The importance of PTEN in cellular function is underscored by the frequency of its deregulation in cancer. PTEN tumor-suppressor activity depends largely on its lipid phosphatase activity, which opposes PI3K/AKT activation. As such, PTEN regulates many cellular processes, including proliferation, survival, energy metabolism, cellular architecture, and motility. More than a decade of research has expanded our knowledge about how PTEN is controlled at the transcriptional level as well as by numerous posttranscriptional modifications that regulate its enzymatic activity, protein stability, and cellular location. Although the role of PTEN in cancers has long been appreciated, it is also emerging as an important factor in other diseases, such as diabetes and autism spectrum disorders. Our understanding of PTEN function and regulation will hopefully translate into improved prognosis and treatment for patients suffering from these ailments.

[Erratum, Closure]

An erratum has been published for this article:

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Li J, Yen C, Liaw D, Podsypanina K, Bose S. 1.  et al. 1997. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–47 [Google Scholar]
  2. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H. 2.  et al. 1997. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet. 15:356–62 [Google Scholar]
  3. Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI. 3.  et al. 1997. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat. Genet. 16:64–67 [Google Scholar]
  4. Parsons R.4.  1998. Phosphatases and tumorigenesis. Curr. Opin. Oncol. 10:88–91 [Google Scholar]
  5. Cairns P, Evron E, Okami K, Halachmi N, Esteller M. 5.  et al. 1998. Point mutation and homozygous deletion of PTEN/MMAC1 in primary bladder cancers. Oncogene 16:3215–18 [Google Scholar]
  6. Duerr EM, Rollbrocker B, Hayashi Y, Peters N, Meyer-Puttlitz B. 6.  et al. 1998. PTEN mutations in gliomas and glioneuronal tumors. Oncogene 16:2259–64 [Google Scholar]
  7. Suzuki A, de la Pompa JL, Stambolic V, Elia AJ, Sasaki T. 7.  et al. 1998. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr. Biol. 8:1169–78 [Google Scholar]
  8. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP. 8.  1998. Pten is essential for embryonic development and tumour suppression. Nat. Genet. 19:348–55 [Google Scholar]
  9. Zhang XC, Piccini A, Myers MP, Van Aelst L, Tonks NK. 9.  2012. Functional analysis of the protein phosphatase activity of PTEN. Biochem. J. 444:457–64 [Google Scholar]
  10. Li DM, Sun H. 10.  1997. TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor β. Cancer Res. 57:2124–29 [Google Scholar]
  11. Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM. 11.  1998. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 280:1614–17 [Google Scholar]
  12. Myers MP, Stolarov JP, Eng C, Li J, Wang SI. 12.  et al. 1997. P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc. Natl. Acad. Sci. USA 94:9052–57 [Google Scholar]
  13. Maehama T, Dixon JE. 13.  1998. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273:13375–78 [Google Scholar]
  14. Maehama T, Dixon JE. 14.  1999. PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol. 9:125–28 [Google Scholar]
  15. Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP. 15.  et al. 1998. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc. Natl. Acad. Sci. USA 95:13513–18 [Google Scholar]
  16. Kaplan DR, Whitman M, Schaffhausen B, Pallas DC, White M. 16.  et al. 1987. Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity. Cell 50:1021–29 [Google Scholar]
  17. Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM. 17.  1985. Association of phosphatidyl-inositol kinase activity with polyoma middle-T competent for transformation. Nature 315:239–42 [Google Scholar]
  18. Engelman JA, Luo J, Cantley LC. 18.  2006. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 7:606–19 [Google Scholar]
  19. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. 19.  2010. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol. 11:329–41 [Google Scholar]
  20. Zhang TT, Li H, Cheung SM, Costantini JL, Hou S. 20.  et al. 2009. Phosphoinositide 3-kinase–regulated adapters in lymphocyte activation. Immunol. Rev. 232:255–72 [Google Scholar]
  21. Hunzicker-Dunn ME, Lopez-Biladeau B, Law NC, Fiedler SE, Carr DW, Maizels ET. 21.  2012. PKA and GAB2 play central roles in the FSH signaling pathway to PI3K and AKT in ovarian granulosa cells. Proc. Natl. Acad. Sci. USA 109:E2979–88 [Google Scholar]
  22. Salamon RS, Backer JM. 22.  2013. Phosphatidylinositol-3,4,5-trisphosphate: tool of choice for class I PI 3-kinases. BioEssays 35:602–11 [Google Scholar]
  23. Cantley LC.23.  2002. The phosphoinositide 3-kinase pathway. Science 296:1655–57 [Google Scholar]
  24. Stephens L, Hawkins P. 24.  2011. Signalling via class IA PI3Ks. Adv. Enzyme Regul. 51:27–36 [Google Scholar]
