1932

Abstract

In seeking to understand mental health and disease, it is fundamental to identify the biological substrates that draw together the experiences and physiological processes that underlie observed psychological changes. Mitochondria are subcellular organelles best known for their central role in energetics, producing adenosine triphosphate to power most cellular processes. Converging lines of evidence indicate that mitochondria play a key role in the biological embedding of adversity. Preclinical research documents the effects of stress exposure on mitochondrial structure and function, and recent human research suggests alterations constituting recalibrations, both adaptive and nonadaptive. Current research suggests dynamic relationships among stress exposure, neuroendocrine signaling, inflammation, and mitochondrial function. These complex relationships are implicated in disease risk, and their elucidation may inform prevention and treatment of stress- and trauma-related disorders. We review and evaluate the evidence for mitochondrial dysfunction as a consequence of stress exposure and as a contributing factor to psychiatric disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-clinpsy-082719-104030
2020-05-07
2024-05-23
Loading full text...

Full text loading...

/deliver/fulltext/clinpsy/16/1/annurev-clinpsy-082719-104030.html?itemId=/content/journals/10.1146/annurev-clinpsy-082719-104030&mimeType=html&fmt=ahah

Literature Cited

  1. Adzic M, Brkic Z, Bulajic S, Mitic M, Radojcic MB 2016. Antidepressant action on mitochondrial dysfunction in psychiatric disorders. Drug Dev. Res. 77:400–6
    [Google Scholar]
  2. Archibald JM. 2015. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25:R911–21
    [Google Scholar]
  3. Basu A, McLaughlin KA, Misra S, Koenen KC 2017. Childhood maltreatment and health impact: the examples of cardiovascular disease and type 2 diabetes mellitus in adults. Clin. Psychol. 24:125–39
    [Google Scholar]
  4. Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V 2016. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-alpha. Mol. Psychiatry 21:642–49
    [Google Scholar]
  5. Berens AE, Jensen SKG, Nelson CA 3rd 2017. Biological embedding of childhood adversity: from physiological mechanisms to clinical implications. BMC Med 15:135
    [Google Scholar]
  6. Bernstein DP, Fink L, Handelsman L, Foote J, Lovejoy M et al. 1994. Initial reliability and validity of a new retrospective measure of child abuse and neglect. Am. J. Psychiatry 151:1132–36
    [Google Scholar]
  7. Bersani FS, Morley C, Lindqvist D, Epel ES, Picard M et al. 2016. Mitochondrial DNA copy number is reduced in male combat veterans with PTSD. Prog. Neuropsychopharmacol. Biol. Psychiatry 64:10–17
    [Google Scholar]
  8. Boeck C, Koenig AM, Schury K, Geiger ML, Karabatsiakis A et al. 2016. Inflammation in adult women with a history of child maltreatment: the involvement of mitochondrial alterations and oxidative stress. Mitochondrion 30:197–207
    [Google Scholar]
  9. Bratic A, Larsson NG. 2013. The role of mitochondria in aging. J. Clin. Investig. 123:951–57
    [Google Scholar]
  10. Bricout M, Grevent D, Lebre AS, Rio M, Desguerre I et al. 2014. Brain imaging in mitochondrial respiratory chain deficiency: combination of brain MRI features as a useful tool for genotype/phenotype correlations. J. Med. Genet. 51:429–35
    [Google Scholar]
  11. Bunea IM, Szentagotai-Tatar A, Miu AC 2017. Early-life adversity and cortisol response to social stress: a meta-analysis. Transl. Psychiatry 7:1274
    [Google Scholar]
  12. Bury AG, Pyle A, Elson JL, Greaves L, Morris CM et al. 2017. Mitochondrial DNA changes in pedunculopontine cholinergic neurons in Parkinson disease. Ann. Neurol. 82:1016–21
    [Google Scholar]
