Oxygenic photosynthesis is the principal converter of sunlight into chemical energy on Earth. Cyanobacteria and plants provide the oxygen, food, fuel, fibers, and platform chemicals for life on Earth. The conversion of solar energy into chemical energy is catalyzed by two multisubunit membrane protein complexes, photosystem I (PSI) and photosystem II (PSII). Light is absorbed by the pigment cofactors, and excitation energy is transferred among the antennae pigments and converted into chemical energy at very high efficiency. Oxygenic photosynthesis has existed for more than three billion years, during which its molecular machinery was perfected to minimize wasteful reactions. Light excitation transfer and singlet trapping won over fluorescence, radiation-less decay, and triplet formation. Photosynthetic reaction centers operate in organisms ranging from bacteria to higher plants. They are all evolutionarily linked. The crystal structure determination of photosynthetic protein complexes sheds light on the various partial reactions and explains how they are protected against wasteful pathways and why their function is robust. This review discusses the efficiency of photosynthetic solar energy conversion.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Nelson N, Sacher A, Nelson H. 1.  2002. The significance of molecular slips in transport systems. Nat. Rev. Mol. Cell Biol. 3:876–81 [Google Scholar]
  2. Fromme P, Mathis P. 2.  2004. Unraveling the photosystem I reaction center: a history, or the sum of many efforts. Photosynth. Res. 80:109–24 [Google Scholar]
  3. Barber J. 3.  2002. Photosystem II: a multisubunit membrane protein that oxidises water. Curr. Opin. Struct. Biol. 12:523–30 [Google Scholar]
  4. Cramer WA, Zhang H, Yan J, Kurisu G, Smith JL. 4.  2006. Transmembrane traffic in the cytochrome b6f complex. Annu. Rev. Biochem. 75:769–90 [Google Scholar]
  5. Caffarri S, Kouril R, Kereiche S, Boekema EJ, Croce R. 5.  2009. Functional architecture of higher plant photosystem II supercomplexes. EMBO J. 28:3052–63 [Google Scholar]
  6. Busch A, Hippler M. 6.  2011. The structure and function of eukaryotic photosystem I. Biochim. Biophys. Acta 1807:864–77 [Google Scholar]
  7. Croce R, van Amerongen H. 7.  2011. Light-harvesting and structural organization of photosystem II: from individual complexes to thylakoid membrane. J. Photochem. Photobiol. B 104:142–53 [Google Scholar]
  8. Hohmann-Marriott MF, Blankenship RE. 8.  2011. Evolution of photosynthesis. Annu. Rev. Plant Biol. 62:515–48 [Google Scholar]
  9. Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G. 9.  et al. 2011. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–9 [Google Scholar]
  10. Vinyard DJ, Ananyev GM, Dismukes GC. 10.  2013. Photosystem II: the reaction center of oxygenic photosynthesis. Annu. Rev. Biochem. 82:577–606 [Google Scholar]
  11. Tikkanen M, Aro EM. 11.  2014. Integrative regulatory network of plant thylakoid energy transduction. Trends Plant Sci. 19:10–17 [Google Scholar]
  12. Chen M. 12.  2014. Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annu. Rev. Biochem. 83:317–40 [Google Scholar]
  13. Marcus RA. 13.  1956. On the theory of oxidation–reduction reactions involving electron transfer. J. Chem. Phys. 24:966 [Google Scholar]
  14. Marcus RA, Sutin N. 14.  1985. Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811:265–322 [Google Scholar]
  15. Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL. 15.  1992. Nature of biological electron transfer. Nature 355:796–802 [Google Scholar]
