisiae. II. Effect of nuclear and extrachromosomal mutations on the formation of cytochrome oxidase. J. Biol. Chem. 248:5369–78 [Google Scholar]
  31. Poyton RO, Schatz G. 31.  1975. Cytochrome c oxidase from baker's yeast: immunological evidence for the participation of a mitochondrially synthesized subunit in enzymatic activity. J. Biol. Chem. 250:762–66 [Google Scholar]
  32. Costanzo MC, Poutre CG, Strick CA, Fox TD. 32.  1985. Yeast nuclear gene products required for translation of specific mitochondrial messenger RNAs. Achievements and Perspectives in Mitochondrial Research F Palmieri, C Saccone, AM Kroon 355–60 Amsterdam: Elsevier [Google Scholar]
  33. Tzagoloff A, Akai A, Needleman RB, Zulch G. 33.  1975. Assembly of the mitochondrial membrane system. Cytoplasmic mutants of Saccharomyces cerevisiae with lesions in enzymes of the respiratory chain and in the mitochondrial ATPase. J. Biol. Chem. 250:8236–42 [Google Scholar]
  34. Cabral F, Solioz M, Rudin Y, Schatz G, Clavilier L, Slonimski PP. 34.  1978. Identification of the structural gene for yeast cytochrome c oxidase subunit II on mitochondrial DNA. J. Biol. Chem. 253:297–304 [Google Scholar]
  35. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR. 35.  et al. 1981. Sequence and organization of the human mitochondrial genome. Nature 290:457–65 [Google Scholar]
  36. Attardi G, Chomyn A, Doolittle RF, Mariottini P, Ragan CI. 36.  1986. Seven unidentified reading frames of human mitochondrial DNA encode subunits of the respiratory chain NADH dehydrogenase. Cold Spring Harb. Symp. Quant. Biol. 51:103–14 [Google Scholar]
  37. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H. 37.  et al. 1996. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272:1136–44 [Google Scholar]
  38. Fox TD. 38.  1979. Five TGA “stop” codons occur within the translated sequence of the yeast mitochondrial gene for cytochrome c oxidase subunit II. Proc. Natl. Acad. Sci. USA 76:6534–38 [Google Scholar]
  39. Fox TD. 39.  1986. Nuclear gene products required for translation of specific mitochondrially coded mRNAs in yeast. Trends Genet. 2:97–99 [Google Scholar]
  40. Harmey MA, Hallermayer G, Korb H, Neupert W. 40.  1977. Transport of cytoplasmically synthesized proteins into the mitochondria in a cell free system from Neurospora crassa. Eur. J. Biochem. 81:533–44 [Google Scholar]
  41. Hallermayer G, Zimmermann R, Neupert W. 41.  1977. Kinetic studies on the transport of cytoplasmically synthesized proteins into the mitochondria in intact cells of Neurospora crassa. Eur. J. Biochem. 81:323–33 [Google Scholar]
  42. Macchecchini M-L, Rudin Y, Blobel G, Schatz G. 42.  1979. Import of proteins into mitochondria: precursor forms of the extra mitochondrially made F1-ATPase subunits in yeast. Proc. Natl. Acad. Sci. USA 76:343–47 [Google Scholar]
  43. Gasser SM, Daum G, Schatz G. 43.  1982. Import of proteins into mitochondria. Energy-dependent uptake of precursors by isolated mitochondria. J. Biol. Chem. 257:13034–41 [Google Scholar]
  44. Hawlitschek G, Schneider H, Schmidt B, Tropschug M, Hartl FU, Neupert W. 44.  1988. Mitochondrial protein import: identification of processing peptidase and of PEP, a processing enhancing protein. Cell 53:795–806 [Google Scholar]
  45. Yang M, Jensen RE, Yaffe MP, Schatz G. 45.  1988. Import of proteins into yeast mitochondria: The purified matrix processing protease contains two subunits which are encoded by the nuclear MAS1 and MAS2 genes. EMBO J. 7:3857–62 [Google Scholar]
  46. Ohashi A, Gibson J, Gregor I, Schatz G. 46.  1982. Import of proteins into mitochondria. The precursor of cytochrome c1 is processed in two steps, one of them heme-dependent. J. Biol. Chem. 257:13042–47 [Google Scholar]
  47. Gasser SM, Ohashi A, Daum G, Böhni P, Gibson J. 47.  et al. 1982. The imported mitochondrial proteins cytochrome b2 and cytochrome c1 are processed in two steps. Proc. Natl. Acad. Sci. USA 79:267–71 [Google Scholar]
