Microbial rhodopsins are a family of photoactive retinylidene proteins widespread throughout the microbial world. They are notable for their diversity of function, using variations of a shared seven-transmembrane helix design and similar photochemical reactions to carry out distinctly different light-driven energy and sensory transduction processes. Their study has contributed to our understanding of how evolution modifies protein scaffolds to create new protein chemistry, and their use as tools to control membrane potential with light is fundamental to optogenetics for research and clinical applications. We review the currently known functions and present more in-depth assessment of three functionally and structurally distinct types discovered over the past two years: () anion channelrhodopsins (ACRs) from cryptophyte algae, which enable efficient optogenetic neural suppression; () cryptophyte cation channelrhodopsins (CCRs), structurally distinct from the green algae CCRs used extensively for neural activation and from cryptophyte ACRs; and () enzymerhodopsins, with light-gated guanylyl cyclase or kinase activity promising for optogenetic control of signal transduction.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Spudich JL, Yang C-S, Jung K-H, Spudich EN. 1.  2000. Retinylidene proteins: structures and functions from archaea to humans. Annu. Rev. Cell Dev. Biol. 16:365–92 [Google Scholar]
  2. Devine EL, Oprian DD, Theobald DL. 2  2013. Relocating the active-site lysine in rhodopsin and implications for evolution of retinylidene proteins. PNAS 110:13351–55 [Google Scholar]
  3. Boyden ES. 3.  2015. Optogenetics and the future of neuroscience. Nat. Neurosci. 18:1200–1 [Google Scholar]
  4. Deisseroth K. 4.  2015. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18:1213–25 [Google Scholar]
  5. Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H. 5.  2014. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 114:126–63 [Google Scholar]
  6. Essen LO. 6.  2002. Halorhodopsin: Light-driven ion pumping made simple?. Curr. Opin. Struct. Biol. 12:516–22 [Google Scholar]
  7. Lanyi JK. 7.  2006. Proton transfers in the bacteriorhodopsin photocycle. Biochim. Biophys. Acta 1757:1012–18 [Google Scholar]
  8. Balashov SP, Lanyi JK. 8.  2007. Xanthorhodopsin: proton pump with a carotenoid antenna. Cell. Mol. Life Sci. 64:2323–28 [Google Scholar]
  9. Spudich JL, Spudich EN. 9.  2008. The simplest eyes: rhodopsin-mediated phototaxis reception in microorganisms. Animal Models in Eye Research PA Tsonis 6–14 Amsterdam: Elsevier [Google Scholar]
  10. Lorenz-Fonfria VA, Heberle J. 10.  2014. Channelrhodopsin unchained: structure and mechanism of a light-gated cation channel. Biochim. Biophys. Acta 1837:626–42 [Google Scholar]
  11. Inoue K, Kato Y, Kandori H. 11.  2015. Light-driven ion-translocating rhodopsins in marine bacteria. Trends Microbiol 23:91–98 [Google Scholar]
  12. Oesterhelt D, Stoeckenius W. 12.  1971. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature 233:149–52 [Google Scholar]
  13. Henderson R, Unwin P. 13.  1975. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32 [Google Scholar]
  14. Chow BY, Han X, Dobry AS, Qian X, Chuong AS. 14.  et al. 2010. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102 [Google Scholar]
  15. Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A. 15.  et al. 2000. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–6 [Google Scholar]
  16. Beja O, Spudich EN, Spudich JL, Leclerc M, DeLong EF. 16.  2001. Proteorhodopsin phototrophy in the ocean. Nature 411:786–89 [Google Scholar]
  17. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D. 17.  et al. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74 [Google Scholar]