  13. Cai N, Chang S, Li Y, Li Q, Hu J et al. 2015a. Molecular signatures of major depression. Curr. Biol. 25:1146–56
    [Google Scholar]
  14. Cai N, Li Y, Chang S, Liang J, Lin C et al. 2015b. Genetic control over mtDNA and its relationship to major depressive disorder. Curr. Biol. 25:3170–77
    [Google Scholar]
  15. Carpenter LL, Gawuga CE, Tyrka AR, Lee JK, Anderson GM, Price LH 2010. Association between plasma IL-6 response to acute stress and early-life adversity in healthy adults. Neuropsychopharmacology 35:2617–23
    [Google Scholar]
  16. Chandel NS. 2015. Evolution of mitochondria as signaling organelles. Cell Metab 22:204–6
    [Google Scholar]
  17. Chen S, Li Z, He Y, Zhang F, Li H et al. 2015. Elevated mitochondrial DNA copy number in peripheral blood cells is associated with childhood autism. BMC Psychiatry 15:50
    [Google Scholar]
  18. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, McKee AC et al. 1994. Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics 23:471–76
    [Google Scholar]
  19. Czarny P, Wigner P, Strycharz J, Swiderska E, Synowiec E et al. 2019. Mitochondrial DNA copy number, damage, repair and degradation in depressive disorder. World J. Biol. Psychiatry. https://doi.org/10.1080/15622975.2019.1588993
    [Crossref] [Google Scholar]
  20. Danese A, Lewis SJ. 2017. Psychoneuroimmunology of early-life stress: the hidden wounds of childhood trauma?. Neuropsychopharmacology 42:99–114
    [Google Scholar]
  21. Danese A, McEwen BS. 2012. Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiol. Behav. 106:29–39
    [Google Scholar]
  22. Danese A, Pariante CM, Caspi A, Taylor A, Poulton R 2007. Childhood maltreatment predicts adult inflammation in a life-course study. PNAS 104:1319–24
    [Google Scholar]
  23. de Sousa RT, Uno M, Zanetti MV, Shinjo SM, Busatto GF et al. 2014. Leukocyte mitochondrial DNA copy number in bipolar disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 48:32–35
    [Google Scholar]
  24. Du J, Wang Y, Hunter R, Wei Y, Blumenthal R et al. 2009. Dynamic regulation of mitochondrial function by glucocorticoids. PNAS 106:3543–48
    [Google Scholar]
  25. Epel ES, Prather AA. 2018. Stress, telomeres, and psychopathology: toward a deeper understanding of a triad of early aging. Annu. Rev. Clin. Psychol. 14:371–97
    [Google Scholar]
  26. Flannery PJ, Trushina E. 2019. Mitochondrial dynamics and transport in Alzheimer's disease. Mol. Cell Neurosci. 98:109–20
    [Google Scholar]
  27. Forlenza MJ, Miller GE. 2006. Increased serum levels of 8-hydroxy-2'-deoxyguanosine in clinical depression. Psychosom. Med. 68:11–7
    [Google Scholar]
  28. Friedman SD, Shaw DW, Ishak G, Gropman AL, Saneto RP 2010. The use of neuroimaging in the diagnosis of mitochondrial disease. Dev. Disabil. Res. Rev. 16:129–35
    [Google Scholar]
  29. Fries GR, Bauer IE, Scaini G, Wu MJ, Kazimi IF et al. 2017. Accelerated epigenetic aging and mitochondrial DNA copy number in bipolar disorder. Transl. Psychiatry 7:1283
    [Google Scholar]
  30. Giordano C, Iommarini L, Giordano L, Maresca A, Pisano A et al. 2014. Efficient mitochondrial biogenesis drives incomplete penetrance in Leber's hereditary optic neuropathy. Brain 137:335–53
    [Google Scholar]
  31. Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH 2018. A comprehensive overview on stress neurobiology: basic concepts and clinical implications. Front. Behav. Neurosci. 12:127
    [Google Scholar]
  32. Goh S, Dong Z, Zhang Y, DiMauro S, Peterson BS 2014. Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: evidence from brain imaging. JAMA Psychiatry 71:665–71
    [Google Scholar]
  33. Gong Y, Chai Y, Ding JH, Sun XL, Hu G 2011. Chronic mild stress damages mitochondrial ultrastructure and function in mouse brain. Neurosci. Lett. 488:76–80
    [Google Scholar]
