1932

Abstract

Lysosomes catabolize and recycle lipids and other biological molecules to maintain cellular homeostasis in diverse nutrient environments. Lysosomal lipid catabolism relies on the stimulatory activity of bis(monoacylglycero)phosphate (BMP), an enigmatic lipid whose levels are altered across myriad lysosome-associated diseases. Here, we review the discovery of BMP over half a century ago and its structural properties that facilitate the activation of lipid hydrolases and recruitment of their coactivators. We further discuss the current, yet incomplete, understanding of BMP catabolism and anabolism. To conclude, we discuss its role in lysosome-associated diseases and the potential for modulating its levels by pharmacologically activating and inhibiting the BMP synthase to therapeutically target lysosomal storage disorders, drug-induced phospholipidosis, Alzheimer's disease, Parkinson's disease, frontotemporal dementia, cancer, and viral infection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-092823-113814
2024-08-02
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/biochem/93/1/annurev-biochem-092823-113814.html?itemId=/content/journals/10.1146/annurev-biochem-092823-113814&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Body DR, Gray GM. 1967.. The isolation and characterisation of phosphatidylglycerol and a structural isomer from pig lung. . Chem. Phys. Lipids 1::25463
    [Crossref] [Google Scholar]
  2. 2.
    Siakotos AN, Rouser G, Fleischer S. 1969.. Isolation of highly purified human and bovine brain endothelial cells and nuclei and their phospholipid composition. . Lipids 4::23439
    [Crossref] [Google Scholar]
  3. 3.
    Rouser G, Simon G, Kritchevsky G. 1969.. Species variations in phospholipid class distribution of organs: I. Kidney, liver and spleen. . Lipids 4::599606
    [Crossref] [Google Scholar]
  4. 4.
    Simon G, Rouser G. 1969.. Species variations in phospholipid class distribution of organs: II. Heart and skeletal muscle. . Lipids 4::60714
    [Crossref] [Google Scholar]
  5. 5.
    Baxter CF, Rouser G, Simon G. 1969.. Variations among vertebrates of lung phospholipid class composition. . Lipids 4::24344
    [Crossref] [Google Scholar]
  6. 6.
    Wherrett JR, Huterer S. 1972.. Enrichment of bis-(monoacylglyceryl) phosphate in lysosomes from rat liver. . J. Biol. Chem. 247::411420
    [Crossref] [Google Scholar]
  7. 7.
    Kobayashi T, Stang E, Fang KS, de Moerloose P, Parton RG, Gruenberg J. 1998.. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. . Nature 392::19397
    [Crossref] [Google Scholar]
  8. 8.
    Kobayashi T, Beuchat M-H, Lindsay M, Frias S, Palmiter RD, et al. 1999.. Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. . Nat. Cell Biol. 1::11318
    [Crossref] [Google Scholar]
  9. 9.
    Luquain C, Dolmazon R, Enderlin JM, Laugier C, Lagarde M, Pageaux JF. 2000.. Bis(monoacylglycerol) phosphate in rat uterine stromal cells: structural characterization and specific esterification of docosahexaenoic acid. . Biochem. J. 351:(Part 3):795804
    [Crossref] [Google Scholar]
  10. 10.
    Luquain C, Laugier C, Lagarde M, Pageaux J-F. 2001.. High-performance liquid chromatography determination of bis(monoacylglycerol) phosphate and other lysophospholipids. . Anal. Biochem. 296::4148
    [Crossref] [Google Scholar]
  11. 11.
    Kobayashi T, Beuchat M-H, Chevallier J, Makino A, Mayran N, et al. 2002.. Separation and characterization of late endosomal membrane domains. . J. Biol. Chem. 277::3215764
    [Crossref] [Google Scholar]
  12. 12.
    Plueckthun A, Dennis EA. 1982.. Acyl and phosphoryl migration in lysophospholipids: importance in phospholipid synthesis and phospholipase specificity. . Biochemistry 21::174350
    [Crossref] [Google Scholar]
  13. 13.
    Matsuo H, Chevallier J, Mayran N, Blanc IL, Ferguson C, et al. 2004.. Role of LBPA and Alix in multivesicular liposome formation and endosome organization. . Science 303::53134
    [Crossref] [Google Scholar]
  14. 14.
    Chevallier J, Chamoun Z, Jiang G, Prestwich G, Sakai N, et al. 2008.. Lysobisphosphatidic acid controls endosomal cholesterol levels. . J. Biol. Chem. 283::2787180
    [Crossref] [Google Scholar]
  15. 15.
    Goursot A, Mineva T, Bissig C, Gruenberg J, Salahub DR. 2010.. Structure, dynamics, and energetics of lysobisphosphatidic acid (LBPA) isomers. . J. Phys. Chem. B 114::1571220
    [Crossref] [Google Scholar]
  16. 16.