  18. Sabehi G, Loy A, Jung KH, Partha R, Spudich JL. 18.  et al. 2005. New insights into metabolic properties of marine bacteria encoding proteorhodopsins. PLOS Biol 3:e273 [Google Scholar]
  19. Ran T, Ozorowski G, Gao Y, Sineshchekov OA, Wang W. 19.  et al. 2013. Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. Acta Crystallogr. Sect. D 69:1965–80 [Google Scholar]
  20. Hussain S, Kinnebrew M, Schonenbach NS, Aye E, Han S. 20.  2015. Functional consequences of the oligomeric assembly of proteorhodopsin. J. Mol. Biol. 427:1278–90 [Google Scholar]
  21. Sharma AK, Zhaxybayeva O, Papke RT, Doolittle WF. 21.  2008. Actinorhodopsins: proteorhodopsin-like gene sequences found predominantly in non-marine environments. Environ. Microbiol. 10:1039–56 [Google Scholar]
  22. Balashov SP, Imasheva ES, Boichenko VA, Anton J, Wang JM, Lanyi JK. 22.  2005. Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309:2061–64 [Google Scholar]
  23. Waschuk SA, Bezerra AGJ, Shi L, Brown LS. 23.  2005. Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. PNAS 102:6879–83 [Google Scholar]
  24. Inoue K, Ito S, Kato Y, Nomura Y, Shibata M. 24.  et al. 2016. A natural light-driven inward proton pump. Nat. Commun. 7:13415 [Google Scholar]
  25. Matsuno-Yagi A, Mukohata Y. 25.  1977. Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem. Biophys. Res. Commun. 78:237–43 [Google Scholar]
  26. Mukohata Y, Kaji Y. 26.  1981. Light-induced membrane-potential increase, ATP synthesis, and proton uptake in Halobacterium halobium, R1mR catalyzed by halorhodopsin: effects of N,N′-dicyclo-hexylcarbodiimide, triphenyltin chloride, and 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847). Arch. Biochem. Biophys. 206:72–76 [Google Scholar]
  27. Schobert B, Lanyi JK. 27.  1982. Halorhodopsin is a light-driven chloride pump. J. Biol. Chem. 257:10306–13 [Google Scholar]
  28. Sasaki J, Brown LS, Chon YS, Kandori H, Maeda A. 28.  et al. 1995. Conversion of bacteriorhodopsin into a chloride ion pump. Science 269:73–75 [Google Scholar]
  29. Gradinaru V, Thompson KR, Deisseroth K. 29.  2008. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 36:129–39 [Google Scholar]
  30. Yoshizawa S, Kumagai Y, Kim H, Ogura Y, Hayashi T. 30.  et al. 2014. Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria. PNAS 111:6732–37 [Google Scholar]
  31. Kandori H. 31.  2015. Ion-pumping microbial rhodopsins. Front. Mol. Biosci. 2:52 [Google Scholar]
  32. Inoue K, Koua FH, Kato Y, Abe-Yoshizumi R, Kandori H. 32.  2014. Spectroscopic study of a light-driven chloride ion pump from marine bacteria. J. Phys. Chem. B 118:11190–99 [Google Scholar]
  33. Hosaka T, Yoshizawa S, Nakajima Y, Ohsawa N, Hato M. 33.  et al. 2016. Structural mechanism for light-driven transport by a new type of chloride ion pump, Nonlabens marinus rhodopsin-3. J. Biol. Chem. 291:17488–95 [Google Scholar]
  34. Hasemi T, Kikukawa T, Kamo N, Demura M. 34.  2016. Characterization of a cyanobacterial chloride-pumping rhodopsin and its conversion into a proton pump. J. Biol. Chem. 291:355–62 [Google Scholar]
  35. Inoue K, Ono H, Abe-Yoshizumi R, Yoshizawa S, Ito H. 35.  et al. 2013. A light-driven sodium ion pump in marine bacteria. Nat. Commun. 4:1678 [Google Scholar]
  36. Kwon SK, Kim BK, Song JY, Kwak MJ, Lee CH. 36.  et al. 2013. Genomic makeup of the marine flavobacterium Nonlabens (Donghaeana) dokdonensis and identification of a novel class of rhodopsins. Genome Biol. Evol. 5:187–99 [Google Scholar]
  37. Balashov SP, Imasheva ES, Dioumaev AK, Wang JM, Jung KH, Lanyi JK. 37.  2014. Light-driven Na+ pump from Gillisia limnaea: A high-affinity Na+ binding site is formed transiently in the photocycle. Biochemistry 53:7549–61 [Google Scholar]
