1932

Abstract

What is written below is, as requested by the editor of , a set of recollections and insights gained from my personal trajectory that starts from my earliest years and continues on until now. I have been a participant in the growth of solid state physics from its early quantum insights to the highly popular foci of today’s vibrant condensed matter science community, while working at three institutions that helped spearhead this growth—UC Berkeley, Bell Labs, and Stanford University. It is rare to be actively involved in any creative enterprise for more than six decades. I credit my good fortune to stimulating science; great students and colleagues; a happy home; warm friendships; and, evidently, to my having inherited good genes.

[Erratum, Closure]

An erratum has been published for this article:
Why I Haven't Retired
Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-030212-184246
2013-04-01
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/4/1/annurev-conmatphys-030212-184246.html?itemId=/content/journals/10.1146/annurev-conmatphys-030212-184246&mimeType=html&fmt=ahah

Literature Cited

  1. Moyzhes BY, Geballe TH. 2005. The thermionic energy converter as a topping cycle —new triode designs with a longitudinal magnetic field. J. Phys D. Appl. Phys 38:782–86 [Google Scholar]
  2. Leighton RB. 1948. The vibrational spectrum and specific heat of a face-centered cubic crystal. Rev. Mod. Phys. 20:165–74 [Google Scholar]
  3. Giauque WF. 1969. Notes on assembly and experimental procedure with low-temperature calorimeters, the calculation of heat capacity, and the resistance-temperature calibration of a resistance thermometer. The Scientific Papers of W F Giauque Vol 1 Giaque Sci. Pap. Found., Pap. 38 332–68 New York: Dover Publ. Inc [Google Scholar]
  4. Geballe TH, Giauque WF. 1952. The heat capacity and entropy of gold from 15 to 300 degree K. J. Am. Chem. Soc. 74:2368–72 [Google Scholar]
  5. Giauque WF, MacDougall DP. 1933. Attainment of temperatures below 1° absolute by demagnetization of Gd2(SO4)3·8H2O. Phys. Rev. 43:768 [Google Scholar]
  6. Beevers CA, Lipson H. 1934. Crystal structure of CuSO4· 5H2O. Proc. R. Soc. London 146:570–82 [Google Scholar]
  7. Krishnan KS, Mookherji A. 1938. The magnetic anisotropy of copper sulphate pentahydrate, CuSO4·5H2O, in relation to its crystal structure. Part II. Phys. Rev. 54:533–39 [Google Scholar]
  8. Giauque WF, Geballe TH, Lyon DN, Fritz JJ. 1952. Some properties of plastics and the use of plastic apparatus at low temperatures. Rev. Sci. Instrum. 23:169–73 [Google Scholar]
  9. Geballe TH, Giauque WF. 1952. The heat capacity and magnetic properties of single crystal copper sulfate pentahyrdrate from 0.25 to 4°K.1. J. Am. Chem. Soc. 74:3513–19 [Google Scholar]
  10. Anderson RJ, Giauque WF. 1967. Heat capacity, entropy, and magnetic moment of single-crystal CuSO4·5H2O with fields to 90 kG II to the α magnetic axis. J. Chem. Phys. 46:2413–28 [Google Scholar]
  11. White RM, Geballe TH. 1979. Long Range Order in Solids Solid State Series, ed. E Seitz, D Turnbull New York/London: Academic [Google Scholar]
  12. Geballe TH, Hull GW. 1954. Seebeck effect in germanium. Phys. Rev. 94:1134–40 [Google Scholar]
  13. Gurevich L. 1945. J. Phys. (U.S.S.R.) 9477 [Google Scholar]