    Rowland MM, Best MD. 2009.. Modular synthesis of bis(monoacylglycero)phosphate for convenient access to analogues bearing hydrocarbon and perdeuterated acyl chains of varying length. . Tetrahedron 65::684449
    [Crossref] [Google Scholar]
  17. 17.
    Jiang G, Xu Y, Prestwich GD. 2006.. Practical enantiospecific syntheses of lysobisphosphatidic acid and its analogues. . J. Org. Chem. 71::93439
    [Crossref] [Google Scholar]
  18. 18.
    Abe A, Shayman JA. 2009.. The role of negatively charged lipids in lysosomal phospholipase A2 function. . J. Lipid Res. 50::202735
    [Crossref] [Google Scholar]
  19. 19.
    Kolter T, Sandhoff K. 2005.. Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. . Cell Dev. Biol. 21::81103
    [Crossref] [Google Scholar]
  20. 20.
    Wilkening G, Linke T, Sandhoff K. 1998.. Lysosomal degradation on vesicular membrane surfaces: enhanced glucosylceramide degradation by lysosomal anionic lipids and activators. . J. Biol. Chem. 273::3027178
    [Crossref] [Google Scholar]
  21. 21.
    Linke T, Wilkening G, Lansmann S, Moczall H, Bartelsen O, et al. 2001.. Stimulation of acid sphingomyelinase activity by lysosomal lipids and sphingolipid activator proteins. . Biol. Chem. 382::28390
    [Crossref] [Google Scholar]
  22. 22.
    Werth N, Schuette CG, Wilkening G, Lemm T, Sandhoff K. 2001.. Degradation of membrane-bound ganglioside GM2 by β-hexosaminidase A: stimulation by GM2 activator protein and lysosomal lipids. . J. Biol. Chem. 276::1268590
    [Crossref] [Google Scholar]
  23. 23.
    Logan T, Simon MJ, Rana A, Cherf GM, Srivastava A, et al. 2021.. Rescue of a lysosomal storage disorder caused by Grn loss of function with a brain penetrant progranulin biologic. . Cell 184::465168
    [Crossref] [Google Scholar]
  24. 24.
    Besson N, Hullin-Matsuda F, Makino A, Murate M, Lagarde M, et al. 2006.. Selective incorporation of docosahexaenoic acid into lysobisphosphatidic acid in cultured THP-1 macrophages. . Lipids 41::18996
    [Crossref] [Google Scholar]
  25. 25.
    Brotherus J, Renkonen O, Herrmann J, Fischer W. 1974.. Novel stereoconfiguration in lyso-bis-phosphatidic acid of cultured BHK-cells. . Chem. Phys. Lipids 13::17882
    [Crossref] [Google Scholar]
  26. 26.
    Huterer S, Wherrett JR. 1986.. Incorporation of polyunsaturated fatty acids into bis(monoacylglycero) phosphate and other lipids of macrophages and of fibroblasts from control and Niemann-Pick patients. . Biochim. Biophys. Acta Lipids Lipid Metab. 876::31826
    [Crossref] [Google Scholar]
  27. 27.
    Stillwell W, Wassall SR. 2003.. Docosahexaenoic acid: membrane properties of a unique fatty acid. . Chem. Phys. Lipids 126::127
    [Crossref] [Google Scholar]
  28. 28.
    Bouvier J, Berry KAZ, Hullin-Matsuda F, Makino A, Michaud S, et al. 2009.. Selective decrease of bis(monoacylglycero)phosphate content in macrophages by high supplementation with docosahexaenoic acid. . J. Lipid Res. 50::24355
    [Crossref] [Google Scholar]
  29. 29.
    Brotherus J, Niinioja T, Sandelin K, Renkonen O. 1977.. Experimentally caused proliferation of lysosomes in cultured BHK cells involving an increase of biphosphatidic acids and triglycerides. . J. Lipid Res. 18::37988
    [Crossref] [Google Scholar]
  30. 30.
    Tan H, Makino A, Sudesh K, Greimel P, Kobayashi T. 2012.. Spectroscopic evidence for the unusual stereochemical configuration of an endosome-specific lipid. . Angew. Chem. Int. Ed. 124::54850
    [Crossref] [Google Scholar]
  31. 31.
    Joutti A, Brotherus J, Renkonen O, Laine R, Fischer W. 1976.. The stereochemical configuration of lysobisphosphatidic acid from rat liver, rabbit lung and pig lung. . Biochim. Biophys. Acta Lipids Lipid Metab. 450::2069
    [Crossref] [Google Scholar]
  32. 32.
    Xu Z, Farver W, Kodukula S, Storch J. 2008.. Regulation of sterol transport between membranes and NPC2. . Biochemistry 47::1113443
    [Crossref] [Google Scholar]
  33. 33.