  38. Li H, Sineshchekov OA, da Silva GF, Spudich JL. 38.  2015. In vitro demonstration of dual light-driven Na+/H+ pumping by a microbial rhodopsin. Biophys. J. 109:1446–53 [Google Scholar]
  39. da Silva GF, Goblirsch BR, Tsai AL, Spudich JL. 39.  2015. Cation-specific conformations in a dual-function ion-pumping microbial rhodopsin. Biochemistry 54:3950–59 [Google Scholar]
  40. Kato HE, Inoue K, Abe-Yoshizumi R, Kato Y, Ono H. 40.  et al. 2015. Structural basis for Na+ transport mechanism by a light-driven Na+ pump. Nature 521:48–53 [Google Scholar]
  41. Gushchin I, Shevchenko V, Polovinkin V, Kovalev K, Alekseev A. 41.  et al. 2015. Crystal structure of a light-driven sodium pump. Nat. Struct. Mol. Biol. 22:390–95 [Google Scholar]
  42. Spudich EN, Spudich JL. 42.  1982. Control of transmembrane ion fluxes to select halorhodopsin-deficient and other energy-transduction mutants of Halobacterium halobium. PNAS 79:4308–12 [Google Scholar]
  43. Bogomolni R, Spudich JL. 43.  1982. Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. PNAS 79:6250–54 [Google Scholar]
  44. Spudich JL, Bogomolni RA. 44.  1984. Mechanism of colour discrimination by a bacterial sensory rhodopsin. Nature 312:509–13 [Google Scholar]
  45. Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K. 45.  2009. Bi-stable neural state switches. Nat. Neurosci. 12:229–34 [Google Scholar]
  46. Yao VJ, Spudich JL. 46.  1992. Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I. PNAS 89:11915–19 [Google Scholar]
  47. Rudolph J, Oesterhelt D. 47.  1996. Deletion analysis of the che operon in the archaeon Halobacterium salinarium. J. Mol. Biol 258:548–54 [Google Scholar]
  48. Takahashi T, Tomioka H, Kamo N, Kobatake Y. 48.  1985. A photosystem other than PS370 also mediates the negative phototaxis of Halobacterium halobium. FEMS Microbiol. Lett. 28:161–64 [Google Scholar]
  49. Tomioka H, Takahashi T, Kamo N, Kobatake Y. 49.  1986. Flash spectrophotometric identification of a fourth rhodopsin-like pigment in Halobacterium halobium. Biochem. Biophys. Res. Commun. 139:389–95 [Google Scholar]
  50. Spudich EN, Sundberg SA, Manor D, Spudich JL. 50.  1986. Properties of a second sensory receptor protein in Halobacterium halobium phototaxis. Proteins 1:239–46 [Google Scholar]
  51. Luecke H, Schobert B, Lanyi JK, Spudich EN, Spudich JL. 51.  2001. Crystal structure of sensory rhodopsin II at 2.4 angstroms: insights into color tuning and transducer interaction. Science 293:1499–503 [Google Scholar]
  52. Royant A, Nollert P, Edman K, Neutze R, Landau EM. 52.  et al. 2001. X-ray structure of sensory rhodopsin II at 2.1-Å resolution. PNAS 98:10131–36 [Google Scholar]
  53. Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J. 53.  et al. 2002. Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419:484–87 [Google Scholar]
  54. Vogeley L, Sineshchekov O, Trivedi V, Sasaki J, Spudich J, Luecke H. 54.  2004. Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 Å. Science 306:1390–93 [Google Scholar]
  55. Spudich JL. 55.  1994. Protein-protein interaction converts a proton pump into a sensory receptor. Cell 79:747–50 [Google Scholar]
  56. Schmies G, Luttenberg B, Chizhov I, Engelhard M, Becker A, Bamberg E. 56.  2000. Sensory rhodopsin II from the haloalkaliphilic Natronobacterium pharaonis: light-activated proton transfer reactions. Biophys. J. 78:967–76 [Google Scholar]
  57. Sudo Y, Spudich JL. 57.  2006. Three strategically placed hydrogen-bonding residues convert a proton pump into a sensory receptor. PNAS 103:16129–34 [Google Scholar]
  58. Inoue K, Nomura Y, Kandori H. 58.  2016. Asymmetric functional conversion of eubacterial light-driven ion pumps. J. Biol. Chem. 291:9883–93 [Google Scholar]
  59. Spudich JL, Sineshchekov OA, Govorunova EG. 59.  2014. Mechanism divergence in microbial rhodopsins. Biochim. Biophys. Acta 1837:546–52 [Google Scholar]