  14. Frederikse HPR. 1953. Thermoelectric power of germanium below room temperature. Phys. Rev. 92:248–52 [Google Scholar]
  15. Herring C. 1954. Theory of the thermoelectric power of semiconductors. Phys. Rev. 96:1163–87 [Google Scholar]
  16. Geballe TH, Hull GW. 1955. Seebeck effect in silicon. Phys. Rev. 98:940–47 [Google Scholar]
  17. Herring C, Geballe TH, Kunzler JE. 1959. Analysis of phonon-drag thermomagnetic effects in n-type germanium. Bell Syst. Tech. J. 38:657–747 [Google Scholar]
  18. Pomeranchuk I. 1942. About thermal conductivity of dielectrics. J. Phys. (USSR) 6:237–46 [Google Scholar]
  19. Geballe TH, Hull GW. 1958. Isotopic and other types of thermal resistance in germanium. Phys. Rev. 110:773–75 [Google Scholar]
  20. Slack GA. 1957. Effect of isotopes on low-temperature thermal conductivity. Phys. Rev. 105:829–31 [Google Scholar]
  21. Anthony TR, Banholzer WF, Fleischer JF, Wei L, Kuo PK et al. 1990. Thermal diffusivity of isotopically enriched sup 12/C diamond. Phys. Rev. B 42:1104–11 [Google Scholar]
  22. Hubbard J. 1963. Electron correlations in narrow energy bands. Proc. R. Soc. Lond. A 276:238–57 [Google Scholar]
  23. Pollak M, Geballe TH. 1961. Low-frequency conductivity due to hopping processes in silicon. Phys. Rev. 122:1742–53 [Google Scholar]
  24. Geballe TH, Morin FJ. 1954. Ionization energies of groups III and V elements in germanium. Phys. Rev. 95:1085–86 [Google Scholar]
  25. Pearson GL, Bardeen J. 1949. Electrical properties of pure silicon and silicon alloys containing boron and phosphorus. Phys. Rev. 75:865–83 [Google Scholar]
  26. Feher G. 1959. Electron spin resonance experiments on donors in silicon. I. Electronic structure of donors by the electron nuclear double resonance technique. Phys. Rev. 114:1219–44 [Google Scholar]
  27. Friedberg S. 1951. Phys. Rev. 82:764 [Google Scholar]
  28. Geballe TH, Morin FJ, Maita JP. 1955. Some low-temperature thermometric properties of germanium. Presented at Conference de Physique des Basses Temperatures. Paris: Kunzler JE Geballe TH, Hull GW. 1957 Germanium resistance thermometers suitable for low-temperature calorimetry. Rev. Sci. Instr. 2896–98 [Google Scholar]
  29. Keesom PH, Pearlman N. 1956. Handbuch der Physik Vol. XIV Flügge S. Berlin: Springer-Verlag [Google Scholar]
  30. Daunt JG, Mendelssohn K. 1946. An experiment on the mechanism of superconductivity. Proc. R. Soc. Lond. A 185:225–39 [Google Scholar]
  31. Kunzler JE, Buehler E, Hsu FSL, Wernick JH. 1961. Superconductivity in Nb3Sn at high current density in a magnetic field of 88 kgauss. Phys. Rev. Lett. 6:89–91 [Google Scholar]
  32. Matthias BT. 1955. Empirical relation between superconductivity and the number of valence electrons per atom. Phys. Rev. 97:74–76 [Google Scholar]
  33. Raub E, Raub CJ, Röschel E, Compton VB, Geballe TH, Matthias BT. 1967. The α-Ti-Fe solid solution and its superconducting properties. J. Less-Common Met. 12:36–40 [Google Scholar]
  34. Arrhenius G, Fitzgerald R, Hamilton DC, Holm BA, Matthias BT et al. 1964. Superconducting tubes and filaments. J. Appl. Phys. 353487–91 [Google Scholar]
  35. Maxwell E. 1950. Isotope effect in the superconductivity of mercury. Phys. Rev 78:477 Reynolds CA, Serin B, Wright WH, Nesbitt LB. 1950 Superconductivity of isotopes of mercury. Phys. Rev. 78487 [Google Scholar]