  16. Noy D, Moser CC, Dutton PL. 16.  2006. Design and engineering of photosynthetic light-harvesting and electron transfer using length, time, and energy scales. Biochim. Biophys. Acta 1757:90–105 [Google Scholar]
  17. Baumeister W, Grimm R, Walz J. 17.  1999. Electron tomography of molecules and cells. Trends Cell Biol. 9:81–85 [Google Scholar]
  18. Chen CC, Zhu C, White ER, Chiu CY, Scott MC. 18.  et al. 2013. Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature 496:74–77 [Google Scholar]
  19. Davies KM, Daum B. 19.  2013. Role of cryo-ET in membrane bioenergetics research. Biochem. Soc. Trans. 41:1227–34 [Google Scholar]
  20. Kouril R, Oostergetel GT, Boekema EJ. 20.  2011. Fine structure of granal thylakoid membrane organization using cryo electron tomography. Biochim. Biophys. Acta 1807:368–74 [Google Scholar]
  21. Henderson R, Schertler GF. 21.  1990. The structure of bacteriorhodopsin and its relevance to the visual opsins and other seven-helix G-protein coupled receptors. Philos. Trans. R. Soc. Lond. B 326:379–89 [Google Scholar]
  22. Essen L, Siegert R, Lehmann WD, Oesterhelt D. 22.  1998. Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin–lipid complex. PNAS 95:11673–78 [Google Scholar]
  23. Klug A. 23.  2010. From virus structure to chromatin: X-ray diffraction to three-dimensional electron microscopy. Annu. Rev. Biochem. 79:1–35 [Google Scholar]
  24. Kühlbrandt W, Wang DN, Fujiyoshi Y. 24.  1994. Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–21 [Google Scholar]
  25. Liu Z, Yan H, Wang K, Kuang T, Zhang J. 25.  et al. 2004. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–92 [Google Scholar]
  26. Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kühlbrandt W. 26.  2005. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J. 24:919–28 [Google Scholar]
  27. Pan X, Li M, Wan T, Wang L, Jia C. 27.  et al. 2011. Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat. Struct. Mol. Biol. 18:309–15 [Google Scholar]
  28. Nevo R, Charuvi D, Tsabari O, Reich Z. 28.  2012. Composition, architecture and dynamics of the photosynthetic apparatus in higher plants. Plant J. 70:157–76 [Google Scholar]
  29. Baker LA, Watt IN, Runswick MJ, Walker JE, Rubinstein JL. 29.  2012. Arrangement of subunits in intact mammalian mitochondrial ATP synthase determined by cryo-EM. PNAS 109:11675–80 [Google Scholar]
  30. Chaban Y, Boekema EJ, Dudkina NV. 30.  2014. Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. Biochim. Biophys. Acta 1837:418–26 [Google Scholar]
  31. Strauss M, Hofhaus G, Schroder RR, Kühlbrandt W. 31.  2008. Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J. 27:1154–60 [Google Scholar]
  32. Dudkina NV, Oostergetel GT, Lewejohann D, Braun HP, Boekema EJ. 32.  2010. Row-like organization of ATP synthase in intact mitochondria determined by cryo–electron tomography. Biochim. Biophys. Acta 1797:272–77 [Google Scholar]
  33. Paumard P, Arselin G, Vaillier J, Chaignepain S, Bathany K. 33.  et al. 2002. Two ATP synthases can be linked through subunits I in the inner mitochondrial membrane of Saccharomyces cerevisiae. Biochemistry 41:10390–96 [Google Scholar]
  34. Daum B, Kühlbrandt W. 34.  2011. Electron tomography of plant thylakoid membranes. J. Exp. Bot. 62:2393–402 [Google Scholar]
  35. Davies KM, Daum B, Kühlbrandt W, Anselmi C, Faraldo-Gómez J. 35.  2012. Structure of the mitochondrial ATP synthase and its role in shaping mitochondria cristae. Microsc. Microanal. 2:56–57 [Google Scholar]