  60. Jung K-H, Trivedi VD, Spudich JL. 60.  2003. Demonstration of a sensory rhodopsin in eubacteria. Mol. Microbiol. 47:1513–22 [Google Scholar]
  61. Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL. 61.  2005. Photochromicity of Anabaena sensory rhodopsin, an atypical microbial receptor with a cis-retinal light-adapted form. J. Biol. Chem. 280:14663–68 [Google Scholar]
  62. Irieda H, Morita T, Maki K, Homma M, Aiba H, Sudo Y. 62.  2012. Photo-induced regulation of the chromatic adaptive gene expression by Anabaena sensory rhodopsin. J. Biol. Chem. 287:32485–93 [Google Scholar]
  63. Kim SY, Yoon SR, Han S, Yun Y, Jung KH. 63.  2014. A role of Anabaena sensory rhodopsin transducer (ASRT) in photosensory transduction. Mol. Microbiol. 93:403–14 [Google Scholar]
  64. Wand A, Gdor I, Zhu J, Sheves M, Ruhman S. 64.  2013. Shedding new light on retinal protein photochemistry. Annu. Rev. Phys. Chem. 64:437–58 [Google Scholar]
  65. Brown LS. 65.  2014. Eubacterial rhodopsins—unique photosensors and diverse ion pumps. Biochim. Biophys. Acta 1837:553–61 [Google Scholar]
  66. Kateriya S, Nagel G, Bamberg E, Hegemann P. 66.  2004. “Vision” in single-celled algae. News Physiol. Sci. 19:133–37 [Google Scholar]
  67. Kianianmomeni A, Hallmann A. 67.  2014. Algal photoreceptors: in vivo functions and potential applications. Planta 239:1–26 [Google Scholar]
  68. Luck M, Mathes T, Bruun S, Fudim R, Hagedorn R. 68.  et al. 2012. A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light. J. Biol. Chem. 287:40083–90 [Google Scholar]
  69. Penzkofer A, Luck M, Mathes T, Hegemann P. 69.  2014. Bistable retinal Schiff base photo-dynamics of histidine kinase rhodopsin HKR1 from Chlamydomonas reinhardtii. Photochem. Photobiol. 90:773–85 [Google Scholar]
  70. Schmidt M, Gessner G, Luff M, Heiland I, Wagner V. 70.  et al. 2006. Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. Plant Cell 18:1908–30 [Google Scholar]
  71. Saranak J, Foster K-W. 71.  1997. Rhodopsin guides fungal phototaxis. Nature 387:465–66 [Google Scholar]
  72. Avelar GM, Schumacher RI, Zaini PA, Leonard G, Richards TA, Gomes SL. 72.  2014. A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus. Curr. Biol. 24:1234–40 [Google Scholar]
  73. Gao S, Nagpal J, Schneider MW, Kozjak-Pavlovic V, Nagel G, Gottschalk A. 73.  2015. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp. Nat. Commun. 6:8046 [Google Scholar]
  74. Avelar GM, Glaser T, Leonard G, Richards TA, Ulrich H, Gomes SL. 74.  2015. A cGMP-dependent K+ channel in the blastocladiomycete fungus Blastocladiella emersonii. Eukaryot. Cell 14:958–63 [Google Scholar]
  75. Scheib U, Stehfest K, Gee CE, Korschen HG, Fudim R. 75.  et al. 2015. The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling. Sci. Signal. 8:rs8 [Google Scholar]
  76. Litvin FF, Sineshchekov OA, Sineshchekov VA. 76.  1978. Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis. Nature 271:476–78 [Google Scholar]
  77. Foster K-W, Saranak J, Patel N, Zarrilli G, Okabe M. 77.  et al. 1984. A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature 311:756–59 [Google Scholar]
  78. Sineshchekov OA, Jung K-H, Spudich JL. 78.  2002. Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. PNAS 99:8689–94 [Google Scholar]
  79. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM. 79.  et al. 2002. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–98 [Google Scholar]
  80. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N. 80.  et al. 2003. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. PNAS 100:13940–45 [Google Scholar]
  81. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. 81.  2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8:1263–68 [Google Scholar]