  34. Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y et al. 2016. Mitochondrial diseases. Nat. Rev. Dis. Primers 2:16080
    [Google Scholar]
  35. Gurvits TV, Shenton ME, Hokama H, Ohta H, Lasko NB et al. 1996. Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol. Psychiatry 40:1091–99
    [Google Scholar]
  36. Han LKM, Verhoeven JE, Tyrka AR, Penninx B, Wolkowitz OM et al. 2019. Accelerating research on biological aging and mental health: current challenges and future directions. Psychoneuroendocrinology 106:293–311
    [Google Scholar]
  37. Hanssen LM, Schutte NS, Malouff JM, Epel ES 2017. The relationship between childhood psychosocial stressor level and telomere length: a meta-analysis. Health Psychol. Res. 5:6378
    [Google Scholar]
  38. Hartman S, Li Z, Nettle D, Belsky J 2017. External-environmental and internal-health early life predictors of adolescent development. Dev. Psychopathol. 29:1839–49
    [Google Scholar]
  39. Havranek EP, Mujahid MS, Barr DA, Blair IV, Cohen MS et al. 2015. Social determinants of risk and outcomes for cardiovascular disease: a scientific statement from the American Heart Association. Circulation 132:873–98
    [Google Scholar]
  40. He Y, Tang J, Li Z, Li H, Liao Y et al. 2014. Leukocyte mitochondrial DNA copy number in blood is not associated with major depressive disorder in young adults. PLOS ONE 9:e96869
    [Google Scholar]
  41. Hoffmann A, Spengler D. 2018. The mitochondrion as potential interface in early-life stress brain programming. Front. Behav. Neurosci. 12:306
    [Google Scholar]
  42. Hollis F, van der Kooij MA, Zanoletti O, Lozano L, Canto C, Sandi C 2015. Mitochondrial function in the brain links anxiety with social subordination. PNAS 112:15486–91
    [Google Scholar]
  43. Holper L, Ben-Shachar D, Mann JJ 2019. Multivariate meta-analyses of mitochondrial complex I and IV in major depressive disorder, bipolar disorder, schizophrenia, Alzheimer disease, and Parkinson disease. Neuropsychopharmacology 44:837–49
    [Google Scholar]
  44. Hummel EM, Hessas E, Muller S, Beiter T, Fisch M et al. 2018. Cell-free DNA release under psychosocial and physical stress conditions. Transl. Psychiatry 8:236
    [Google Scholar]
  45. Hwang IW, Hong JH, Kwon BN, Kim HJ, Lee NR et al. 2017. Association of mitochondrial DNA 10398 A/G polymorphism with attention deficit and hyperactivity disorder in Korean children. Gene 630:8–12
    [Google Scholar]
  46. Irie M, Asami S, Ikeda M, Kasai H 2003. Depressive state relates to female oxidative DNA damage via neutrophil activation. Biochem. Biophys. Res. Commun. 311:1014–18
    [Google Scholar]
  47. Irie M, Asami S, Nagata S, Ikeda M, Miyata M, Kasai H 2001. Psychosocial factors as a potential trigger of oxidative DNA damage in human leukocytes. Jpn. J. Cancer Res. 92:367–76
    [Google Scholar]
  48. Jakubowski KP, Cundiff JM, Matthews KA 2018. Cumulative childhood adversity and adult cardiometabolic disease: a meta-analysis. Health Psychol 37:701–15
    [Google Scholar]
  49. Juster RP, Russell JJ, Almeida D, Picard M 2016. Allostatic load and comorbidities: a mitochondrial, epigenetic, and evolutionary perspective. Dev. Psychopathol. 28:1117–46
    [Google Scholar]
  50. Kasahara T, Kato T. 2018. What can mitochondrial DNA analysis tell us about mood disorders. Biol. Psychiatry 83:731–38
    [Google Scholar]
  51. Kasahara T, Kubota M, Miyauchi T, Noda Y, Mouri A et al. 2006. Mice with neuron-specific accumulation of mitochondrial DNA mutations show mood disorder-like phenotypes. Mol. Psychiatry 11:577–93
    [Google Scholar]
  52. Khoury JE, Bosquet Enlow M, Plamondon A, Lyons-Ruth K 2019. The association between adversity and hair cortisol levels in humans: a meta-analysis. Psychoneuroendocrinology 103:104–17
    [Google Scholar]