    Weglicki WB, Ruth RC, Owens K. 1973.. Changes in lipid composition of tritosomes during lysis. . Biochem. Biophys. Res. Commun. 51::107782
    [Crossref] [Google Scholar]
  34. 34.
    Buchnea D. 1974.. Detritylation by silicic acid boric acid column chromatography. . Lipids 9::5557
    [Crossref] [Google Scholar]
  35. 35.
    Schulze H, Kolter T, Sandhoff K. 2009.. Principles of lysosomal membrane degradation: cellular topology and biochemistry of lysosomal lipid degradation. . Biochim. Biophys. Acta Mol. Cell Res. 1793::67483
    [Crossref] [Google Scholar]
  36. 36.
    Shayman JA, Abe A. 2012.. Drug induced phospholipidosis: an acquired lysosomal storage disorder. . Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1831::60211
    [Crossref] [Google Scholar]
  37. 37.
    Nishihara M, Morii H, Koga Y. 1982.. Bis(monoacylglycero)phosphate in alkalophilic bacteria. . J. Biochem. 92::146979
    [Crossref] [Google Scholar]
  38. 38.
    Czolkoss S, Borgert P, Poppenga T, Hölzl G, Aktas M, Narberhaus F. 2021.. Synthesis of the unusual lipid bis(monoacylglycero)phosphate in environmental bacteria. . Environ. Microbiol. 23::69937008
    [Crossref] [Google Scholar]
  39. 39.
    Homma H, Nojima S. 1982.. Synthesis of various phospholipids from 2-acyl lysophospholipids by Escherichia coli extract. . J. Biochem. 91::110310
    [Crossref] [Google Scholar]
  40. 40.
    Müller-Calleja N, Hollerbach A, Royce J, Ritter S, Pedrosa D, et al. 2021.. Lipid presentation by the protein C receptor links coagulation with autoimmunity. . Science 371::eabc0956
    [Crossref] [Google Scholar]
  41. 41.
    Matsuzawa Y, Hostetler KY. 1979.. Degradation of bis(monoacylglycero)phosphate by an acid phosphodiesterase in rat liver lysosomes. . J. Biol. Chem. 254::59976001
    [Crossref] [Google Scholar]
  42. 42.
    Huterer S, Wherrett JR. 1982.. Deacylation of bis(monoacylglycero)phosphate by lysosomal and microsomal lysophospholipases from rat liver. . Can. J. Biochem. Cell B 60::599607
    [Google Scholar]
  43. 43.
    Record M, Amara S, Subra C, Jiang G, Prestwich GD, et al. 2011.. Bis (monoacylglycero) phosphate interfacial properties and lipolysis by pancreatic lipase-related protein 2, an enzyme present in THP-1 human monocytes. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1811::41930
    [Crossref] [Google Scholar]
  44. 44.
    Blankman JL, Long JZ, Trauger SA, Siuzdak G, Cravatt BF. 2013.. ABHD12 controls brain lysophosphatidylserine pathways that are deregulated in a murine model of the neurodegenerative disease PHARC. . PNAS 110::15005
    [Crossref] [Google Scholar]
  45. 45.
    Pribasnig MA, Mrak I, Grabner GF, Taschler U, Knittelfelder O, et al. 2015.. α/β Hydrolase domain-containing 6 (ABHD6) degrades the late endosomal/lysosomal lipid bis(monoacylglycero)phosphate. . J. Biol. Chem. 290::2986981
    [Crossref] [Google Scholar]
  46. 46.
    Ito M, Tchoua U, Okamoto M, Tojo H. 2002.. Purification and properties of a phospholipase A2/lipase preferring phosphatidic acid, bis(monoacylglycerol) phosphate, and monoacylglycerol from rat testis. . J. Biol. Chem. 277::4367481
    [Crossref] [Google Scholar]
  47. 47.
    Grabner GF, Fawzy N, Pribasnig MA, Trieb M, Taschler U, et al. 2019.. Metabolic disease and ABHD6 alter the circulating bis(monoacylglycerol)phosphate profile in mice and humans. . J. Lipid Res. 60::102031
    [Crossref] [Google Scholar]
  48. 48.
    Fang H, Peng B, Ong SY, Wu Q, Li L, Yao SQ. 2021.. Recent advances in activity-based probes (ABPs) and affinity-based probes (AfBPs) for profiling of enzymes. . Chem. Sci. 12::8288310
    [Crossref] [Google Scholar]
  49. 49.
    Poorthuis BJ, Hostetler KY. 1976.. Studies on the subcellular localization and properties of bis(monoacylglyceryl)phosphate biosynthesis in rat liver. . J. Biol. Chem. 251::4596602
    [Crossref] [Google Scholar]
  50. 50.