  82. Govorunova EG, Sineshchekov OA, Liu X, Janz R, Spudich JL. 82.  2015. Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349:647–50 [Google Scholar]
  83. Sineshchekov OA, Spudich JL. 83.  2005. Sensory rhodopsin signaling in green flagellate algae. Handbook of Photosensory Receptors. WR Briggs, JL Spudich 25–42 Weinheim, Ger: Wiley-VCH
  84. Sineshchekov OA, Litvin FF, Keszthelyi L. 84.  1990. Two components of photoreceptor potential of the flagellated green alga Haematococcus pluvialis. Biophys. J. 57:33–39 [Google Scholar]
  85. Sineshchekov OA, Govorunova EG, Spudich JL. 85.  2009. Photosensory functions of channelrhodopsins in native algal cells. Photochem. Photobiol. 85:556–63 [Google Scholar]
  86. Govorunova EG, Jung K-W, Sineshchekov OA, Spudich JL. 86.  2004. Chlamydomonas sensory rhodopsins A and B: cellular content and role in photophobic responses. Biophys. J. 86:2342–49 [Google Scholar]
  87. Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A. 87.  et al. 2014. Independent optical excitation of distinct neural populations. Nat. Methods 11:338–46 [Google Scholar]
  88. Schneider F, Grimm C, Hegemann P. 88.  2015. Biophysics of channelrhodopsin. Annu. Rev. Biophys. 44:167–86 [Google Scholar]
  89. Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T. 89.  et al. 2012. Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482:369–74 [Google Scholar]
  90. Bruun S, Stoeppler D, Keidel A, Kuhlmann U, Luck M. 90.  et al. 2015. Light-dark adaptation of channelrhodopsin involves photoconversion between the all-trans and 13-cis retinal isomers. Biochemistry 54:5389–400 [Google Scholar]
  91. Lorenz-Fonfria VA, Schultz BJ, Resler T, Schlesinger R, Bamann C. 91.  et al. 2015. Pre-gating conformational changes in the ChETA variant of channelrhodopsin-2 monitored by nanosecond IR spectroscopy. J. Am. Chem. Soc. 137:1850–61 [Google Scholar]
  92. Ernst OP, Sanchez Murcia PA, Daldrop P, Tsunoda SP, Kateriya S, Hegemann P. 92.  2008. Photoactivation of channelrhodopsin. J. Biol. Chem. 283:1637–43 [Google Scholar]
  93. Verhoefen MK, Bamann C, Blocher R, Forster U, Bamberg E, Wachtveitl J. 93.  2010. The photocycle of channelrhodopsin-2: ultrafast reaction dynamics and subsequent reaction steps. ChemPhysChem 11:3113–22 [Google Scholar]
  94. Szundi I, Li H, Chen E, Bogomolni R, Spudich JL, Kliger DS. 94.  2015. Platymonas subcordiformis channelrhodopsin-2 function: I. The photochemical reaction cycle. J. Biol. Chem. 290:16573–84 [Google Scholar]
  95. Bamann C, Kirsch T, Nagel G, Bamberg E. 95.  2008. Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. J. Mol. Biol. 375:686–94 [Google Scholar]
  96. Ritter E, Stehfest K, Berndt A, Hegemann P, Bartl FJ. 96.  2008. Monitoring light-induced structural changes of channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy. J. Biol. Chem. 283:35033–41 [Google Scholar]
  97. Sineshchekov OA, Govorunova EG, Wang J, Li H, Spudich JL. 97.  2013. Intramolecular proton transfer in channelrhodopsins. Biophys. J. 104:807–17 [Google Scholar]
  98. Lorenz-Fonfria VA, Resler T, Krause N, Nack M, Gossing M. 98.  et al. 2013. Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating. PNAS 110:E1273–81 [Google Scholar]
  99. Ogren JI, Yi A, Mamaev S, Li H, Spudich JL, Rothschild KJ. 99.  2015. Proton transfers in a channelrhodopsin-1 studied by FTIR-difference spectroscopy and site-directed mutagenesis. J. Biol. Chem. 290:12719–30 [Google Scholar]
  100. Kuhne J, Eisenhauer K, Ritter E, Hegemann P, Gerwert K, Bartl F. 100.  2014. Early formation of the ion-conducting pore in channelrhodopsin-2. Angew. Chem. Int. Ed. Engl. 54:4953–57 [Google Scholar]
  101. Resler T, Schultz BJ, Lorenz-Fonfria VA, Schlesinger R, Heberle J. 101.  2015. Kinetic and vibrational isotope effects of proton transfer reactions in channelrhodopsin-2. Biophys. J. 109:287–97 [Google Scholar]