  25. Brazil DP, Park J, Hemmings BA. 25.  2002. PKB binding proteins. Getting in on the Akt. Cell 111:293–303 [Google Scholar]
  26. Manning BD, Cantley LC. 26.  2007. AKT/PKB signaling: navigating downstream. Cell 129:1261–74 [Google Scholar]
  27. Guertin DA, Sabatini DM. 27.  2007. Defining the role of mTOR in cancer. Cancer Cell 12:9–22 [Google Scholar]
  28. Downward J.28.  1998. Mechanisms and consequences of activation of protein kinase B/Akt. Curr. Opin. Cell Biol. 10:262–67 [Google Scholar]
  29. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C. 29.  et al. 1998. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95:29–39 [Google Scholar]
  30. Li J, Simpson L, Takahashi M, Miliaresis C, Myers MP. 30.  et al. 1998. The PTEN/MMAC1 tumor suppressor induces cell death that is rescued by the AKT/protein kinase B oncogene. Cancer Res. 58:5667–72 [Google Scholar]
  31. Blero D, Payrastre B, Schurmans S, Erneux C. 31.  2007. Phosphoinositide phosphatases in a network of signalling reactions. Pflüg. Arch. 455:31–44 [Google Scholar]
  32. Di Paolo G, De Camilli P. 32.  2006. Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–57 [Google Scholar]
  33. Maffucci T.33.  2012. An introduction to phosphoinositides. Curr. Top. Microbiol. Immunol. 362:1–42 [Google Scholar]
  34. Lo SH, Weisberg E, Chen LB. 34.  1994. Tensin: a potential link between the cytoskeleton and signal transduction. BioEssays 16:817–23 [Google Scholar]
  35. Zhao X, Greener T, Al-Hasani H, Cushman SW, Eisenberg E, Greene LE. 35.  2001. Expression of auxilin or AP180 inhibits endocytosis by mislocalizing clathrin: evidence for formation of nascent pits containing AP1 or AP2 but not clathrin. J. Cell Sci. 114:353–65 [Google Scholar]
  36. Yuvaniyama J, Denu JM, Dixon JE, Saper MA. 36.  1996. Crystal structure of the dual specificity protein phosphatase VHR. Science 272:1328–31 [Google Scholar]
  37. Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T. 37.  et al. 1999. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99:323–34 [Google Scholar]
  38. Rizo J, Südhof TC. 38.  1998. C2-domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem. 273:15879–82 [Google Scholar]
  39. Guipponi M, Yaspo ML, Riesselman L, Chen H, De Sario A. 39.  et al. 2000. Genomic structure of a copy of the human TPTE gene which encompasses 87 kb on the short arm of chromosome 21. Hum. Genet. 107:127–31 [Google Scholar]
  40. Tapparel C, Reymond A, Girardet C, Guillou L, Lyle R. 40.  et al. 2003. The TPTE gene family: cellular expression, subcellular localization and alternative splicing. Gene 323:189–99 [Google Scholar]
  41. Chen H, Rossier C, Morris MA, Scott HS, Gos A. 41.  et al. 1999. A testis-specific gene, TPTE, encodes a putative transmembrane tyrosine phosphatase and maps to the pericentromeric region of human chromosomes 21 and 13, and to chromosomes 15, 22, and Y. Hum. Genet. 105:399–409 [Google Scholar]
  42. Walker SM, Downes CP, Leslie NR. 42.  2001. TPIP: a novel phosphoinositide 3-phosphatase. Biochem. J. 360:277–83 [Google Scholar]
  43. Mishra RR, Chaudhary JK, Bajaj GD, Rath PC. 43.  2011. A novel human TPIP splice-variant (TPIP-C2) mRNA, expressed in human and mouse tissues, strongly inhibits cell growth in HeLa cells. PLoS ONE 6:e28433 [Google Scholar]
  44. Mishra RR, Chaudhary JK, Rath PC. 44.  2012. Cell cycle arrest and apoptosis by expression of a novel TPIP (TPIP-C2) cDNA encoding a C2-domain in HEK-293 cells. Mol. Biol. Rep. 39:7389–402 [Google Scholar]
  45. Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y. 45.  2005. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435:1239–43 [Google Scholar]
  46. Murata Y, Okamura Y. 46.  2007. Depolarization activates the phosphoinositide phosphatase Ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2. J. Physiol. 583:875–89 [Google Scholar]
  47. Iwasaki H, Murata Y, Kim Y, Hossain MI, Worby CA. 47.  et al. 2008. A voltage-sensing phosphatase, Ci-VSP, which shares sequence identity with PTEN, dephosphorylates phosphatidylinositol 4,5-bisphosphate. Proc. Natl. Acad. Sci. USA 105:7970–75 [Google Scholar]
  48. Okamura Y, Dixon JE. 48.  2011. Voltage-sensing phosphatase: its molecular relationship with PTEN. Physiology 26:6–13 [Google Scholar]
  49. Arai Y, Shibata T, Matsuoka S, Sato MJ, Yanagida T, Ueda M. 49.  2010. Self-organization of the phosphatidylinositol lipids signaling system for random cell migration. Proc. Natl. Acad. Sci. USA 107:12399–404 [Google Scholar]
  50. Funamoto S, Meili R, Lee S, Parry L, Firtel RA. 50.  2002. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109:611–23 [Google Scholar]
  51. Tang M, Iijima M, Kamimura Y, Chen L, Long Y, Devreotes P. 51.  2011. Disruption of PKB signaling restores polarity to cells lacking tumor suppressor PTEN. Mol. Biol. Cell 22:437–47 [Google Scholar]