    Huterer SJ, Wherrett JR. 1989.. Formation of bis(monoacylglycero)phosphate by a macrophage transacylase. . Biochim. Biophys. Acta Lipids Lipid Metab. 1001::6875
    [Crossref] [Google Scholar]
  51. 51.
    Huterer SJ, Hosteller KY, Gardner MF, Wherrett JR. 1993.. Lysosomal phosphatidylcholine: bis(monoacylglycero) phosphate acyltransferase: specificity for the sn − 1 fatty acid of the donor and co-purification with phospholipase A1. . Biochim. Biophys. Acta Lipids Lipid Metab. 1167::20410
    [Crossref] [Google Scholar]
  52. 52.
    Amidon B, Brown A, Waite M. 1996.. Transacylase and phospholipases in the synthesis of bis(monoacylglycero)phosphate. . Biochemistry 35::139954002
    [Crossref] [Google Scholar]
  53. 53.
    Heravi J, Waite M. 1999.. Transacylase formation of bis(monoacylglycerol)phosphate. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1437::27786
    [Crossref] [Google Scholar]
  54. 54.
    Medoh UN, Hims A, Chen JY, Ghoochani A, Nyame K, et al. 2023.. The Batten disease gene product CLN5 is the lysosomal bis(monoacylglycero)phosphate synthase. . Science 381::118289
    [Crossref] [Google Scholar]
  55. 55.
    Luebben AV, Bender D, Becker S, Crowther LM, Erven I, et al. 2022.. Cln5 represents a new type of cysteine-based S-depalmitoylase linked to neurodegeneration. . Sci. Adv. 8::eabj8633
    [Crossref] [Google Scholar]
  56. 56.
    Cisneros J, Belton TB, Shum GC, Molakal CG, Wong YC. 2022.. Mitochondria-lysosome contact site dynamics and misregulation in neurodegenerative diseases. . Trends Neurosci. 45::31222
    [Crossref] [Google Scholar]
  57. 57.
    Wortmann SB, Vaz FM, Gardeitchik T, Vissers LELM, Renkema GH, et al. 2012.. Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness. . Nat. Genet. 44::797802
    [Crossref] [Google Scholar]
  58. 58.
    Hullin-Matsuda F, Kawasaki K, Delton-Vandenbroucke I, Xu Y, Nishijima M, et al. 2007.. De novo biosynthesis of the late endosome lipid, bis(monoacylglycero)phosphate. . J. Lipid Res. 48::19972008
    [Crossref] [Google Scholar]
  59. 59.
    Thornburg T, Miller C, Thuren T, King L, Waite M. 1991.. Glycerol reorientation during the conversion of phosphatidylglycerol to bis(monoacylglycerol)phosphate in macrophage-like RAW 264.7 cells. . J. Biol. Chem. 266::683440
    [Crossref] [Google Scholar]
  60. 60.
    van Blitterswijk WJ, Hilkmann H. 1993.. Rapid attenuation of receptor-induced diacylglycerol and phosphatidic acid by phospholipase D-mediated transphosphatidylation: formation of bisphosphatidic acid. . EMBO J. 12::265562
    [Crossref] [Google Scholar]
  61. 61.
    Rouser G, Kritchevsky G, Akira Y, Knudson AG, Simon G. 1968.. Accumulation of a glycerolphospholipid in classical Niemann-Pick disease. . Lipids 3::28790
    [Crossref] [Google Scholar]
  62. 62.
    Lu A. 2022.. Endolysosomal cholesterol export: more than just NPC1. . Bioessays 44::2200111
    [Crossref] [Google Scholar]
  63. 63.
    Abdul-Hammed M, Breiden B, Adebayo MA, Babalola JO, Schwarzmann G, Sandhoff K. 2010.. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. . J. Lipid Res. 51::174760
    [Crossref] [Google Scholar]
  64. 64.
    McCauliff LA, Langan A, Li R, Ilnytska O, Bose D, et al. 2019.. Intracellular cholesterol trafficking is dependent upon NPC2 interaction with lysobisphosphatidic acid. . eLife 8::e50832
    [Crossref] [Google Scholar]
  65. 65.
    Ilnytska O, Jeziorek M, Lai K, Altan-Bonnet N, Dobrowolski R, Storch J. 2021.. Lysobisphosphatidic acid (LBPA) enrichment promotes cholesterol egress via exosomes in Niemann Pick type C1 deficient cells. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1866::158916
    [Crossref] [Google Scholar]
  66. 66.
    Juhl AD, Lund FW, Jensen MLV, Szomek M, Heegaard CW, et al. 2021.. Niemann Pick C2 protein enables cholesterol transfer from endo-lysosomes to the plasma membrane for efflux by shedding of extracellular vesicles. . Chem. Phys. Lipids 235::105047
    [Crossref] [Google Scholar]
  67. 67.