  36. Liao M, Cao E, Julius D, Cheng Y. 36.  2014. Single particle electron cryo-microscopy of a mammalian ion channel. Curr. Opin. Struct. Biol. 25:1–7 [Google Scholar]
  37. Amunts A, Brown A, Bai XC, Llácer JL, Hussain T. 37.  et al. 2014. Structure of the yeast mitochondrial large ribosomal subunit. Science 343:1485–89 [Google Scholar]
  38. Amunts A, Toporik H, Borovikova A, Nelson N. 38.  2010. Structure determination and improved model of plant photosystem I. J. Biol. Chem. 285:3478–86 [Google Scholar]
  39. van Oort B, Amunts A, Borst J, van Hoek A, Nelson N. 39.  et al. 2008. Picosecond fluorescence of intact and dissolved PSI-LHCI crystals. Biophys. J. 95:5851–61 [Google Scholar]
  40. Shi D, Nannenga BL, Iadanza MG, Gonen T. 40.  2013. Three-dimensional electron crystallography of protein microcrystals. eLife 2:e01345 [Google Scholar]
  41. Nelson N, Ben-Shem A. 41.  2005. The structure of photosystem I and evolution of photosynthesis. Bioessays 27:914–22 [Google Scholar]
  42. Nelson N. 42.  2013. Evolution of photosystem I and the control of global enthalpy in an oxidizing world. Photosynth. Res. 116:145–51 [Google Scholar]
  43. Dibrova DV, Cherepanov DA, Galperin MY, Skulachev VP, Mulkidjanian AY. 43.  2013. Evolution of cytochrome bc complexes: from membrane-anchored dehydrogenases of ancient bacteria to triggers of apoptosis in vertebrates. Biochim. Biophys. Acta 1827:1407–27 [Google Scholar]
  44. Mazor Y, Toporik H, Nelson N. 44.  2012. Temperature-sensitive PSII and promiscuous PSI as a possible solution for sustainable photosynthetic hydrogen production. Biochim. Biophys. Acta 1817:1122–26 [Google Scholar]
  45. Toporik H, Carmeli I, Volotsenko I, Molotskii M, Rosenwaks Y. 45.  et al. 2012. Large photovoltage generated by plant photosystem I crystals. Adv. Mater. 24:2988–91 [Google Scholar]
  46. Mazor Y, Greenberg I, Toporik H, Beja O, Nelson N. 46.  2012. The evolution of photosystem I in light of phage-encoded reaction centers. Philos. Trans. R. Soc. Lond. B 367:3400–5 [Google Scholar]
  47. Ben-Shem A, Frolow F, Nelson N. 47.  2004. Evolution of photosystem I—from symmetry through pseudosymmetry to asymmetry. FEBS Lett. 564:274–80 [Google Scholar]
  48. Nelson N, Yocum C. 48.  2006. Structure and function of photosystems I and II. Annu. Rev. Plant Biol. 57:521–65 [Google Scholar]
  49. Buttner M, Xie DL, Nelson H, Pinther W, Hauska G, Nelson N. 49.  1992. Photosynthetic reaction center genes in green sulfur bacteria and in photosystem 1 are related. PNAS 89:8135–39 [Google Scholar]
  50. Hauska G, Schoedl T, Remigy H, Tsiotis G. 50.  2001. The reaction center of green sulfur bacteria. Biochim. Biophys. Acta 1507:260–77 [Google Scholar]
  51. Heathcote P, Jones MR, Fyfe PK. 51.  2003. Type I photosynthetic reaction centres: form and function. Philos. Trans. R. Soc. Lond. B 358:231–43 [Google Scholar]
  52. Ben-Shem A, Frolow F, Nelson N. 52.  2004. Light-harvesting features revealed by the structure of plant photosystem I. Photosynth. Res. 81:239–50 [Google Scholar]
  53. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N. 53.  2001. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–17 [Google Scholar]
  54. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S. 54.  2004. Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–38 [Google Scholar]
  55. Umena Y, Kawakami K, Shen J-R, Kamiya N. 55.  2011. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60 [Google Scholar]