  52. Wessels D, Lusche DF, Kuhl S, Heid P, Soll DR. 52.  2007. PTEN plays a role in the suppression of lateral pseudopod formation during Dictyostelium motility and chemotaxis. J. Cell Sci. 120:2517–31 [Google Scholar]
  53. Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A. 53.  et al. 2003. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114:201–14 [Google Scholar]
  54. Damen JE, Liu L, Rosten P, Humphries RK, Jefferson AB. 54.  et al. 1996. The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase. Proc. Natl. Acad. Sci. USA 93:1689–93 [Google Scholar]
  55. Mondal S, Subramanian KK, Sakai J, Bajrami B, Luo HR. 55.  2012. Phosphoinositide lipid phosphatase SHIP1 and PTEN coordinate to regulate cell migration and adhesion. Mol. Biol. Cell 23:1219–30 [Google Scholar]
  56. Heit B, Robbins SM, Downey CM, Guan Z, Colarusso P. 56.  et al. 2008. PTEN functions to “prioritize” chemotactic cues and prevent “distraction” in migrating neutrophils. Nat. Immunol. 9:743–52 [Google Scholar]
  57. Li Y, Jia Y, Pichavant M, Loison F, Sarraj B. 57.  et al. 2009. Targeted deletion of tumor suppressor PTEN augments neutrophil function and enhances host defense in neutropenia-associated pneumonia. Blood 113:4930–41 [Google Scholar]
  58. Schabbauer G, Matt U, Günzl P, Warszawska J, Furtner T. 58.  et al. 2010. Myeloid PTEN promotes inflammation but impairs bactericidal activities during murine pneumococcal pneumonia. J. Immunol. 185:468–76 [Google Scholar]
  59. Subramanian KK, Jia Y, Zhu D, Simms BT, Jo H. 59.  et al. 2007. Tumor suppressor PTEN is a physiologic suppressor of chemoattractant-mediated neutrophil functions. Blood 109:4028–37 [Google Scholar]
  60. Lubarsky B, Krasnow MA. 60.  2003. Tube morphogenesis: making and shaping biological tubes. Cell 112:19–28 [Google Scholar]
  61. Gassama-Diagne A, Yu W, ter Beest M, Martin-Belmonte F, Kierbel A. 61.  et al. 2006. Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat. Cell Biol. 8:963–70 [Google Scholar]
  62. Martin-Belmonte F, Gassama A, Datta A, Yu W, Rescher U. 62.  et al. 2007. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128:383–97 [Google Scholar]
  63. Song LB, Li J, Liao WT, Feng Y, Yu CP. 63.  et al. 2009. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial–mesenchymal transition in human nasopharyngeal epithelial cells. J. Clin. Investig. 119:3626–36 [Google Scholar]
  64. Ogg S, Ruvkun G. 64.  1998. The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor–like metabolic signaling pathway. Mol. Cell 2:887–93 [Google Scholar]
  65. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. 65.  1993. A C. elegans mutant that lives twice as long as wild type. Nature 366:461–64 [Google Scholar]
  66. Goberdhan DC, Paricio N, Goodman EC, Mlodzik M, Wilson C. 66.  1999. Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-kinase signaling pathway. Genes Dev. 13:3244–58 [Google Scholar]
  67. Gao X, Neufeld TP, Pan D. 67.  2000. Drosophila PTEN regulates cell growth and proliferation through PI3K-dependent and -independent pathways. Dev. Biol. 221:404–18 [Google Scholar]
  68. Scanga SE, Ruel L, Binari RC, Snow B, Stambolic V. 68.  et al. 2000. The conserved PI3′K/PTEN/Akt signaling pathway regulates both cell size and survival in Drosophila. Oncogene 19:3971–77 [Google Scholar]
  69. Cohen P, Frame S. 69.  2001. The renaissance of GSK3. Nat. Rev. Mol. Cell Biol. 2:769–76 [Google Scholar]
  70. Berwick DC, Hers I, Heesom KJ, Moule SK, Tavare JM. 70.  2002. The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. J. Biol. Chem. 277:33895–900 [Google Scholar]
  71. Cong LN, Chen H, Li Y, Zhou L, McGibbon MA. 71.  et al. 1997. Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. Mol. Endocrinol. 11:1881–90 [Google Scholar]
  72. Kohn AD, Summers SA, Birnbaum MJ, Roth RA. 72.  1996. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem. 271:31372–78 [Google Scholar]
  73. Barthel A, Schmoll D, Unterman TG. 73.  2005. FoxO proteins in insulin action and metabolism. Trends Endocrinol. Metab. 16:183–89 [Google Scholar]
  74. Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K. 74.  et al. 2004. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J. Clin. Investig. 113:1774–83 [Google Scholar]
  75. Stiles B, Wang Y, Stahl A, Bassilian S, Lee WP. 75.  et al. 2004. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc. Natl. Acad. Sci. USA 101:2082–87 [Google Scholar]
  76. Knobbe CB, Lapin V, Suzuki A, Mak TW. 76.  2008. The roles of PTEN in development, physiology and tumorigenesis in mouse models: a tissue-by-tissue survey. Oncogene 27:5398–415 [Google Scholar]
  77. Garcia-Cao I, Song MS, Hobbs RM, Laurent G, Giorgi C. 77.  et al. 2012. Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell 149:49–62 [Google Scholar]