  53. Kilian R, Becker T, Kruger K, Schmid S, Frasch K 2006. Health behavior in psychiatric in-patients compared with a German general population sample. Acta Psychiatr. Scand. 114:242–48
    [Google Scholar]
  54. Kim MY, Lee JW, Kang HC, Kim E, Lee DC 2011. Leukocyte mitochondrial DNA (mtDNA) content is associated with depression in old women. Arch. Gerontol. Geriatr. 53:e218–21
    [Google Scholar]
  55. Klinge CM. 2017. Estrogens regulate life and death in mitochondria. J. Bioenerg. Biomembr. 49:307–24
    [Google Scholar]
  56. Lagouge M, Larsson NG. 2013. The role of mitochondrial DNA mutations and free radicals in disease and ageing. J. Intern. Med. 273:529–43
    [Google Scholar]
  57. Lewis M. 1997. Altering Fate: Why the Past Does Not Predict the Future New York: Guilford
  58. Li Z, He Y, Wang D, Tang J, Chen X 2017. Association between childhood trauma and accelerated telomere erosion in adulthood: a meta-analytic study. J. Psychiatr. Res. 93:64–71
    [Google Scholar]
  59. Liesa M, Shirihai OS. 2013. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17:491–506
    [Google Scholar]
  60. Lindqvist D, Fernström J, Grudet C, Ljunggren L, Traskman-Bendz L et al. 2016. Increased plasma levels of circulating cell-free mitochondrial DNA in suicide attempters: associations with HPA-axis hyperactivity. Transl. Psychiatry 6:e971
    [Google Scholar]
  61. Lindqvist D, Wolkowitz OM, Picard M, Ohlsson L, Bersani FS et al. 2018. Circulating cell-free mitochondrial DNA, but not leukocyte mitochondrial DNA copy number, is elevated in major depressive disorder. Neuropsychopharmacology 43:1557–64
    [Google Scholar]
  62. Lupien SJ, Juster RP, Raymond C, Marin MF 2018. The effects of chronic stress on the human brain: from neurotoxicity, to vulnerability, to opportunity. Front. Neuroendocrinol. 49:91–105
    [Google Scholar]
  63. Madrigal JL, Olivenza R, Moro MA, Lizasoain I, Lorenzo P et al. 2001. Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 24:420–29
    [Google Scholar]
  64. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E 2009. Increased 8-hydroxy-deoxyguanosine, a marker of oxidative damage to DNA, in major depression and myalgic encephalomyelitis / chronic fatigue syndrome. Neuro Endocrinol. Lett. 30:715–22
    [Google Scholar]
  65. Magistretti PJ, Allaman I. 2015. A cellular perspective on brain energy metabolism and functional imaging. Neuron 86:883–901
    [Google Scholar]
  66. Marsland AL, Walsh C, Lockwood K, John-Henderson NA 2017. The effects of acute psychological stress on circulating and stimulated inflammatory markers: a systematic review and meta-analysis. Brain Behav. Immun. 64:208–19
    [Google Scholar]
  67. McEwen BS. 2007. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87:873–904
    [Google Scholar]
  68. McEwen BS, Morrison JH. 2013. The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron 79:16–29
    [Google Scholar]
  69. McEwen BS, Stellar E. 1993. Stress and the individual. Mechanisms leading to disease. Arch. Intern. Med. 153:2093–101
    [Google Scholar]
  70. McFarland R, Taylor RW, Turnbull DM 2010. A neurological perspective on mitochondrial disease. Lancet Neurol 9:829–40
    [Google Scholar]
  71. Meyer A, Laverny G, Bernardi L, Charles AL, Alsaleh G et al. 2018. Mitochondria: an organelle of bacterial origin controlling inflammation. Front. Immunol. 9:536
    [Google Scholar]
  72. Meyer T, Wirtz PH. 2018. Mechanisms of mitochondrial redox signaling in psychosocial stress-responsive systems: new insights into an old story. Antioxid. Redox Signal. 28:760–72
    [Google Scholar]
  73. Mitelman SA, Bralet MC, Mehmet Haznedar M, Hollander E, Shihabuddin L et al. 2018. Positron emission tomography assessment of cerebral glucose metabolic rates in autism spectrum disorder and schizophrenia. Brain Imaging Behav 12:532–46