  56. Qian P, Papiz MZ, Jackson PJ, Brindley AA, Ng IW. 56.  et al. 2013. Three-dimensional structure of the Rhodobacter sphaeroides RC–LH1–PufX complex: dimerization and quinone channels promoted by PufX. Biochemistry 52:7575–85 [Google Scholar]
  57. Niwa S, Yu LJ, Takeda K, Hirano Y, Kawakami T. 57.  et al. 2014. Structure of the LH1–RC complex from Thermochromatium tepidum at 3.0 Å. Nature 508:228–32 [Google Scholar]
  58. Mazor Y, Nataf D, Toporik H, Nelson N. 58.  2014. Crystal structures of virus-like photosystem I complexes from the mesophilic cyanobacterium Synechocystis PCC 6803. eLife 1:e01496 [Google Scholar]
  59. Nitschke W, Rutherford AW. 59.  1991. Photosynthetic reaction centres: variations on a common structural theme?. Trends Biochem. Sci. 16:241–45 [Google Scholar]
  60. Blankenship RE. 60.  1992. Origin and early evolution of photosynthesis. Photosynth. Res. 33:91–111 [Google Scholar]
  61. Vermaas WF. 61.  1994. Evolution of heliobacteria: implications for photosynthetic reaction center complexes. Photosynth. Res. 41:285–94 [Google Scholar]
  62. Cogdell RJ, Gall A, Köhler J. 62.  2006. The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q. Rev. Biophys. 39:227–324 [Google Scholar]
  63. Nelson N. 63.  2011. Photosystems and global effects of oxygenic photosynthesis. Biochim. Biophys. Acta 1807:856–63 [Google Scholar]
  64. Croce R, van Amerongen H. 64.  2013. Light-harvesting in photosystem I. Photosynth. Res. 116:153–66 [Google Scholar]
  65. Sharon I, Alperovitch A, Rohwer F, Haynes M, Glaser F. 65.  et al. 2009. Photosystem I gene cassettes are present in marine virus genomes. Nature 461:258–62 [Google Scholar]
  66. Alperovitch-Lavy A, Sharon I, Rohwer F, Aro EM, Glaser F. 66.  et al. 2011. Reconstructing a puzzle: existence of cyanophages containing both photosystem-I and photosystem-II gene suites inferred from oceanic metagenomic datasets. Environ. Microbiol. 13:24–32 [Google Scholar]
  67. Schöttler MA, Albus CA, Bock R. 67.  2011. Photosystem I: its biogenesis and function in higher plants. J. Plant Physiol. 168:1452–61 [Google Scholar]
  68. Nelson N. 68.  2009. Plant photosystem I—the most efficient nano-photochemical machine. J. Nanosci. Nanotechnol. 9:1709–13 [Google Scholar]
  69. Rochaix JD. 69.  2011. Assembly of the photosynthetic apparatus. Plant Physiol. 155:1493–500 [Google Scholar]
  70. Amunts A, Nelson N. 70.  2008. Functional organization of a plant photosystem I: evolution of a highly efficient photochemical machine. Plant Physiol. Biochem. 46:228–37 [Google Scholar]
  71. Amunts A, Nelson N. 71.  2009. Plant photosystem I design in light of evolution. Structure 17:637–50 [Google Scholar]
  72. Scheller HV, Jensen PE, Haldrup A, Lunde C, Knoetzel J. 72.  2001. Role of subunits in eukaryotic photosystem I. Biochim. Biophys. Acta 1507:41–60 [Google Scholar]
  73. Jensen PE, Bassi R, Boekema EJ, Dekker JP, Jansson S. 73.  et al. 2007. Structure, function and regulation of plant photosystem I. Biochim. Biophys. Acta 1767:335–52 [Google Scholar]
  74. Sétif PQ, Bottin H. 74.  1995. Laser flash absorption spectroscopy study of ferredoxin reduction by photosystem I: spectral and kinetic evidence for the existence of several photosystem I–ferredoxin complexes. Biochemistry 34:9059–70 [Google Scholar]
  75. Sétif P, Fischer N, Lagoutte B, Bottin H, Rochaix JD. 75.  2002. The ferredoxin docking site of photosystem I. Biochim. Biophys. Acta 1555:204–9 [Google Scholar]