  78. Ortega-Molina A, Efeyan A, Lopez-Guadamillas E, Muñoz-Martin M, Gómez-López G. 78.  et al. 2012. Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab. 15:382–94 [Google Scholar]
  79. Hsu PP, Sabatini DM. 79.  2008. Cancer cell metabolism: Warburg and beyond. Cell 134:703–07 [Google Scholar]
  80. Israelsen WJ, Vander Heiden MG. 80.  2010. ATP consumption promotes cancer metabolism. Cell 143:669–71 [Google Scholar]
  81. Warburg O.81.  1956. On respiratory impairment in cancer cells. Science 124:269–70 [Google Scholar]
  82. Deprez J, Vertommen D, Alessi DR, Hue L, Rider MH. 82.  1997. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J. Biol. Chem. 272:17269–75 [Google Scholar]
  83. Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N. 83.  2001. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 15:1406–18 [Google Scholar]
  84. Bertout JA, Patel SA, Simon MC. 84.  2008. The impact of O2 availability on human cancer. Nat. Rev. Cancer 8:967–75 [Google Scholar]
  85. Majmundar AJ, Wong WJ, Simon MC. 85.  2010. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40:294–309 [Google Scholar]
  86. Semenza GL.86.  2012. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 33:207–14 [Google Scholar]
  87. Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI. 87.  et al. 2010. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39:171–83 [Google Scholar]
  88. Sears RC, Nevins JR. 88.  2002. Signaling networks that link cell proliferation and cell fate. J. Biol. Chem. 277:11617–20 [Google Scholar]
  89. Tran H, Brunet A, Griffith EC, Greenberg ME. 89.  2003. The many forks in FOXO's road. Sci. Signal Transduct. Knowl. Environ. 4:RE5 [Google Scholar]
  90. Vivanco I, Sawyers CL. 90.  2002. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat. Rev. Cancer 2:489–501 [Google Scholar]
  91. Massague J.91.  2004. G1 cell-cycle control and cancer. Nature 432:298–306 [Google Scholar]
  92. Warr MR, Pietras EM, Passegué E. 92.  2011. Mechanisms controlling hematopoietic stem cell functions during normal hematopoiesis and hematological malignancies. Wiley Interdiscip. Rev. Syst. Biol. Med. 3:681–701 [Google Scholar]
  93. Pietras EM, Warr MR, Passegué E. 93.  2011. Cell cycle regulation in hematopoietic stem cells. J. Cell Biol. 195:709–20 [Google Scholar]
  94. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO. 94.  et al. 2006. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441:475–82 [Google Scholar]
  95. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC. 95.  et al. 2006. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441:518–22 [Google Scholar]
  96. Magee JA, Ikenoue T, Nakada D, Lee JY, Guan KL, Morrison SJ. 96.  2012. Temporal changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression. Cell Stem Cell 11:415–28 [Google Scholar]
  97. Hanahan D, Weinberg RA. 97.  2011. Hallmarks of cancer: the next generation. Cell 144:646–74 [Google Scholar]
  98. Kalluri R, Zeisberg M. 98.  2006. Fibroblasts in cancer. Nat. Rev. Cancer 6:392–401 [Google Scholar]
  99. Trimboli AJ, Cantemir-Stone CZ, Li F, Wallace JA, Merchant A. 99.  et al. 2009. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461:1084–91 [Google Scholar]
  100. Bronisz A, Godlewski J, Wallace JA, Merchant AS, Nowicki MO. 100.  et al. 2012. Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat. Cell Biol. 14:159–67 [Google Scholar]
  101. Gibson GE, Huang HM. 101.  2002. Oxidative processes in the brain and non-neuronal tissues as biomarkers of Alzheimer's disease. Front. Biosci. 7:D1007–15 [Google Scholar]
  102. Pap T, Franz JK, Hummel KM, Jeisy E, Gay R, Gay S. 102.  2000. Activation of synovial fibroblasts in rheumatoid arthritis: lack of expression of the tumour suppressor PTEN at sites of invasive growth and destruction. Arthritis Res. 2:59–64 [Google Scholar]
  103. White ES, Atrasz RG, Hu B, Phan SH, Stambolic V. 103.  et al. 2006. Negative regulation of myofibroblast differentiation by PTEN (phosphatase and tensin homolog deleted on chromosome 10). Am. J. Respir. Crit. Care Med. 173:112–21 [Google Scholar]
  104. Hopkins BD, Fine B, Steinbach N, Dendy M, Rapp Z. 104.  et al. 2013. A secreted PTEN phosphatase that enters cells to alter signaling and survival. Science 341:399–402 [Google Scholar]
  105. Subramanian T, Govindarajan R, Chinnadurai G. 105.  1991. Heterologous basic domain substitutions in the HIV-1 Tat protein reveal an arginine-rich motif required for transactivation. EMBO J. 10:2311–18 [Google Scholar]
  106. Whiteman DC, Zhou XP, Cummings MC, Pavey S, Hayward NK, Eng C. 106.  2002. Nuclear PTEN expression and clinicopathologic features in a population-based series of primary cutaneous melanoma. Int. J. Cancer 99:63–67 [Google Scholar]
  107. Gimm O, Perren A, Weng LP, Marsh DJ, Yeh JJ. 107.  et al. 2000. Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors. Am. J. Pathol. 156:1693–700 [Google Scholar]