    Ilnytska O, Lai K, Gorshkov K, Schultz ML, Tran BN, et al. 2021.. Enrichment of NPC1-deficient cells with the lipid LBPA stimulates autophagy, improves lysosomal function, and reduces cholesterol storage. . J. Biol. Chem. 297::100813
    [Crossref] [Google Scholar]
  68. 68.
    Calias P. 2017.. 2-Hydroxypropyl-β-cyclodextrins and the blood-brain barrier: considerations for Niemann-Pick Disease type C1. . Curr. Pharm. Des. 23::623138
    [Crossref] [Google Scholar]
  69. 69.
    Meikle PJ, Duplock S, Blacklock D, Whitfield PD, Macintosh G, et al. 2008.. Effect of lysosomal storage on bis(monoacylglycero)phosphate. . Biochem. J. 411::7178
    [Crossref] [Google Scholar]
  70. 70.
    Mukherjee AB, Appu AP, Sadhukhan T, Casey S, Mondal A, et al. 2019.. Emerging new roles of the lysosome and neuronal ceroid lipofuscinoses. . Mol. Neurodegener. 14::4
    [Crossref] [Google Scholar]
  71. 71.
    Hobert JA, Dawson G. 2007.. A novel role of the Batten disease gene CLN3: association with BMP synthesis. . Biochem. Biophys. Res. Commun. 358::11116
    [Crossref] [Google Scholar]
  72. 72.
    Laqtom NN, Dong W, Medoh UN, Cangelosi AL, Dharamdasani V, et al. 2022.. CLN3 is required for the clearance of glycerophosphodiesters from lysosomes. . Nature 609::100511
    [Crossref] [Google Scholar]
  73. 73.
    Vesa J, Chin MH, Oelgeschläger K, Isosomppi J, DellAngelica EC, et al. 2002.. Neuronal ceroid lipofuscinoses are connected at molecular level: interaction of CLN5 protein with CLN2 and CLN3. . Mol. Biol. Cell 13::241020
    [Crossref] [Google Scholar]
  74. 74.
    Boland S, Swarup S, Ambaw YA, Malia PC, Richards RC, et al. 2022.. Deficiency of the frontotemporal dementia gene GRN results in gangliosidosis. . Nat. Commun. 13::5924
    [Crossref] [Google Scholar]
  75. 75.
    Bajaj L, Sharma J, di Ronza A, Zhang P, Eblimit A, et al. 2020.. A CLN6-CLN8 complex recruits lysosomal enzymes at the ER for Golgi transfer. . J. Clin. Investig. 130::411832
    [Google Scholar]
  76. 76.
    Danyukova T, Ariunbat K, Thelen M, Brocke-Ahmadinejad N, Mole SE, Storch S. 2018.. Loss of CLN7 results in depletion of soluble lysosomal proteins and impaired mTOR reactivation. . Hum. Mol. Genet. 27::171122
    [Crossref] [Google Scholar]
  77. 77.
    Wang Y, Cao X, Liu P, Zeng W, Peng R, et al. 2022.. KCTD7 mutations impair the trafficking of lysosomal enzymes through CLN5 accumulation to cause neuronal ceroid lipofuscinoses. . Sci. Adv. 8::eabm5578
    [Crossref] [Google Scholar]
  78. 78.
    Basak I, Wicky HE, McDonald KO, Xu JB, Palmer JE, et al. 2021.. A lysosomal enigma CLN5 and its significance in understanding neuronal ceroid lipofuscinosis. . Cell Mol. Life Sci. 78::473563
    [Crossref] [Google Scholar]
  79. 79.
    Lyly A, von Schantz C, Heine C, Schmiedt M-L, Sipilä T, et al. 2009.. Novel interactions of CLN5 support molecular networking between neuronal ceroid lipofuscinosis proteins. . BMC Cell Biol. 10::83
    [Crossref] [Google Scholar]
  80. 80.
    Jabs S, Quitsch A, Käkelä R, Koch B, Tyynelä J, et al. 2008.. Accumulation of bis(monoacylglycero)phosphate and gangliosides in mouse models of neuronal ceroid lipofuscinosis. . J. Neurochem. 106::141525
    [Crossref] [Google Scholar]
  81. 81.
    Medoh UN, Chen JY, Abu-Remaileh M. 2021.. Lessons from metabolic perturbations in lysosomal storage disorders for neurodegeneration. . Curr. Opin. Syst. Biol. 29::100408
    [Crossref] [Google Scholar]
  82. 82.
    Kao AW, McKay A, Singh PP, Brunet A, Huang EJ. 2017.. Progranulin, lysosomal regulation and neurodegenerative disease. . Nat. Rev. Neurosci. 18::32533
    [Crossref] [Google Scholar]
  83. 83.
    Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, et al. 2021.. Alzheimer disease. . Nat. Rev. Dis. Primers 7::33
    [Crossref] [Google Scholar]
  84. 84.