  76. Sétif P, Harris N, Lagoutte B, Dotson S, Weinberger SR. 76.  2010. Detection of the photosystem I:ferredoxin complex by backscattering interferometry. J. Am. Chem. Soc. 132:10620–22 [Google Scholar]
  77. Farah J, Rappaport F, Choquet Y, Joliot P, Rochaix JD. 77.  1995. Isolation of a psaF-deficient mutant of Chlamydomonas reinhardtii: efficient interaction of plastocyanin with the photosystem I reaction center is mediated by the PsaF subunit. EMBO J. 14:4976–84 [Google Scholar]
  78. Fischer N, Boudreau E, Hippler M, Drepper F, Haehnel W, Rochaix JD. 78.  1999. A large fraction of PsaF is nonfunctional in photosystem I complexes lacking the PsaJ subunit. Biochemistry 38:5546–52 [Google Scholar]
  79. Amunts A, Drory O, Nelson N. 79.  2007. The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 447:58–63 [Google Scholar]
  80. Haldrup A, Naver H, Scheller HV. 80.  1999. The interaction between plastocyanin and photosystem I is inefficient in transgenic Arabidopsis plants lacking the PSI-N subunit of photosystem I. Plant J. 17:689–98 [Google Scholar]
  81. Kuhlgert S, Drepper F, Fufezan C, Sommer F, Hippler M. 81.  2012. Residues PsaB Asp612 and PsaB Glu613 of photosystem I confer pH-dependent binding of plastocyanin and cytochrome c6. Biochemistry 51:7297–303 [Google Scholar]
  82. Ben-Shem A, Frolow F, Nelson N. 82.  2003. The crystal structure of plant photosystem I. Nature 426:630–35 [Google Scholar]
  83. Nelson N, Ben-Shem A. 83.  2004. The complex architecture of oxygenic photosynthesis. Nat. Rev. Mol. Cell Biol. 5:971–82 [Google Scholar]
  84. Nelson N, Ben-Shem A. 84.  2002. Photosystem I reaction center: past and future. Photosynth. Res. 73:193–206 [Google Scholar]
  85. Lucinski R, Schmid VH, Jansson S, Klimmek F. 85.  2006. Lhca5 interaction with plant photosystem I. FEBS Lett. 580:6485–88 [Google Scholar]
  86. Melkozernov AN, Barber J, Blankenship RE. 86.  2006. Light harvesting in photosystem I supercomplexes. Biochemistry 45:331–45 [Google Scholar]
  87. Förster T. 87.  1959. 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 27:7–17 [Google Scholar]
  88. Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R. 88.  2011. Lessons from nature about solar light harvesting. Nat. Chem. 3:763–74 [Google Scholar]
  89. Romero E, Augulis R, Novoderezhkin VI, Ferretti M, Thieme J. 89.  et al. 2014. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10:676–82 [Google Scholar]
  90. Brotosudarmo TH, Collins AM, Gall A, Roszak AW, Gardiner AT. 90.  et al. 2011. The light intensity under which cells are grown controls the type of peripheral light-harvesting complexes that are assembled in a purple photosynthetic bacterium. Biochem. J. 440:51–61 [Google Scholar]
  91. Niederman RA. 91.  2013. Membrane development in purple photosynthetic bacteria in response to alterations in light intensity and oxygen tension. Photosynth. Res. 116:333–48 [Google Scholar]
  92. Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ. 92.  et al. 2003. Crystal structure of the RC–LH1 core complex from Rhodopseudomonas palustris. Science 302:1969–72 [Google Scholar]
  93. Papiz MZ, Prince SM, Howard T, Cogdell RJ, Isaacs NW. 93.  2003. The structure and thermal motion of the B800–850 LH2 complex from Rps. acidophila at 2.0 Å resolution and 100 K: new structural features and functionally relevant motions. J. Mol. Biol. 326:1523–38 [Google Scholar]
  94. Cohen Stuart TA, Vengris M, Novoderezhkin VI, Cogdell RJ, Hunter CN, van Grondelle R. 94.  2011. Direct visualization of exciton reequilibration in the LH1 and LH2 complexes of Rhodobacter sphaeroides by multipulse spectroscopy. Biophys. J. 100:2226–33 [Google Scholar]