  108. Perren A, Weng LP, Boag AH, Ziebold U, Thakore K. 108.  et al. 1999. Immunohistochemical evidence of loss of PTEN expression in primary ductal adenocarcinomas of the breast. Am. J. Pathol. 155:1253–60 [Google Scholar]
  109. Ginn-Pease ME, Eng C. 109.  2003. Increased nuclear phosphatase and tensin homologue deleted on chromosome 10 is associated with G0–G1 in MCF-7 cells. Cancer Res. 63:282–86 [Google Scholar]
  110. Chang CJ, Mulholland DJ, Valamehr B, Mosessian S, Sellers WR, Wu H. 110.  2008. PTEN nuclear localization is regulated by oxidative stress and mediates p53-dependent tumor suppression. Mol. Cell. Biol. 28:3281–89 [Google Scholar]
  111. Song MS, Carracedo A, Salmena L, Song SJ, Egia A. 111.  et al. 2011. Nuclear PTEN regulates the APC–CDH1 tumor-suppressive complex in a phosphatase-independent manner. Cell 144:187–99 [Google Scholar]
  112. Manchado E, Eguren M, Malumbres M. 112.  2010. The anaphase-promoting complex/cyclosome (APC/C): cell-cycle-dependent and -independent functions. Biochem. Soc. Trans. 38:65–71 [Google Scholar]
  113. Wäsch R, Robbins JA, Cross FR. 113.  2010. The emerging role of APC/CCdh1 in controlling differentiation, genomic stability and tumor suppression. Oncogene 29:1–10 [Google Scholar]
  114. Shen WH, Balajee AS, Wang J, Wu H, Eng C. 114.  et al. 2007. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128:157–70 [Google Scholar]
  115. Gupta A, Yang Q, Pandita RK, Hunt CR, Xiang T. 115.  et al. 2009. Cell cycle checkpoint defects contribute to genomic instability in PTEN deficient cells independent of DNA DSB repair. Cell Cycle 8:2198–210 [Google Scholar]
  116. Ming M, He YY. 116.  2012. PTEN in DNA damage repair. Cancer Lett. 319:125–29 [Google Scholar]
  117. Planchon SM, Waite KA, Eng C. 117.  2008. The nuclear affairs of PTEN. J. Cell Sci. 121:249–53 [Google Scholar]
  118. Al-Khouri AM, Ma Y, Togo SH, Williams S, Mustelin T. 118.  2005. Cooperative phosphorylation of the tumor suppressor phosphatase and tensin homologue (PTEN) by casein kinases and glycogen synthase kinase 3β. J. Biol. Chem. 280:35195–202 [Google Scholar]
  119. Maccario H, Perera NM, Davidson L, Downes CP, Leslie NR. 119.  2007. PTEN is destabilized by phosphorylation on Thr366. Biochem. J. 405:439–44 [Google Scholar]
  120. Patsoukis N, Li L, Sari D, Petkova V, Boussiotis VA. 120.  2013. PD-1 increases PTEN phosphatase activity while decreasing PTEN protein stability by inhibiting casein kinase 2. Mol. Cell. Biol. 33:3091–98 [Google Scholar]
  121. Miller SJ, Lou DY, Seldin DC, Lane WS, Neel BG. 121.  2002. Direct identification of PTEN phosphorylation sites. FEBS Lett. 528:145–53 [Google Scholar]
  122. Birle D, Bottini N, Williams S, Huynh H, deBelle I. 122.  et al. 2002. Negative feedback regulation of the tumor suppressor PTEN by phosphoinositide-induced serine phosphorylation. J. Immunol. 169:286–91 [Google Scholar]
  123. Ning K, Miller LC, Laidlaw HA, Watterson KR, Gallagher J. 123.  et al. 2009. Leptin-dependent phosphorylation of PTEN mediates actin restructuring and activation of ATP-sensitive K+ channels. J. Biol. Chem. 284:9331–40 [Google Scholar]
  124. Okumura K, Zhao M, Depinho RA, Furnari FB, Cavenee WK. 124.  2005. Cellular transformation by the MSP58 oncogene is inhibited by its physical interaction with the PTEN tumor suppressor. Proc. Natl. Acad. Sci. USA 102:2703–6 [Google Scholar]
  125. Li Z, Dong X, Wang Z, Liu W, Deng N. 125.  et al. 2005. Regulation of PTEN by Rho small GTPases. Nat. Cell Biol. 7:399–404 [Google Scholar]
  126. Bassi C, Ho J, Srikumar T, Dowling RJ, Gorrini C. 126.  et al. 2013. Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress. Science 341:395–99 [Google Scholar]
  127. Wang X, Trotman LC, Koppie T, Alimonti A, Chen Z. 127.  et al. 2007. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128:129–39 [Google Scholar]
  128. Yim EK, Peng G, Dai H, Hu R, Li K. 128.  et al. 2009. Rak functions as a tumor suppressor by regulating PTEN protein stability and function. Cancer Cell 15:304–14 [Google Scholar]
  129. Fouladkou F, Landry T, Kawabe H, Neeb A, Lu C. 129.  et al. 2008. The ubiquitin ligase Nedd4-1 is dispensable for the regulation of PTEN stability and localization. Proc. Natl. Acad. Sci. USA 105:8585–90 [Google Scholar]
  130. Amodio N, Scrima M, Palaia L, Salman AN, Quintiero A. 130.  et al. 2010. Oncogenic role of the E3 ubiquitin ligase NEDD4-1, a PTEN negative regulator, in non-small-cell lung carcinomas. Am. J. Pathol. 177:2622–34 [Google Scholar]
  131. Trotman LC, Wang X, Alimonti A, Chen Z, Teruya-Feldstein J. 131.  et al. 2007. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 128:141–56 [Google Scholar]
  132. Maddika S, Kavela S, Rani N, Palicharla VR, Pokorny JL. 132.  et al. 2011. WWP2 is an E3 ubiquitin ligase for PTEN. Nat. Cell Biol. 13:728–33 [Google Scholar]