  48. Glick BS, Brand A, Cunningham K, Müller S, Hallberg RL, Schatz G. 48.  1992. Cytochromes c1 and b2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism. Cell 69:809–22 [Google Scholar]
  49. Bömer U, Meijer M, Guiard B, Dietmeier K, Pfanner N, Rassow J. 49.  1997. The sorting route of cytochrome b2 branches from the general mitochondrial import pathway at the preprotein translocase of the inner membrane. J. Biol. Chem. 272:30439–46 [Google Scholar]
  50. Hurt EC, Pesold-Hurt B, Schatz G. 50.  1984. The cleavable prepiece of an imported mitochondrial protein is sufficient to direct cytosolic dihydrofolate reductase into the mitochondrial matrix. FEBS Lett. 178:306–10 [Google Scholar]
  51. van Loon APGM, Brändli A, Schatz G. 51.  1986. The cleavable presequences of two imported mitochondrial precursor proteins contain information for intracellular targeting and for intramitochondrial sorting. Cell 44:801–12 [Google Scholar]
  52. Eilers M, Schatz G. 52.  1986. Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature 322:228–32 [Google Scholar]
  53. Riezman H, Hay R, Witte C, Nelson N, Schatz G. 53.  1983. Yeast mitochondrial outer membrane specifically binds cytoplasmically-synthesized precursors of mitochondrial proteins. EMBO J. 2:1113–18 [Google Scholar]
  54. Hurt EC, Pesold-Hurt B, Suda K, Oppliger W, Schatz G. 54.  1985. The first twelve amino acids (less than half of the presequence) of an imported mitochondrial protein can direct mouse cytosolic dihydrofolate reductase into the yeast mitochondrial matrix. EMBO J. 4:2061–68 [Google Scholar]
  55. Roise D, Horvath SJ, Tomich JM, Richards JH, Schatz G. 55.  1986. A chemically synthesized mitochondrial signal peptide can form an amphipathic helix and perturb natural and artificial phospholipid bilayers. EMBO J. 5:1327–34 [Google Scholar]
  56. Lemire BD, Fankhauser C, Baker A, Schatz G. 56.  1989. The mitochondrial targeting function of randomly generated peptide sequences correlates with predicted helical amphiphilicity. J. Biol. Chem. 264:20206–15 [Google Scholar]
  57. Vestweber D, Brunner J, Baker A, Schatz G. 57.  1989. A 42K outer-membrane protein is a component of the yeast mitochondrial protein import site. Nature 341:205–9 [Google Scholar]
  58. Baker KP, Schaniel A, Vestweber D, Schatz G. 58.  1990. ISP42, a protein of the yeast mitochondrial outer membrane, is essential for protein import and cell viability. Nature 348:605–9 [Google Scholar]
  59. Koehler CM, Leuenberger D, Merchant S, Renold A, Junne T, Schatz G. 59.  1999. Human deafness dystonia syndrome is a mitochondrial disease. Proc. Nat. Acad. Sci. USA 96:2141–46 [Google Scholar]
  60. Schatz G. 60.  1998. The Swiss vote on gene technology. Science 281:1810–11 [Google Scholar]
  61. Schatz G. 61.  2005. Jeff's View on Science and Scientists Amsterdam: Elsevier [Google Scholar]
  62. Schatz G. 62.  2008. Jenseits der Gene Zürich: NZZ Libro [Google Scholar]
  63. Schatz G. 63.  2008. Jenseits der Gene Zürich: Kein & Aber Audio version. [Google Scholar]
  64. Schatz G. 64.  2011. A Matter of Wonder Basel: Karger [Google Scholar]
  65. Schatz G. 65.  2011. Feuersucher. Die Jagd nach dem Rätsel der Lebensenergie Zürich: Wiley VCH/Weinheim/NZZ Libro [Google Scholar]
  66. Schatz G. 66.  2000. Interplanetary travels. Comprehensive Biochemistry G Semenza, R Jaenicke 41449–530 Amsterdam: Elsevier Sci. [Google Scholar]
  67. Schatz G. 67.  1993. From ‘granules’ to organelles: how yeast mitochondria became respectable. The Early Days of Yeast Genetics MN Hall 241–46 Cold Spring Harbor, NY: Cold Spring Harb. Lab. [Google Scholar]
  68. Schatz G. 68.  2009. Coming in from the cold: how answering a postcard can launch a scientific career. Nat. Cell Biol. 11:364 [Google Scholar]
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error