  95. Fidler AF, Singh VP, Long PD, Dahlberg PD, Engel GS. 95.  2013. Timescales of coherent dynamics in the light harvesting complex 2 (LH2) of Rhodobacter sphaeroides. J. Phys. Chem. Lett. 4:1404–9 [Google Scholar]
  96. Harel E, Engel GS. 96.  2012. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2). PNAS 109:706–11 [Google Scholar]
  97. Barros T, Kühlbrandt W. 97.  2009. Crystallisation, structure and function of plant light-harvesting complex II. Biochim. Biophys. Acta 1787:753–72 [Google Scholar]
  98. Rochaix JD. 98.  2011. Regulation of photosynthetic electron transport. Biochim. Biophys. Acta 1807:375–83 [Google Scholar]
  99. Rochaix JD. 99.  2011. Reprint of: Regulation of photosynthetic electron transport. Biochim. Biophys. Acta 1807:878–86 [Google Scholar]
  100. Rochaix JD, Lemeille S, Shapiguzov A, Samol I, Fucile G. 100.  et al. 2012. Protein kinases and phosphatases involved in the acclimation of the photosynthetic apparatus to a changing light environment. Philos. Trans. R. Soc. Lond. B 367:3466–74 [Google Scholar]
  101. Nickelsen J, Rengstl B. 101.  2013. Photosystem II assembly: from cyanobacteria to plants. Annu. Rev. Plant Biol. 64:609–35 [Google Scholar]
  102. de Bianchi S, Ballottari M, Dall'osto L, Bassi R. 102.  2010. Regulation of plant light harvesting by thermal dissipation of excess energy. Biochem. Soc. Trans. 38:651–60 [Google Scholar]
  103. Murchie EH, Niyogi KK. 103.  2011. Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol. 155:86–92 [Google Scholar]
  104. Wilk L, Grunwald M, Liao PN, Walla PJ, Kühlbrandt W. 104.  2013. Direct interaction of the major light-harvesting complex II and PsbS in nonphotochemical quenching. PNAS 110:5452–56 [Google Scholar]
  105. Niyogi KK, Truong TB. 105.  2013. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr. Opin. Plant Biol. 16:307–14 [Google Scholar]
  106. Gerotto C, Morosinotto T. 106.  2013. Evolution of photoprotection mechanisms upon land colonization: evidence of PSBS-dependent NPQ in late streptophyte algae. Physiol. Plant 149:583–98 [Google Scholar]
  107. Remelli R, Varotto C, Sandonà D, Croce R, Bassi R. 107.  1999. Chlorophyll binding to monomeric light-harvesting complex. A mutation analysis of chromophore-binding residues. J. Biol. Chem. 274:33510–21 [Google Scholar]
  108. Rogl H, Kühlbrandt W. 108.  1999. Mutant trimers of light-harvesting complex II exhibit altered pigment content and spectroscopic features. Biochemistry 38:16214–22 [Google Scholar]
  109. Rogl H, Schödel R, Lokstein H, Kühlbrandt W, Schubert A. 109.  2002. Assignment of spectral substructures to pigment-binding sites in higher plant light-harvesting complex LHC-II. Biochemistry 41:2281–87 [Google Scholar]
  110. Yang C, Kosemund K, Cornet C, Paulsen H. 110.  1999. Exchange of pigment-binding amino acids in light-harvesting chlorophyll a/b protein. Biochemistry 38:16205–13 [Google Scholar]
  111. Novoderezhkin V, Salverda JM, van Amerongen H, van Grondelle R. 111.  2003. Exciton modeling of energy-transfer dynamics in the LHCII complex of higher plants: a Redfield theory approach. J. Phys. Chem. B 107:1893–912 [Google Scholar]
  112. Calhoun TR, Ginsberg NS, Schlau-Cohen GS, Cheng Y-C, Ballottari M. 112.  et al. 2009. Quantum coherence enabled determination of the energy landscape in light-harvesting complex II. J. Chem. Phys. B 113:16291–95 [Google Scholar]