  133. Dai Y, Qiao L, Chan KW, Yang M, Ye J. 133.  et al. 2009. Adenovirus-mediated down-regulation of X-linked inhibitor of apoptosis protein inhibits colon cancer. Mol. Cancer Ther. 8:2762–70 [Google Scholar]
  134. Jiang C, Yi XP, Shen H, Li YX. 134.  2012. Targeting X-linked inhibitor of apoptosis protein inhibits pancreatic cancer cell growth through p-Akt depletion. World J. Gastroenterol. 18:2956–65 [Google Scholar]
  135. Zhang S, Ding F, Luo A, Chen A, Yu Z. 135.  et al. 2007. XIAP is highly expressed in esophageal cancer and its downregulation by RNAi sensitizes esophageal carcinoma cell lines to chemotherapeutics. Cancer Biol. Ther. 6:973–80 [Google Scholar]
  136. Themsche C, Leblanc V, Parent S, Asselin E. 136.  Van 2009. X-linked inhibitor of apoptosis protein (XIAP) regulates PTEN ubiquitination, content, and compartmentalization. J. Biol. Chem. 284:20462–66 [Google Scholar]
  137. Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F. 137.  et al. 2008. The deubiquitinylation and localization of PTEN are regulated by a HAUSP–PML network. Nature 455:813–17 [Google Scholar]
  138. Fridberg M, Servin A, Anagnostaki L, Linderoth J, Berglund M. 138.  et al. 2007. Protein expression and cellular localization in two prognostic subgroups of diffuse large B-cell lymphoma: higher expression of ZAP70 and PKC-βII in the non–germinal center group and poor survival in patients deficient in nuclear PTEN. Leuk. Lymphoma 48:2221–32 [Google Scholar]
  139. Mazza M, Pelicci PG. 139.  2013. Is PML a tumor suppressor?. Front. Oncol. 3:174 [Google Scholar]
  140. Seo JH, Ahn Y, Lee SR, Yeo CY, Hur KC. 140.  2005. The major target of the endogenously generated reactive oxygen species in response to insulin stimulation is phosphatase and tensin homolog and not phosphoinositide-3 kinase (PI-3 kinase) in the PI-3 kinase/Akt pathway. Mol. Biol. Cell 16:348–57 [Google Scholar]
  141. Kwon J, Lee SR, Yang KS, Ahn Y, Kim YJ. 141.  et al. 2004. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc. Natl. Acad. Sci. USA 101:16419–24 [Google Scholar]
  142. Cao J, Schulte J, Knight A, Leslie NR, Zagozdzon A. 142.  et al. 2009. Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity. EMBO J. 28:1505–17 [Google Scholar]
  143. Kim YC, Kitaura H, Taira T, Iguchi-Ariga SM, Ariga H. 143.  2009. Oxidation of DJ-1-dependent cell transformation through direct binding of DJ-1 to PTEN. Int. J. Oncol. 35:1331–41 [Google Scholar]
  144. Okumura K, Mendoza M, Bachoo RM, DePinho RA, Cavenee WK, Furnari FB. 144.  2006. PCAF modulates PTEN activity. J. Biol. Chem. 281:26562–68 [Google Scholar]
  145. Ikenoue T, Inoki K, Zhao B, Guan KL. 145.  2008. PTEN acetylation modulates its interaction with PDZ domain. Cancer Res. 68:6908–12 [Google Scholar]
  146. Qu Y, Zhang J, Wu S, Li B, Liu S, Cheng J. 146.  2012. SIRT1 promotes proliferation and inhibits apoptosis of human malignant glioma cell lines. Neurosci. Lett. 525:168–72 [Google Scholar]
  147. Huang J, Yan J, Zhang J, Zhu S, Wang Y. 147.  et al. 2012. SUMO1 modification of PTEN regulates tumorigenesis by controlling its association with the plasma membrane. Nat. Commun. 3:911 [Google Scholar]
  148. González-Santamaría J, Campagna M, Ortega-Molina A, Marcos-Villar L, de la Cruz–Herrera CF. 148.  et al. 2012. Regulation of the tumor suppressor PTEN by SUMO. Cell Death Dis. 3:e393 [Google Scholar]
  149. Takahashi Y, Morales FC, Kreimann EL, Georgescu MM. 149.  2006. PTEN tumor suppressor associates with NHERF proteins to attenuate PDGF receptor signaling. EMBO J. 25:910–20 [Google Scholar]
  150. Molina JR, Agarwal NK, Morales FC, Hayashi Y, Aldape KD. 150.  et al. 2012. PTEN, NHERF1 and PHLPP form a tumor suppressor network that is disabled in glioblastoma. Oncogene 31:1264–74 [Google Scholar]
  151. O'Neill AK, Niederst MJ, Newton AC. 151.  2013. Suppression of survival signalling pathways by the phosphatase PHLPP. FEBS J. 280:572–83 [Google Scholar]
  152. Kallakury BV, Sheehan CE, Ross JS. 152.  2001. Co-downregulation of cell adhesion proteins α- and β-catenins, p120CTN, E-cadherin, and CD44 in prostatic adenocarcinomas. Hum. Pathol. 32:849–55 [Google Scholar]
  153. Ruoslahti E, Obrink B. 153.  1996. Common principles in cell adhesion. Exp. Cell Res. 227:1–11 [Google Scholar]
  154. Subauste MC, Nalbant P, Adamson ED, Hahn KM. 154.  2005. Vinculin controls PTEN protein level by maintaining the interaction of the adherens junction protein β-catenin with the scaffolding protein MAGI-2. J. Biol. Chem. 280:5676–81 [Google Scholar]
  155. Kotelevets L, van Hengel J, Bruyneel E, Mareel M, van Roy F, Chastre E. 155.  2005. Implication of the MAGI-1b/PTEN signalosome in stabilization of adherens junctions and suppression of invasiveness. FASEB J. 19:115–17 [Google Scholar]