  36. Geballe TH, Matthias BT, Hull GW Jr, Corenzwit E. 1961. Absence of an isotope effect in superconducting ruthenium. Phys. Rev. Lett. 6:275–77 [Google Scholar]
  37. Morel P, Anderson PW. 1962. Calculation of the superconducting state parameters with retarded electron-phonon interaction. Phys. Rev. 125:1263–71 [Google Scholar]
  38. Geballe TH, Matthias BT, Corenzwit E, Hull GW Jr. 1962. Superconductivity in molybdenum. Phys. Rev. Lett. 8:313 [Google Scholar]
  39. Geballe TH, Matthias BT. 1962. Isotope effects in low temperature superconductors. IBM J. Res. Develop. 6:256–57 [Google Scholar]
  40. Hannay NB, Geballe TH, Matthias BT, Andres K, Schmidt P, MacNair D. 1965. Superconductivity in graphitic compounds. Phys. Rev. Lett. 14:225–26 [Google Scholar]
  41. Kopelevich Y, da Silva RR, Torres JHS, Moehlecke S, Maple MB. 2004. High-temperature local superconductivity in graphite and graphite-sulfur composites. Phys. C 408:77–78 [Google Scholar]
  42. Jonker GH, Van Santen JH. 1950. Ferromagnetic compounds of manganese with perovskite structure. Physica 16(3):599–600; Jonker GH, Van Santen JH. 1950. Electrical conductivity of ferromagnetic compounds of manganese with perovskite structure. Physica 16:599–600; Snyder GJ, Hiskes R, DiCarolis S, Beasley MR, Geballe TH. 1996. Intrinsic electrical transport and magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 MOCVD thin films and bulk material. Phys. Rev. B 53:14434–44 [Google Scholar]
  43. Schooley JF, Hosler WR, Cohen ML. 1964. Superconductivity in semiconducting SrTiO3. Phys. Rev. Lett. 12:474–75 [Google Scholar]
  44. ChJ Raub, Sweedler AR, Jensen MA, Broadston S, Matthias BT. 1964. Superconductivity of sodium tungsten bronzes. Phys. Rev. Lett. 13:746–47 [Google Scholar]
  45. Remeika JP, Geballe TG, Matthias BT, Cooper AS, Hull GW, Kelly EM. 1967. Superconductivity in hexagonal tungsten bronzes. Phys. Lett. A 24:565–66 [Google Scholar]
  46. Reich S, Tsabba Y. 1999. Possible nucleation of a 2D superconducting phase on WO3 single crystals surface doped with Na+. Eur. Phys. J. B 9:1–4; Reich S, Leitus G, Popovitz-Biro R, Goldbourt A, Vega S. 2009. A possible 2D HxWO3 superconductor with a Tc of 120 K. J. Supercond. Novel Magnet. 22:343–46 [Google Scholar]
  47. Sleight AW, Gillson JL, Bierstedt PE. 1975. High-temperature superconductivity in the BaPb1-xBixO3 systems. Solid State Commun. 17:27–28 [Google Scholar]
  48. Mattheiss LF, Gyorgy EM, Johnson DW Jr. 1988. Superconductivity above 20 K in the Ba-K-Bi-O system. Phys. Rev. B 37:3745–46 [Google Scholar]
  49. Varma CM. 1988. Missing valence states, diamagnetic insulators, and superconductors. Phys. Rev. Lett. 61:2713–16 [Google Scholar]
  50. Taraphder A, Pandit R, Krishnamurthy HR, Ramakrishnan TV. 1996. The exotic barium bismuthates. Int. J. Mod. Phys. B 10:863–955 [Google Scholar]
  51. Seitz F. 1941. The modern theory of solids. New York: McGraw Hill [Google Scholar]
  52. Weiss A, Ruthardt R. 1969. Schichteinlagerungs-Verbindungen des Titandisulfids mit Säureamiden. Z. Naturforschung Teil B 24:355 [Google Scholar]
  53. Gamble FR, DiSalvo FJ, Klemm RA, Geballe TH. 1970. Superconductivity in layered structure organometallic crystals. Science 168:568–70 [Google Scholar]