  113. Giorda P, Garnerone S, Zanardi P, Lloyd S. 113.  2011. Interplay between coherence and decoherence in LHCII photosynthetic complex. arXiv:1106.1986 [quant-ph]
  114. Schlau-Cohen GS, Ishizaki A, Calhoun TR, Ginsberg NS, Ballottari M. 114.  et al. 2012. Elucidation of the timescales and origins of quantum electronic coherence in LHCII. Nat. Chem. 4:389–95 [Google Scholar]
  115. Ringsmuth AK, Milburn GJ, Stace TM. 115.  2012. Multiscale photosynthetic and biomimetic excitation energy transfer. Nat. Phys. 8:562–67 [Google Scholar]
  116. Ginsberg NS, Davis JA, Ballottari M, Cheng YC, Bassi R, Fleming GR. 116.  2011. Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy. PNAS 108:3848–53 [Google Scholar]
  117. Sener MK, Jolley C, Ben-Shem A, Fromme P, Nelson N. 117.  et al. 2005. Evolution of the excitation transfer network in photosystem I from cyanobacteria to plants. Biophys. J. 89:1630–42 [Google Scholar]
  118. Fenna RE, Matthews BW, Olson JM, Shaw EK. 118.  1974. Structure of a bacteriochlorophyll protein from the green photosynthetic bacterium Chlorobium limicola: crystallographic evidence for a trimer. J. Mol. Biol. 84:231–40 [Google Scholar]
  119. Hager-Braun C, Xie D-L, Jarosch U, Herold E, Büttner M. 119.  et al. 1995. Stable photobleaching of P840 in Chlorobium reaction center preparations: presence of the 42-kDa bacteriochlorophyll a protein and 17-kDa polypeptide. Biochemistry 34:9617–24 [Google Scholar]
  120. Kennis JT, Gobets MB, van Stokkum IHM, Dekker JP, van Grondelle R, Fleming GR. 120.  2001. Light harvesting by chlorophylls and carotenoids in the photosystem I core complex of Synechococcus elongatus: a fluorescence upconversion study. J. Phys. Chem. B 105:4485–94 [Google Scholar]
  121. Sener MK, Lu D, Ritz T, Park S, Fromme P, Schulten K. 121.  2002. Robustness and optimality of light harvesting in cyanobacterial photosystem I. J. Phys. Chem. B 106:7948–60 [Google Scholar]
  122. Sener MK, Park S, Lu D, Damjanović A, Ritz T. 122.  et al. 2004. Excitation migration in trimeric cyanobacterial photosystem I. J. Chem. Phys. 120:11183–95 [Google Scholar]
  123. Yang M, Damjanović A, Vaswani HM, Fleming GR. 123.  2003. Energy transfer in photosystem I of cyanobacteria Synechococcus elongatus: model study with structure-based semi-empirical Hamiltonian and experimental spectral density. Biophys. J. 85:140–58 [Google Scholar]
  124. Yang M, Fleming GR. 124.  2002. Influence of phonons on exciton transfer dynamics: comparison of the Redfield, Förster, and modified Redfield equations. Chem. Phys. 282:163–80 [Google Scholar]
  125. Renaud N, Powell D, Zarea M, Movaghar B, Wasielewski MR, Ratner MA. 125.  2013. Quantum interferences and electron transfer in photosystem I. J. Phys. Chem. A 117:5899–908 [Google Scholar]
  126. Wientjes E, Roest G, Croce R. 126.  2012. From red to blue to far-red in Lhca4: How does the protein modulate the spectral properties of the pigments?. Biochim. Biophys. Acta 1817:711–17 [Google Scholar]
  127. Ghanotakis DF, Yocum CF. 127.  1990. Photosystem II and the oxygen-evolving complex. Annu. Rev. Plant Phys. Plant Mol. Biol. 41:255–76 [Google Scholar]
  128. Myers JA, Lewis KLM, Fuller FD, Tekavec PF, Yocum CF, Ogilvie JP. 128.  2010. Two-dimensional electronic spectroscopy of the D1–D2–cyt b559 photosystem II reaction center complex. J. Phys. Chem. Lett. 1:2774–80 [Google Scholar]
  129. Visser HM, Groot ML, van Mourik F, van Stokkum IHM, Dekker JP, van Grondelle R. 129.  1995. Subpicosecond transient absorption difference spectroscopy on the reaction center of photosystem II radical pair formation at 77 K. J. Phys. Chem. 99:15304–9 [Google Scholar]