  156. Kotelevets L, van Hengel J, Bruyneel E, Mareel M, van Roy F, Chastre E. 156.  2001. The lipid phosphatase activity of PTEN is critical for stabilizing intercellular junctions and reverting invasiveness. J. Cell Biol. 155:1129–35 [Google Scholar]
  157. Adey NB, Huang L, Ormonde PA, Baumgard ML, Pero R. 157.  et al. 2000. Threonine phosphorylation of the MMAC1/PTEN PDZ binding domain both inhibits and stimulates PDZ binding. Cancer Res. 60:35–37 [Google Scholar]
  158. Cotter L, Ozçelik M, Jacob C, Pereira JA, Locher V. 158.  et al. 2010. Dlg1–PTEN interaction regulates myelin thickness to prevent damaging peripheral nerve overmyelination. Science 328:1415–18 [Google Scholar]
  159. Enomoto M, Igaki T. 159.  2011. Deciphering tumor-suppressor signaling in flies: genetic link between Scribble/Dlg/Lgl and the Hippo pathways. J. Genet. Genomics 38:461–70 [Google Scholar]
  160. Woods DF, Bryant PJ. 160.  1989. Molecular cloning of the lethal(1)discs large-1 oncogene of Drosophila. Dev. Biol. 134:222–35 [Google Scholar]
  161. Bissell MJ, Radisky D. 161.  2001. Putting tumours in context. Nat. Rev. Cancer 1:46–54 [Google Scholar]
  162. Valiente M, Andrés-Pons A, Gomar B, Torres J, Gil A. 162.  et al. 2005. Binding of PTEN to specific PDZ domains contributes to PTEN protein stability and phosphorylation by microtubule-associated serine/threonine kinases. J. Biol. Chem. 280:28936–43 [Google Scholar]
  163. Terrien E, Chaffotte A, Lafage M, Khan Z, Prehaud C. 163.  et al. 2012. Interference with the PTEN–MAST2 interaction by a viral protein leads to cellular relocalization of PTEN. Sci. Signal. 5:ra58 [Google Scholar]
  164. Kreis P, van Diepen MT, Eickholt BJ. 164.  2010. Regulation of PTEN in neurons by myosin-based transport mechanisms. Adv. Enzyme Regul. 50:119–24 [Google Scholar]
  165. Leslie NR, Spinelli L, Tibarewal P, Zilidis G, Weerasinghe N. 165.  et al. 2010. Indirect mechanisms of carcinogenesis via downregulation of PTEN function. Adv. Enzyme Regul. 50:112–18 [Google Scholar]
  166. van Diepen MT, Parsons M, Downes CP, Leslie NR, Hindges R, Eickholt BJ. 166.  2009. MyosinV controls PTEN function and neuronal cell size. Nat. Cell Biol. 11:1191–96 [Google Scholar]
  167. Zhou J, Parada LF. 167.  2009. A motor driving PTEN. Nat. Cell Biol. 11:1177–79 [Google Scholar]
  168. Chagpar RB, Links PH, Pastor MC, Furber LA, Hawrysh AD. 168.  et al. 2010. Direct positive regulation of PTEN by the p85 subunit of phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. USA 107:5471–76 [Google Scholar]
  169. Fine B, Hodakoski C, Koujak S, Su T, Saal LH. 169.  et al. 2009. Activation of the PI3K pathway in cancer through inhibition of PTEN by exchange factor P-REX2a. Science 325:1261–65 [Google Scholar]
  170. He L, Fan C, Kapoor A, Ingram AJ, Rybak AP. 170.  et al. 2011. α-Mannosidase 2C1 attenuates PTEN function in prostate cancer cells. Nat. Commun. 2:307 [Google Scholar]
  171. He L, Ingram A, Rybak AP, Tang D. 171.  2010. Shank-interacting protein–like 1 promotes tumorigenesis via PTEN inhibition in human tumor cells. J. Clin. Investig. 120:2094–108 [Google Scholar]
  172. Virolle T, Adamson ED, Baron V, Birle D, Mercola D. 172.  et al. 2001. The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat. Cell Biol. 3:1124–28 [Google Scholar]
  173. Freeman DJ, Li AG, Wei G, Li HH, Kertesz N. 173.  et al. 2003. PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell 3:117–30 [Google Scholar]
  174. Shen YH, Zhang L, Gan Y, Wang X, Wang J. 174.  et al. 2006. Up-regulation of PTEN (phosphatase and tensin homolog deleted on chromosome ten) mediates p38 MAPK stress signal–induced inhibition of insulin signaling. A cross-talk between stress signaling and insulin signaling in resistin-treated human endothelial cells. J. Biol. Chem. 281:7727–36 [Google Scholar]
  175. Patel L, Pass I, Coxon P, Downes CP, Smith SA, Macphee CH. 175.  2001. Tumor suppressor and anti-inflammatory actions of PPARγ agonists are mediated via upregulation of PTEN. Curr. Biol. 11:764–68 [Google Scholar]
  176. Yoshimi A, Goyama S, Watanabe-Okochi N, Yoshiki Y, Nannya Y. 176.  et al. 2011. Evi1 represses PTEN expression and activates PI3K/AKT/mTOR via interactions with polycomb proteins. Blood 117:3617–28 [Google Scholar]
  177. Guo BH, Feng Y, Zhang R, Xu LH, Li MZ. 177.  et al. 2011. Bmi-1 promotes invasion and metastasis, and its elevated expression is correlated with an advanced stage of breast cancer. Mol. Cancer 10:10 [Google Scholar]
  178. Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A. 178.  1995. Signalling downstream of activated mammalian Notch. Nature 377:355–58 [Google Scholar]
  179. Whelan JT, Forbes SL, Bertrand FE. 179.  2007. CBF-1 (RBP-Jκ) binds to the PTEN promoter and regulates PTEN gene expression. Cell Cycle 6:80–84 [Google Scholar]