    Blanchard JW, Akay LA, Davila-Velderrain J, von Maydell D, Mathys H, et al. 2022.. APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes. . Nature 611::76979
    [Crossref] [Google Scholar]
  85. 85.
    Nixon RA. 2017.. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. . FASEB J. 31::272943
    [Crossref] [Google Scholar]
  86. 86.
    Kågedal K, Kim WS, Appelqvist H, Chan S, Cheng D, et al. 2010.. Increased expression of the lysosomal cholesterol transporter NPC1 in Alzheimer's disease. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1801::83138
    [Crossref] [Google Scholar]
  87. 87.
    Qureshi YH, Patel VM, Berman DE, Kothiya MJ, Neufeld JL, et al. 2018.. An Alzheimer's disease-linked loss-of-function CLN5 variant impairs cathepsin D maturation, consistent with a retromer trafficking defect. . Mol. Cell. Biol. 38::e00011-18
    [Crossref] [Google Scholar]
  88. 88.
    Miranda AM, Ashok A, Chan RB, Zhou B, Xu Y, et al. 2022.. Effects of APOE4 allelic dosage on lipidomic signatures in the entorhinal cortex of aged mice. . Transl. Psychiatry 12::129
    [Crossref] [Google Scholar]
  89. 89.
    Sienski G, Narayan P, Bonner JM, Kory N, Boland S, et al. 2021.. APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. . Sci. Transl. Med. 13::eaaz4564
    [Crossref] [Google Scholar]
  90. 90.
    Cruchaga C, Western D, Timsina J, Wang L, Wang C, et al. 2023.. Proteogenomic analysis of human cerebrospinal fluid identifies neurologically relevant regulation and informs causal proteins for Alzheimer's disease. . Preprint Res. Sq. https://doi.org/10.21203/rs.3.rs-2814616/v1
    [Google Scholar]
  91. 91.
    Sala-Vila A, Satizabal CL, Tintle N, van Lent DM, Vasan RS, et al. 2022.. Red blood cell DHA is inversely associated with risk of incident Alzheimer's disease and all-cause dementia: Framingham Offspring Study. . Nutrients 14::2408
    [Crossref] [Google Scholar]
  92. 92.
    Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, et al. 2017.. Parkinson disease. . Nat. Rev. Dis. Primers 3::17013
    [Crossref] [Google Scholar]
  93. 93.
    Jennings D, Huntwork-Rodriguez S, Henry AG, Sasaki JC, Meisner R, et al. 2022.. Preclinical and clinical evaluation of the LRRK2 inhibitor DNL201 for Parkinson's disease. . Sci. Transl. Med. 14::eabj2658
    [Crossref] [Google Scholar]
  94. 94.
    Alcalay RN, Hsieh F, Tengstrand E, Padmanabhan S, Baptista M, et al. 2020.. Higher urine bis(monoacylglycerol)phosphate levels in LRRK2 G2019S mutation carriers: implications for therapeutic development. . Movement. Disord. 35::13441
    [Crossref] [Google Scholar]
  95. 95.
    Gomes S, Garrido A, Tonelli F, Obiang D, Tolosa E, et al. 2022.. Elevated urine BMPs phospholipids in LRRK2 and VPS35 mutation carriers with and without Parkinson's disease. . npj Parkinson's Dis. 9::52
    [Crossref] [Google Scholar]
  96. 96.
    Maloney MT, Wang X, Ghosh R, Andrews SV, Maciuca R, et al. 2022.. LRRK2 kinase activity regulates Parkinson's disease-relevant lipids at the lysosome. . bioRxiv 2022.12.19.521070. https://doi.org/10.1101/2022.12.19.521070
  97. 97.
    Mazzulli JR, Xu Y-H, Sun Y, Knight AL, McLean PJ, et al. 2011.. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. . Cell 146::3752
    [Crossref] [Google Scholar]
  98. 98.
    Marques ARA, Ramos C, Machado-Oliveira G, Vieira OV. 2021.. Lysosome (dys)function in atherosclerosis—a big weight on the shoulders of a small organelle. . Front. Cell Dev. Biol. 9::658995
    [Crossref] [Google Scholar]
  99. 99.
    Colin S, Chinetti-Gbaguidi G, Staels B. 2014.. Macrophage phenotypes in atherosclerosis. . Immunol. Rev. 262::15366
    [Crossref] [Google Scholar]
  100. 100.
    Dubland JA, Francis GA. 2015.. Lysosomal acid lipase: at the crossroads of normal and atherogenic cholesterol metabolism. . Front. Cell Dev. Biol. 3::3
    [Crossref] [Google Scholar]
  101. 101.
    Milutinović A, Šuput D, Zorc-Pleskovič R. 2019.. Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: an updated review. . Bosnian J. Basic Med. 20::2130
    [Google Scholar]
  102. 102.