  102. Nack M, Radu I, Gossing M, Bamann C, Bamberg E. 102.  et al. 2010. The DC gate in channelrhodopsin-2: crucial hydrogen bonding interaction between C128 and D156. Photochem. Photobiol. Sci. 9:194–98 [Google Scholar]
  103. Bamann C, Gueta R, Kleinlogel S, Nagel G, Bamberg E. 103.  2010. Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. Biochemistry 49:267–78 [Google Scholar]
  104. Ritter E, Piwowarski P, Hegemann P, Bartl FJ. 104.  2013. Light-dark adaptation of channelrhodopsin C128T mutant. J. Biol. Chem. 288:10451–58 [Google Scholar]
  105. Stehfest K, Hegemann P. 105.  2010. Evolution of the channelrhodopsin photocycle model. ChemPhysChem 11:1120–26 [Google Scholar]
  106. Radu I, Bamann C, Nack M, Nagel G, Bamberg E, Heberle J. 106.  2009. Conformational changes of channelrhodopsin-2. J. Am. Chem. Soc. 131:7313–19 [Google Scholar]
  107. Neumann-Verhoefen MK, Neumann K, Bamann C, Radu I, Heberle J. 107.  et al. 2013. Ultrafast infrared spectroscopy on channelrhodopsin-2 reveals efficient energy transfer from the retinal chromophore to the protein. J. Am. Chem. Soc. 135:6968–76 [Google Scholar]
  108. Krause N, Engelhard C, Heberle J, Schlesinger R, Bittl R. 108.  2013. Structural differences between the closed and open states of channelrhodopsin-2 as observed by EPR spectroscopy. FEBS Lett 587:3309–13 [Google Scholar]
  109. Sattig T, Rickert C, Bamberg E, Steinhoff HJ, Bamann C. 109.  2013. Light-induced movement of the transmembrane helix B in channelrhodopsin-2. Angew. Chem. Int. Ed. Engl. 52:9705–8 [Google Scholar]
  110. Volz P, Krause N, Balke J, Schneider C, Walter M. 110.  et al. 2016. Light and pH-induced changes in structure and accessibility of transmembrane helix B and its immediate environment in channelrhodopsin-2. J. Biol. Chem. 291:17382–93 [Google Scholar]
  111. Müller M, Bamann C, Bamberg E, Kuhlbrandt W. 111.  2015. Light-induced helix movements in channelrhodopsin-2. J. Mol. Biol. 427:341–49 [Google Scholar]
  112. Subramaniam S, Gerstein M, Oesterhelt D, Henderson R. 112.  1993. Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. EMBO J 12:1–8 [Google Scholar]
  113. Sasaki J, Tsai AL, Spudich JL. 113.  2011. Opposite displacement of helix F in attractant and repellent signaling by sensory rhodopsin-Htr complexes. J. Biol. Chem. 286:18868–77 [Google Scholar]
  114. Wegener AA, Chizhov I, Engelhard M, Steinhoff HJ. 114.  2000. Time-resolved detection of transient movement of helix F in spin-labelled pharaonis sensory rhodopsin II. J. Mol. Biol. 301:881–91 [Google Scholar]
  115. Lorenz-Fonfria VA, Bamann C, Resler T, Schlesinger R, Bamberg E, Heberle J. 115.  2015. Temporal evolution of helix hydration in a light-gated ion channel correlates with ion conductance. PNAS 112:E5796–804 [Google Scholar]
  116. Eisenhauer K, Kuhne J, Ritter E, Berndt AE, Wolf S. 116.  et al. 2012. In channelrhodopsin-2 E90 is crucial for ion selectivity and is deprotonated during the photocycle. J. Biol. Chem. 287:6904–11 [Google Scholar]
  117. Feldbauer K, Zimmermann D, Pintschovius V, Spitz J, Bamann C, Bamberg E. 117.  2009. Channelrhodopsin-2 is a leaky proton pump. PNAS 106:12317–22 [Google Scholar]
  118. Govorunova EG, Sineshchekov OA, Li H, Janz R, Spudich JL. 118.  2013. Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis. J. Biol. Chem. 288:29911–22 [Google Scholar]
  119. Schneider F, Gradmann D, Hegemann P. 119.  2013. Ion selectivity and competition in channelrhodopsins. Biophys. J. 105:91–100 [Google Scholar]
  120. Zhao M, Alleva R, Ma H, Daniel AG, Schwartz TH. 120.  2015. Optogenetic tools for modulating and probing the epileptic network. Epilepsy Res 116:15–26 [Google Scholar]