    [Google Scholar]
  74. Nakahira K, Kyung SY, Rogers AJ, Gazourian L, Youn S et al. 2013. Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation. PLOS Med 10:e1001577
    [Google Scholar]
  75. Nanni V, Uher R, Danese A 2012. Childhood maltreatment predicts unfavorable course of illness and treatment outcome in depression: a meta-analysis. Am. J. Psychiatry 169:141–51
    [Google Scholar]
  76. Nemeroff CB. 2016. Paradise lost: the neurobiological and clinical consequences of child abuse and neglect. Neuron 89:892–909
    [Google Scholar]
  77. Otsuka I, Izumi T, Boku S, Kimura A, Zhang Y et al. 2017. Aberrant telomere length and mitochondrial DNA copy number in suicide completers. Sci. Rep. 7:3176
    [Google Scholar]
  78. Picard M, Juster RP, McEwen BS 2014a. Mitochondrial allostatic load puts the ‘gluc’ back in glucocorticoids. Nat. Rev. Endocrinol. 10:303–10
    [Google Scholar]
  79. Picard M, McEwen BS. 2018a. Psychological stress and mitochondria: a conceptual framework. Psychosom. Med. 80:126–40
    [Google Scholar]
  80. Picard M, McEwen BS. 2018b. Psychological stress and mitochondria: a systematic review. Psychosom. Med. 80:141–53
    [Google Scholar]
  81. Picard M, McEwen BS, Epel ES, Sandi C 2018a. An energetic view of stress: focus on mitochondria. Front. Neuroendocrinol. 49:72–85
    [Google Scholar]
  82. Picard M, Prather AA, Puterman E, Cuillerier A, Coccia M et al. 2018b. A mitochondrial health index sensitive to mood and caregiving stress. Biol. Psychiatry 84:9–17
    [Google Scholar]
  83. Picard M, Wallace DC, Burelle Y 2016. The rise of mitochondria in medicine. Mitochondrion 30:105–16
    [Google Scholar]
  84. Picard M, Zhang J, Hancock S, Derbeneva O, Golhar R et al. 2014b. Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. PNAS 111:E4033–42
    [Google Scholar]
  85. Psarra AM, Sekeris CE. 2011. Glucocorticoids induce mitochondrial gene transcription in HepG2 cells: role of the mitochondrial glucocorticoid receptor. Biochim. Biophys. Acta Mol. Cell Res. 1813:1814–21
    [Google Scholar]
  86. Rich-Edwards JW, Spiegelman D, Lividoti Hibert EN, Jun HJ, Todd TJ et al. 2010. Abuse in childhood and adolescence as a predictor of type 2 diabetes in adult women. Am. J. Prev. Med. 39:529–36
    [Google Scholar]
  87. Ridout KK, Carpenter LL, Tyrka AR 2016. The cellular sequelae of early stress: focus on aging and mitochondria. Neuropsychopharmacology 41:388–89
    [Google Scholar]
  88. Ridout KK, Khan M, Ridout SJ 2018. Adverse childhood experiences run deep: toxic early life stress, telomeres, and mitochondrial DNA copy number, the biological markers of cumulative stress. BioEssays 40:e1800077
    [Google Scholar]
  89. Ridout KK, Parade SH, Kao HT, Magnan S, Seifer R et al. 2019. Childhood maltreatment, behavioral adjustment, and molecular markers of cellular aging in preschool-aged children: a cohort study. Psychoneuroendocrinology 107:261–69
    [Google Scholar]
  90. Rohleder N. 2014. Stimulation of systemic low-grade inflammation by psychosocial stress. Psychosom. Med. 76:181–89
    [Google Scholar]
  91. Romero-Granados R, Fontan-Lozano A, Aguilar-Montilla FJ, Carrion AM 2011. Postnatal proteasome inhibition induces neurodegeneration and cognitive deficiencies in adult mice: a new model of neurodevelopment syndrome. PLOS ONE 6:e28927
    [Google Scholar]
  92. Rosebush PI, Anglin RE, Rasmussen S, Mazurek MF 2017. Mental illness in patients with inherited mitochondrial disorders. Schizophr. Res. 187:33–37
    [Google Scholar]
  93. Ross JM, Stewart JB, Hagstrom E, Brene S, Mourier A et al. 2013. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature 501:412–15
    [Google Scholar]
  94. Sagan L. 1967. On the origin of mitosing cells. J. Theor. Biol. 14:255–74
    [Google Scholar]