  130. Romero E, van Stokkum IH, Novoderezhkin VI, Dekker JP, van Grondelle R. 130.  2010. Two different charge separation pathways in photosystem II. Biochemistry 49:4300–7 [Google Scholar]
  131. Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W. 131.  2009. Cyanobacterial photosystem II at 2.9 Å resolution and role of quinones, lipids, channels and chloride. Nat. Struct. Mol. Biol. 16:334–42 [Google Scholar]
  132. Nield J, Barber J. 132.  2006. Refinement of the structural model for the photosystem II supercomplex of higher plants. Biochim. Biophys. Acta 1757:353–61 [Google Scholar]
  133. Berthold DA, Babcock GT, Yocum CF. 133.  1981. A highly resolved oxygen-evolving photosystem II preparation from spinach thylakoid membranes. FEBS Lett. 134:231–34 [Google Scholar]
  134. van Oort B, Alberts M, de Bianchi S, Dall'osto L, Bassi R. 134.  et al. 2010. Effect of antenna-depletion in photosystem II on excitation energy transfer in Arabidopsis thaliana. Biophys. J. 98:922–31 [Google Scholar]
  135. Blankenship RE, Hartman H. 135.  1998. The origin and evolution of oxygenic photosynthesis. Trends Biochem. Sci. 23:94–97 [Google Scholar]
  136. Trissl HW, Gao Y, Wulf K. 136.  1993. Theoretical fluorescence induction curves derived from coupled differential equations describing the primary photochemistry of photosystem II by an exciton–radical pair equilibrium. Biophys. J. 64:974–88 [Google Scholar]
  137. Holzwarth AR. 137.  1989. Applications of ultrafast laser spectroscopy for the study of biological systems. Q. Rev. Biophys. 22:239–326 [Google Scholar]
  138. Gobets B, van Grondelle R. 138.  2001. Energy transfer and trapping in photosystem I. Biochim. Biophys. Acta 1507:80–99 [Google Scholar]
  139. Gobets B, van Stokkum IH, Rögner M, Kruip J, Schlodder E. 139.  et al. 2001. Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: a unified compartmental model. Biophys. J. 81:407–24 [Google Scholar]
  140. Andrizhiyevskaya EG, Frolov D, Van Grondelle R, Dekker JP. 140.  2004. Energy transfer and trapping in the photosystem I complex of Synechococcus PCC 7942 and in its supercomplex with IsiA. Biochim. Biophys. Acta 1656:104–13 [Google Scholar]
  141. Boekema EJ, Jensen PE, Schlodder E, van Breemen JF, van Roon H. 141.  et al. 2001. Green plant photosystem I binds light-harvesting complex I on one side of the complex. Biochemistry 40:1029–36 [Google Scholar]
  142. Slavov C, Ballottari M, Morosinotto T, Bassi R, Holzwarth AR. 142.  2008. Trap-limited charge separation kinetics in higher plant photosystem I complexes. Biophys. J. 94:3601–12 [Google Scholar]
  143. Wientjes E, van Stokkum IH, van Amerongen H, Croce R. 143.  2011. Excitation-energy transfer dynamics of higher plant photosystem I light-harvesting complexes. Biophys. J. 100:1372–80 [Google Scholar]
  144. Wientjes E, van Stokkum IH, van Amerongen H, Croce R. 144.  2011. The role of the individual Lhcas in photosystem I excitation energy trapping. Biophys. J. 101:745–54 [Google Scholar]
  145. Mohseni M, Rebentrost P, Lloyd S, Aspuru-Guzik A. 145.  2008. Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129:174106 [Google Scholar]
  146. Jennings RC, Zucchelli G, Santabarbara S. 146.  2013. Photochemical trapping heterogeneity as a function of wavelength, in plant photosystem I (PSI-LHCI). Biochim. Biophys. Acta 1827:779–85 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error