  180. Whelan JT, Kellogg A, Shewchuk BM, Hewan-Lowe K, Bertrand FE. 180.  2009. Notch-1 signaling is lost in prostate adenocarcinoma and promotes PTEN gene expression. J. Cell. Biochem. 107:992–1001 [Google Scholar]
  181. Hettinger K, Vikhanskaya F, Poh MK, Lee MK, deBelle I. 181.  et al. 2007. c-Jun promotes cellular survival by suppression of PTEN. Cell Death Differ. 14:218–29 [Google Scholar]
  182. Tamguney T, Stokoe D. 182.  2007. New insights into PTEN. J. Cell Sci. 120:4071–79 [Google Scholar]
  183. Guo H, Ingolia NT, Weissman JS, Bartel DP. 183.  2010. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–40 [Google Scholar]
  184. Jin HY, Oda H, Lai M, Skalsky RL, Bethel K. 184.  et al. 2013. MicroRNA-17∼92 plays a causative role in lymphomagenesis by coordinating multiple oncogenic pathways. EMBO J. 32:2377–91 [Google Scholar]
  185. Hong L, Lai M, Chen M, Xie C, Liao R. 185.  et al. 2010. The miR-17-92 cluster of microRNAs confers tumorigenicity by inhibiting oncogene-induced senescence. Cancer Res. 70:8547–57 [Google Scholar]
  186. Olive V, Bennett MJ, Walker JC, Ma C, Jiang I. 186.  et al. 2009. miR-19 is a key oncogenic component of mir-17-92. Genes Dev. 23:2839–49 [Google Scholar]
  187. Lujambio A, Lowe SW. 187.  2012. The microcosmos of cancer. Nature 482:347–55 [Google Scholar]
  188. Cai J, Fang L, Huang Y, Li R, Yuan J. 188.  et al. 2013. miR-205 targets PTEN and PHLPP2 to augment AKT signaling and drive malignant phenotypes in non–small cell lung cancer. Cancer Res. 73:5402–15 [Google Scholar]
  189. Johnsson P, Ackley A, Vidarsdottir L, Lui WO, Corcoran M. 189.  et al. 2013. A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat. Struct. Mol. Biol. 20:440–46 [Google Scholar]
  190. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. 190.  2010. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–38 [Google Scholar]
  191. Pei B, Sisu C, Frankish A, Howald C, Habegger L. 191.  et al. 2012. The GENCODE pseudogene resource. Genome Biol. 13R51 [Google Scholar]
  192. Poliseno L.192.  2012. Pseudogenes: newly discovered players in human cancer. Sci. Signal. 5:re5 [Google Scholar]
  193. Alvarez-Nuñez F, Bussaglia E, Mauricio D, Ybarra J, Vilar M. 193.  et al. 2006. PTEN promoter methylation in sporadic thyroid carcinomas. Thyroid 16:17–23 [Google Scholar]
  194. García JM, Silva J, Peña C, Garcia V, Rodríguez R. 194.  et al. 2004. Promoter methylation of the PTEN gene is a common molecular change in breast cancer. Genes Chromosomes Cancer 41:117–24 [Google Scholar]
  195. Ho CM, Lin MC, Huang SH, Huang CJ, Lai HC. 195.  et al. 2009. PTEN promoter methylation and LOH of 10q22–23 locus in PTEN expression of ovarian clear cell adenocarcinomas. Gynecol. Oncol. 112:307–13 [Google Scholar]
  196. Mueller S, Phillips J, Onar-Thomas A, Romero E, Zheng S. 196.  et al. 2012. PTEN promoter methylation and activation of the PI3K/Akt/mTOR pathway in pediatric gliomas and influence on clinical outcome. Neuro-Oncology 14:1146–52 [Google Scholar]
  197. Sadeq V, Isar N, Manoochehr T. 197.  2011. Association of sporadic breast cancer with PTEN/MMAC1/TEP1 promoter hypermethylation. Med. Oncol. 28:420–23 [Google Scholar]
  198. Wang L, Wang WL, Zhang Y, Guo SP, Zhang J, Li QL. 198.  2007. Epigenetic and genetic alterations of PTEN in hepatocellular carcinoma. Hepatol. Res. 37:389–96 [Google Scholar]
  199. Hollander MC, Blumenthal GM, Dennis PA. 199.  2011. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat. Rev. Cancer 11:289–301 [Google Scholar]
  200. Bennett KL, Mester J, Eng C. 200.  2010. Germline epigenetic regulation of KILLIN in Cowden and Cowden-like syndrome. J. Am. Med. Assoc. 304:2724–31 [Google Scholar]
  201. Cho YJ, Liang P. 201.  2008. Killin is a p53-regulated nuclear inhibitor of DNA synthesis. Proc. Natl. Acad. Sci. USA 105:5396–401 [Google Scholar]
  202. Thompson ER, Gorringe KL, Choong DY, Eccles DM, Mitchell G, Campbell IG. 202.  2012. Analysis of KLLN as a high-penetrance breast cancer predisposition gene. Breast Cancer Res. Treat. 134:543–47 [Google Scholar]
  203. Bennett KL, Campbell R, Ganapathi S, Zhou M, Rini B. 203.  et al. 2011. Germline and somatic DNA methylation and epigenetic regulation of KILLIN in renal cell carcinoma. Genes Chromosomes Cancer 50:654–61 [Google Scholar]
  204. Zhou J, Parada LF. 204.  2012. PTEN signaling in autism spectrum disorders. Curr. Opin. Neurobiol. 22:873–79 [Google Scholar]
  205. Chalhoub N, Baker SJ. 205.  2009. PTEN and the PI3-kinase pathway in cancer. Annu. Rev. Pathol. Mech. Dis. 4:127–50 [Google Scholar]
  206. Trotman LC, Niki M, Dotan ZA, Koutcher JA, Di Cristofano A. 206.  et al. 2003. Pten dose dictates cancer progression in the prostate. PLoS Biol. 1:E59 [Google Scholar]
  207. Carracedo A, Alimonti A, Pandolfi PP. 207.  2011. PTEN level in tumor suppression: How much is too little?. Cancer Res. 71:629–33 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error