  95. Sapolsky RM, Romero LM, Munck AU 2000. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21:55–89
    [Google Scholar]
  96. Segerstrom SC, Miller GE. 2004. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol. Bull. 130:601–30
    [Google Scholar]
  97. Shao L, Martin MV, Watson SJ, Schatzberg A, Akil H et al. 2008. Mitochondrial involvement in psychiatric disorders. Ann. Med. 40:281–95
    [Google Scholar]
  98. Shaughnessy DT, McAllister K, Worth L, Haugen AC, Meyer JN et al. 2014. Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ. Health Perspect. 122:1271–78
    [Google Scholar]
  99. Shonkoff JP, Boyce WT, McEwen BS 2009. Neuroscience, molecular biology, and the childhood roots of health disparities: building a new framework for health promotion and disease prevention. JAMA 301:2252–59
    [Google Scholar]
  100. Shutt TE, McBride HM. 2013. Staying cool in difficult times: mitochondrial dynamics, quality control and the stress response. Biochim. Biophys. Acta Mol. Cell Res. 1833:417–24
    [Google Scholar]
  101. Slopen N, Koenen KC, Kubzansky LD 2014. Cumulative adversity in childhood and emergent risk factors for long-term health. J. Pediatr. 164:631–38e1–2
    [Google Scholar]
  102. Smith RL, Soeters MR, Wust RCI, Houtkooper RH 2018. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr. Rev. 39:489–517
    [Google Scholar]
  103. Srivastava R, Faust T, Ramos A, Ishizuka K, Sawa A 2018. Dynamic changes of the mitochondria in psychiatric illnesses: new mechanistic insights from human neuronal models. Biol. Psychiatry 83:751–60
    [Google Scholar]
  104. Steib K, Schaffner I, Jagasia R, Ebert B, Lie DC 2014. Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain. J. Neurosci. 34:6624–33
    [Google Scholar]
  105. Steptoe A, Hamer M, Chida Y 2007. The effects of acute psychological stress on circulating inflammatory factors in humans: a review and meta-analysis. Brain Behav. Immun. 21:901–12
    [Google Scholar]
  106. Sterling P, Eyer J. 1988. Allostasis: a new paradigm to explain arousal pathology. Handbook of Life Stress, Cognition, and Health S Fisher, J Reason 629–49 Chichester, UK: Wiley
    [Google Scholar]
  107. Su L, Cai Y, Xu Y, Dutt A, Shi S, Bramon E 2014. Cerebral metabolism in major depressive disorder: a voxel-based meta-analysis of positron emission tomography studies. BMC Psychiatry 14:321
    [Google Scholar]
  108. Takizawa R, Danese A, Maughan B, Arseneault L 2015. Bullying victimization in childhood predicts inflammation and obesity at mid-life: a five-decade birth cohort study. Psychol. Med. 45:2705–15
    [Google Scholar]
  109. Tottenham N, Galván A. 2016. Stress and the adolescent brain: amygdala-prefrontal cortex circuitry and ventral striatum as developmental targets. Neurosci. Biobehav. Rev. 70:217–27
    [Google Scholar]
  110. Trumpff C, Marsland AL, Basualto-Alarcon C, Martin JL, Carroll JE et al. 2019a. Acute psychological stress increases serum circulating cell-free mitochondrial DNA. Psychoneuroendocrinology 106:268–76
    [Google Scholar]
  111. Trumpff C, Marsland AL, Sloan RP, Kaufman BA, Picard M 2019b. Predictors of ccf-mtDNA reactivity to acute psychological stress identified using machine learning classifiers: a proof-of-concept. Psychoneuroendocrinology 107:82–92
    [Google Scholar]
  112. Tsujii N, Otsuka I, Okazaki S, Yanagi M, Numata S et al. 2019. Mitochondrial DNA copy number raises the potential of left frontopolar hemodynamic response as a diagnostic marker for distinguishing bipolar disorder from major depressive disorder. Front. Psychiatry 10:312
    [Google Scholar]
  113. Tymofiyeva O, Henje Blom E, Ho TC, Connolly CG, Lindqvist D et al. 2018. High levels of mitochondrial DNA are associated with adolescent brain structural hypoconnectivity and increased anxiety but not depression. J. Affect. Disord. 232:283–90