  121. Cohen AE. 121.  2016. Optogenetics: turning the microscope on its head. Biophys. J. 110:997–1003 [Google Scholar]
  122. Wietek J, Prigge M. 122.  2016. Enhancing channelrhodopsins: an overview. Methods Mol. Biol. 1408:141–65 [Google Scholar]
  123. Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY. 123.  2013. ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16:1499–508 [Google Scholar]
  124. Kato HE, Kamiya M, Sugo S, Ito J, Taniguchi R. 124.  et al. 2015. Atomistic design of microbial opsin-based blue-shifted optogenetics tools. Nat. Commun. 6:7177 [Google Scholar]
  125. Kleinlogel S, Feldbauer K, Dempski RE, Fotis H, Wood PG. 125.  et al. 2011. Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat. Neurosci. 14:513–18 [Google Scholar]
  126. Lin JY. 126.  2010. A user's guide to channelrhodopsin variants: features, limitations and future developments. Exp. Physiol. 96:19–25 [Google Scholar]
  127. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K. 127.  2011. Optogenetics in neural systems. Neuron 71:9–34 [Google Scholar]
  128. Mattis J, Tye KM, Ferenczi EA, Ramakrishnan C, O'Shea DJ. 128.  et al. 2011. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat. Methods 9:159–72 [Google Scholar]
  129. Mohanty SK, Reinscheid RK, Liu X, Okamura N, Krasieva TB, Berns MW. 129.  2008. In-depth activation of channelrhodopsin 2-sensitized excitable cells with high spatial resolution using two-photon excitation with a near-infrared laser microbeam. Biophys. J. 95:3916–26 [Google Scholar]
  130. Grubb MS, Burrone J. 130.  2010. Channelrhodopsin-2 localised to the axon initial segment. PLOS ONE 5:e13761 [Google Scholar]
  131. Hochbaum DR, Zhao Y, Farhi SL, Klapoetke N, Werley CA. 131.  et al. 2014. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 8:825–33 [Google Scholar]
  132. Sineshchekov OA, Govorunova EG, Jung K-H, Zauner S, Maier U-G, Spudich JL. 132.  2005. Rhodopsin-mediated photoreception in cryptophyte flagellates. Biophys. J. 89:4310–19 [Google Scholar]
  133. Govorunova EG, Sineshchekov OA, Spudich JL. 133.  2016. Proteomonas sulcata ACR1: a fast anion channelrhodopsin. Photochem. Photobiol. 92:257–63 [Google Scholar]
  134. Wietek J, Broser M, Krause BS, Hegemann P. 134.  2016. Identification of a natural green light absorbing chloride conducting channelrhodopsin from Proteomonas sulcata. J. Biol. Chem. 291:4121–27 [Google Scholar]
  135. Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE. 135.  et al. 2014. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLOS Biol 12:e1001889 [Google Scholar]
  136. Matasci N, Hung LH, Yan Z, Carpenter EJ, Wickett NJ. 136.  et al. 2014. Data access for the 1,000 Plants (1KP) project. Gigascience 3:17 [Google Scholar]
  137. Sineshchekov OA, Li H, Govorunova EG, Spudich JL. 137.  2016. Photochemical reaction cycle transitions during anion channelrhodopsin gating. PNAS 113:E1993–2000 [Google Scholar]
  138. Zhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S. 138.  et al. 2011. The microbial opsin family of optogenetic tools. Cell 147:1446–57 [Google Scholar]
  139. Wietek J, Wiegert JS, Adeishvili N, Schneider F, Watanabe H. 139.  et al. 2014. Conversion of channelrhodopsin into a light-gated chloride channel. Science 344:409–12 [Google Scholar]
  140. Sineshchekov OA, Govorunova EG, Li H, Spudich JL. 140.  2015. Gating mechanisms of a natural anion channelrhodopsin. PNAS 112:14236–41 [Google Scholar]
  141. Wietek J, Beltramo R, Scanziani M, Hegemann P, Oertner TG, Simon WJ. 141.  2015. An improved chloride-conducting channelrhodopsin for light-induced inhibition of neuronal activity in vivo. Sci. Rep. 5:14807 [Google Scholar]
  142. Berndt A, Lee SY, Ramakrishnan C, Deisseroth K. 142.  2014. Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344:420–24 [Google Scholar]