    Gupta KK, Ali S, Sanghera RS. 2019.. Pharmacological options in atherosclerosis: a review of the existing evidence. . Cardiol. Ther. 8::520
    [Crossref] [Google Scholar]
  103. 103.
    Zimmer S, Grebe A, Bakke SS, Bode N, Halvorsen B, et al. 2016.. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. . Sci. Transl. Med. 8::333ra50
    [Crossref] [Google Scholar]
  104. 104.
    Coisne C, Hallier-Vanuxeem D, Boucau M-C, Hachani J, Tilloy S, et al. 2016.. β-Cyclodextrins decrease cholesterol release and ABC-associated transporter expression in smooth muscle cells and aortic endothelial cells. . Front. Physiol. 7::185
    [Crossref] [Google Scholar]
  105. 105.
    Arnal-Levron M, Chen Y, Delton-Vandenbroucke I, Luquain-Costaz C. 2013.. Bis(monoacylglycero)phosphate reduces oxysterol formation and apoptosis in macrophages exposed to oxidized LDL. . Biochem. Pharmacol. 86::11521
    [Crossref] [Google Scholar]
  106. 106.
    Luquain-Costaz C, Lefai E, Arnal-Levron M, Markina D, Sakaï S, et al. 2013.. Bis(monoacylglycero)phosphate accumulation in macrophages induces intracellular cholesterol redistribution, attenuates liver-X receptor/ATP-binding cassette transporter A1/ATP-binding cassette transporter G1 pathway, and impairs cholesterol efflux. . Arterioscler. Thromb. Vasc. Biol. 33::180311
    [Crossref] [Google Scholar]
  107. 107.
    Anderson N, Borlak J. 2006.. Drug-induced phospholipidosis. . FEBS Lett. 580::553340
    [Crossref] [Google Scholar]
  108. 108.
    Yamamoto A, Adachi S, Ishikawa K, Yokomura T, Kitani T, et al. 1971.. Studies on drug-induced lipidosis: III. Lipid composition of the liver and some other tissues in clinical cases of “Niemann-Pick-like syndrome” induced by 4, 4′-diethylaminoethoxyhexestrol. . J. Biochem. 70::77584
    [Crossref] [Google Scholar]
  109. 109.
    Tjiong HB, Debuch H. 1978.. Lysosomal bis(monoacylglycero)phosphate of rat liver, its induction by chloroquine and its structure. . Biol. Chem. 359::7180
    [Crossref] [Google Scholar]
  110. 110.
    Tjiong HB, Lepthin J, Debuch H. 1978.. Lysosomal phospholipids from rat liver after treatment with different drugs. . Biol. Chem. 359::6370
    [Google Scholar]
  111. 111.
    Harder A, Debuch H. 1982.. Effect of chloroquine treatment on the different phospholipid species of rat liver lysosomes. . Biol. Chem. 363::71724
    [Google Scholar]
  112. 112.
    Grabner GF, Fawzy N, Pribasnig MA, Trieb M, Taschler U, et al. 2019.. Metabolic disease and ABHD6 alter the circulating bis(monoacylglycerol)phosphate profile in mice and humans. . J. Lipid Res. 60::102031
    [Crossref] [Google Scholar]
  113. 113.
    Bulfon D, Zimmermann R. 2019.. Basic insights into BMP synthesis and its role in drug-induced phospholipidosis. Master's Thesis , Graz Univ. Technol., Graz, Austria:
    [Google Scholar]
  114. 114.
    Serrano-Puebla A, Boya P. 2018.. Lysosomal membrane permeabilization as a cell death mechanism in cancer cells. . Biochem. Soc. Trans. 46::20715
    [Crossref] [Google Scholar]
  115. 115.
    Boya P, Kroemer G. 2008.. Lysosomal membrane permeabilization in cell death. . Oncogene 27::643451
    [Crossref] [Google Scholar]
  116. 116.
    Petersen NHT, Olsen OD, Groth-Pedersen L, Ellegaard A-M, Bilgin M, et al. 2013.. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. . Cancer Cell 24::37993
    [Crossref] [Google Scholar]
  117. 117.
    Kirkegaard T, Roth AG, Petersen NHT, Mahalka AK, Olsen OD, et al. 2010.. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. . Nature 463::54953
    [Crossref] [Google Scholar]
  118. 118.
    Nylandsted J, Gyrd-Hansen M, Danielewicz A, Fehrenbacher N, Lademann U, et al. 2004.. Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. . J. Exp. Med. 200::42535
    [Crossref] [Google Scholar]
  119. 119.