    [Google Scholar]
  114. Tyrka AR, Parade SH, Price LH, Kao HT, Porton B et al. 2016. Alterations of mitochondrial DNA copy number and telomere length with early adversity and psychopathology. Biol. Psychiatry 79:78–86
    [Google Scholar]
  115. van der Windt GJ, Chang CH, Pearce EL 2016. Measuring bioenergetics in T cells using a seahorse extracellular flux analyzer. Curr. Protoc. Immunol. 113:316B1–B14
    [Google Scholar]
  116. Verhoeven JE, Revesz D, Picard M, Epel EE, Wolkowitz OM et al. 2018. Depression, telomeres and mitochondrial DNA: between- and within-person associations from a 10-year longitudinal study. Mol. Psychiatry 23:850–57
    [Google Scholar]
  117. Viron MJ, Stern TA. 2010. The impact of serious mental illness on health and healthcare. Psychosomatics 51:458–65
    [Google Scholar]
  118. Wallace DC. 2005. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39:359–407
    [Google Scholar]
  119. Wang J, Xiong S, Xie C, Markesbery WR, Lovell MA 2005. Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer's disease. J. Neurochem. 93:953–62
    [Google Scholar]
  120. Wang X, Sundquist K, Rastkhani H, Palmer K, Memon AA, Sundquist J 2017. Association of mitochondrial DNA in peripheral blood with depression, anxiety and stress- and adjustment disorders in primary health care patients. Eur. Neuropsychopharmacol. 27:751–58
    [Google Scholar]
  121. Wegman HL, Stetler C. 2009. A meta-analytic review of the effects of childhood abuse on medical outcomes in adulthood. Psychosom. Med. 71:805–12
    [Google Scholar]
  122. Wei YB, Martinsson L, Liu JJ, Forsell Y, Schalling M et al. 2016. hTERT genetic variation in depression. J. Affect. Disord. 189:62–69
    [Google Scholar]
  123. Weintraub D, Dietz N, Duda JE, Wolk DA, Doshi J et al. 2012. Alzheimer's disease pattern of brain atrophy predicts cognitive decline in Parkinson's disease. Brain 135:170–80
    [Google Scholar]
  124. Widom CS, Horan J, Brzustowicz L 2015. Childhood maltreatment predicts allostatic load in adulthood. Child Abuse Negl 47:59–69
    [Google Scholar]
  125. Xie H, Huang H, Tang M, Wu Y, Huang R et al. 2018. iTRAQ-based quantitative proteomics suggests synaptic mitochondrial dysfunction in the hippocampus of rats susceptible to chronic mild stress. Neurochem. Res. 43:2372–83
    [Google Scholar]
  126. Yamaki N, Otsuka I, Numata S, Yanagi M, Mouri K et al. 2018. Mitochondrial DNA copy number of peripheral blood in bipolar disorder: the present study and a meta-analysis. Psychiatry Res 269:115–17
    [Google Scholar]
  127. Yan MH, Wang X, Zhu X 2013. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med. 62:90–101
    [Google Scholar]
  128. Yang N, Ren Z, Zheng J, Feng L, Li D et al. 2016. 5-(4-hydroxy-3-dimethoxybenzylidene)-rhodanine (RD-1)-improved mitochondrial function prevents anxiety- and depressive-like states induced by chronic corticosterone injections in mice. Neuropharmacology 105:587–93
    [Google Scholar]
  129. Yoo HJ, Park M, Kim SA 2017. Difference in mitochondrial DNA copy number in peripheral blood cells between probands with autism spectrum disorders and their unaffected siblings. World J. Biol. Psychiatry 18:151–56
    [Google Scholar]
  130. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T et al. 2010. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–7
    [Google Scholar]
  131. Zimmermann KS, Richardson R, Baker KD 2019. Maturational changes in prefrontal and amygdala circuits in adolescence: implications for understanding fear inhibition during a vulnerable period of development. Brain Sci 9:365
    [Google Scholar]
/content/journals/10.1146/annurev-clinpsy-082719-104030
Loading
/content/journals/10.1146/annurev-clinpsy-082719-104030
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error