  143. Berndt A, Lee SY, Wietek J, Ramakrishnan C, Steinberg EE. 143.  et al. 2015. Structural foundations of optogenetics: determinants of channelrhodopsin ion selectivity. PNAS 113:822–29 [Google Scholar]
  144. Berndt A, Deisseroth K. 144.  2015. Expanding the optogenetics toolkit. Science 349:590–91 [Google Scholar]
  145. Olson KD, Zhang XN, Spudich JL. 145.  1995. Residue replacements of buried aspartyl and related residues in sensory rhodopsin I: D201N produces inverted phototaxis signals. PNAS 92:3185–89 [Google Scholar]
  146. Jung KH, Spudich JL. 146  1998. Suppressor mutation analysis of the sensory rhodopsin I-transducer complex: insights into the color-sensing mechanism. J. Bacteriol. 180:2033–42 [Google Scholar]
  147. Sineshchekov OA, Sasaki J, Phillips BJ, Spudich JL. 147.  2008. A Schiff base connectivity switch in sensory rhodopsin signaling. PNAS 105:16159–64 [Google Scholar]
  148. Sineshchekov OA, Sasaki J, Wang J, Spudich JL. 148.  2010. Attractant and repellent signaling conformers of sensory rhodopsin-transducer complexes. Biochemistry 49:6696–704 [Google Scholar]
  149. Sasaki J, Takahashi H, Furutani Y, Kandori H, Spudich JL. 149.  2011. Sensory rhodopsin-I as a bidirectional switch: opposite conformational changes from the same photoisomerization. Biophys. J. 100:2178–83 [Google Scholar]
  150. Yi A, Mamaeva NV, Li H, Spudich JL, Rothschild KJ. 150.  2016. Resonance Raman study of an anion channelrhodopsin: effects of mutations near the retinylidene Schiff base. Biochemistry 55:2371–80 [Google Scholar]
  151. Kolbe M, Besir H, Essen LO, Oesterhelt D. 151.  2000. Structure of the light-driven chloride pump halorhodopsin at 1.8 angstrom resolution. Science 288:1390–96 [Google Scholar]
  152. Mahn M, Prigge M, Ron S, Levy R, Yizhar O. 152.  2016. Biophysical constraints of optogenetic inhibition at presynaptic terminals. Nat. Neurosci. 19:554–56 [Google Scholar]
  153. Mohammad F, Stewart J, Ott S, Chlebikova K, Chua JI. 153.  et al. 2017. Optogenetic inhibition of behavior with anion channelrhodopsins. Nat. Methods 14:271–74 [Google Scholar]
  154. Alfonsa H, Lakey JH, Lightowlers RN, Trevelyan AJ. 154.  2016. Cl-out is a novel cooperative optogenetic tool for extruding chloride from neurons. Nat. Commun. 7:13495 [Google Scholar]
  155. Govorunova EG, Cunha CR, Sineshchekov OA, Spudich JL. 155.  2016. Anion channelrhodopsins for inhibitory cardiac optogenetics. Sci. Rep. 6:33530 [Google Scholar]
  156. Govorunova EG, Sineshchekov OA, Spudich JL. 156.  2016. Structurally distinct cation channelrhodopsins from cryptophyte algae. Biophys. J. 110:2302–4 [Google Scholar]
  157. Brown LS, Dioumaev AK, Lanyi JK, Spudich EN, Spudich JL. 157.  2001. Photochemical reaction cycle and proton transfers in Neurospora rhodopsin. J. Biol. Chem. 276:32495–505 [Google Scholar]
  158. Li H, Sineshchekov OA, Wu G, Spudich JL. 158.  2016. In vitro activity of a purified natural anion channelrhodopsin. J. Biol. Chem. 291:25319–25 [Google Scholar]
  159. Watanabe M, Furuya M. 159.  1974. Action spectrum of phototaxis in a cryptomonad alga, Cryptomonas sp. Plant Cell Physiol 15:413–20 [Google Scholar]
  160. Yue L, Weiland JD, Roska B, Humayun MS. 160.  2016. Retinal stimulation strategies to restore vision: fundamentals and systems. Prog. Retin. Eye Res. 53:21–47 [Google Scholar]
  161. Doroudchi MM, Greenberg KP, Liu J, Silka KA, Boyden ES. 161.  et al. 2011. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol. Ther. 19:1220–29 [Google Scholar]
  162. Govorunova EG, Sineshchekov OA, Rodarte EM, Janz R, Morelle O. 162.  et al. 2017. The expanding family of natural anion channelrhodopsins reveals large variations in kinetics, conductance, and spectral sensitivity. Sci. Rep. 7:43358 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error