    Ellegaard A-M, Bach P, Jäättelä M. 2020.. Targeting cancer lysosomes with good old cationic amphiphilic drugs. . In Organelles in Disease, ed. SHF Pedersen, DL Barber , pp. 10752. Rev. Physiol. Biochem. Pharmacol. 185 . Cham, Switz.:: Springer
    [Google Scholar]
  120. 120.
    de Rojas-P I, Albiñana V, Recio-Poveda L, Rodriguez-Rufián A, Cuesta ÁM, Botella L-M. 2020.. CLN5 in heterozygosis may protect against the development of tumors in a VHL patient. . Orphanet J. Rare Dis. 15::132
    [Crossref] [Google Scholar]
  121. 121.
    Xing J, Li Y, Zhao H. 2021.. Knockdown of CLN5 inhibits the tumorigenic properties of glioblastoma cells via the Akt/mTOR signaling pathway. . Oncol. Lett. 21::387
    [Crossref] [Google Scholar]
  122. 122.
    Berg AL, Showalter MR, Kosaisawe N, Hu M, Stephens NC, et al. 2023.. Cellular transformation promotes the incorporation of docosahexaenoic acid into the endolysosome-specific lipid bis(monoacylglycerol)phosphate in breast cancer. . Cancer Lett. 557::216090
    [Crossref] [Google Scholar]
  123. 123.
    Marsh M, Helenius A. 2006.. Virus entry: Open sesame. . Cell 124::72940
    [Crossref] [Google Scholar]
  124. 124.
    Patel A, Mohl B-P, Roy P. 2016.. Entry of bluetongue virus capsid requires the late endosome-specific lipid lysobisphosphatidic acid. . J. Biol. Chem. 291::1240819
    [Crossref] [Google Scholar]
  125. 125.
    Markosyan RM, Marin M, Zhang Y, Cohen FS, Melikyan GB. 2021.. The late endosome-resident lipid bis(monoacylglycero)phosphate is a cofactor for Lassa virus fusion. . PLOS Pathog. 17::e1009488
    [Crossref] [Google Scholar]
  126. 126.
    Merchant M, Mata CP, Liu Y, Zhai H, Protasio AV, Modis Y. 2022.. A bioactive phlebovirus-like envelope protein in a hookworm endogenous virus. . Sci. Adv. 8::eabj6894
    [Crossref] [Google Scholar]
  127. 127.
    Matos PM, Marin M, Ahn B, Lam W, Santos NC, Melikyan GB. 2013.. Anionic lipids are required for vesicular stomatitis virus G protein-mediated single particle fusion with supported lipid bilayers. . J. Biol. Chem. 288::1241625
    [Crossref] [Google Scholar]
  128. 128.
    Zaitseva E, Yang S-T, Melikov K, Pourmal S, Chernomordik LV. 2010.. Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. . PLOS Pathog. 6::e1001131
    [Crossref] [Google Scholar]
  129. 129.
    Blanc IL, Luyet P-P, Pons V, Ferguson C, Emans N, et al. 2005.. Endosome-to-cytosol transport of viral nucleocapsids. . Nat. Cell Biol. 7::65364
    [Crossref] [Google Scholar]
  130. 130.
    Bitto D, Halldorsson S, Caputo A, Huiskonen JT. 2016.. Low pH and anionic lipid-dependent fusion of Uukuniemi phlebovirus to liposomes. . J. Biol. Chem. 291::641222
    [Crossref] [Google Scholar]
  131. 131.
    Espósito DLA, Nguyen JB, DeWitt DC, Rhoades E, Modis Y. 2015.. Physico-chemical requirements and kinetics of membrane fusion of flavivirus-like particles. . J. Gen. Virol. 96::170211
    [Crossref] [Google Scholar]
  132. 132.
    Bissig C, Lenoir M, Velluz M-C, Kufareva I, Abagyan R, et al. 2013.. Viral infection controlled by a calcium-dependent lipid-binding module in ALIX. . Dev. Cell 25::36473
    [Crossref] [Google Scholar]
  133. 133.
    Mannsverk S, Giraldo AMV, Kasson PM. 2022.. Influenza virus membrane fusion is promoted by the endosome-resident phospholipid bis(monoacylglycero)phosphate. . J. Phys. Chem. B 126::1044551
    [Crossref] [Google Scholar]
  134. 134.
    Tummino TA, Rezelj VV, Fischer B, Fischer A, O'Meara MJ, et al. 2021.. Drug-induced phospholipidosis confounds drug repurposing for SARS-CoV-2. . Science 373::54147
    [Crossref] [Google Scholar]
  135. 135.
    Kopra O, Vesa J, von Schantz C, Manninen T, Minye H, et al. 2004.. A mouse model for Finnish variant late infantile neuronal ceroid lipofuscinosis, CLN5, reveals neuropathology associated with early aging. . Hum. Mol. Genet. 13::2893906
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biochem-092823-113814
Loading
/content/journals/10.1146/annurev-biochem-092823-113814
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error