  54. Lawrence WE, Doniach S. 1970. Proceedings of the Twelfth International Conference on Low Temperature Physics, Kyoto, 1970 Kandap E. 361 Tokyo: Academic [Google Scholar]
  55. Harper JME, Geballe TH, Di Salvo FJ. 1975. Heat capacity of 2H-NbSe2 at the charge density wave transition. Phys. Lett. A 54:27–28; Schwall RE, Stewart GR, Geballe TH. 1976. Low temperature specific heat of layered compounds. J. Low. Temp. Phys. 22:557–67 [Google Scholar]
  56. Wilson JA, Di Salvo FJ, Mahajan S. 1974. Charge density waves in metallic, layered, transition-metal dichalcogenides. Phys. Rev. Lett. 32:882–85 [Google Scholar]
  57. Beasley M, Geballe TH, King C, Hammond R, Norton R et al. 1977. Electrical properties of multilayered Nb3Sn superconducting power line conductors. IEEE Trans. Mag. 13:138–143 [Google Scholar]
  58. Dayem AH, Geballe TH, Zubeck RB, Hallak AB, Hull GW Jr. 1978. Epitaxial growth of Nb3Ge on Nb3Ir and Nb3Rh. J. Phys. Chem. Solids 39:529–38 [Google Scholar]
  59. Feldman R, Hammond RH, Geballe TH. 1986. Epitaxial growth of A15 Nb3Si. IEEE Trans. Mag. 17:545–48; Feldman RD, Opila RL, Geballe TH, Celaschi S. 1986. Unusual variability of the lattice constant in polycrystalline epitaxial growth of superconducting A15 Nb-Si. Thin Solid Films 137:315–24 [Google Scholar]
  60. Kimhi DB, Geballe TH. 1980. Superconducting tunneling in the amorphous transition metals Mo and Nb. Phys. Rev. Lett. 45:1039–42 [Google Scholar]
  61. Bradley RM, Harper JME, Smith DA. 1986. Theory of thin-film orientation by ion bombardment during deposition. J. Appl. Phys. 60:4160–64 [Google Scholar]
  62. Wang CP, Do KB, Beasley MR, Geballe TH, Hammond RH. 1997. Deposition of in-plane textured MgO on amorphous Si3N4 substrates by ion-beam-assisted deposition and comparisons with ion-beam-assisted deposited yttria-stabilized-zirconia. Appl. Phys. Lett. 71:2955–57 [Google Scholar]
  63. Hammond RH, Peng LSJ, Wang W, Jo W, Ohnishi T, Beasley MR. 2006. Film growth at low pressure mediated by liquid flux and induced by activated oxygen. US Patent Appl. 20070042127 [Google Scholar]
  64. Yoshizumi S, Geballe TH, Kunchur M, McLean WL. 1988. Magnetoresistance of amorphous MoxGe1−x near the metal-insulator transition. Phys. Rev. B 37:7094–97 [Google Scholar]
  65. Yoshizumi S, Carter W, Geballe TH. 1984. Flux-pinning and inhomogeneities or defects in amorphous superconducting Mo5Ge3 films. J. Non-Cryst.Solids 61-62:589–94 [Google Scholar]
  66. Carter WL, Poon SJ, Hull GW Jr, Geballe TH. 1981. Enhanced critical field curves of metastable superconductors. Solid State Commun. 39:41–45 [Google Scholar]
  67. Lowe WP, Geballe TH. 1984. NbZr multilayers. I: structure and superconductivity. Phys. Rev. B 29:4961–68 [Google Scholar]
  68. Broussard PR, Geballe TH. 1988. Superconductivity and structure in sputtered Nb-Ta multilayers. Phys. Rev. B 37:60–67 [Google Scholar]
  69. Eom CB, Marshall AF, Suzuki Y, Boyer B, Pease RFW, Geballe TH. 1991. Absence of weak-link-behaviour in YBa2Cu3O7 grains connected by 90° (010) twist boundaries. Nature 353:544–47 [Google Scholar]
  70. Venkatesan T, Wu XD, Inam A, Jeon Y, Croft M et al. 1988. Nature of the pulsed laser process for the deposition of high Tc superconducting thin films. Appl. Phys. Lett. 53:1431–33 [Google Scholar]
  71. Koster G, Kropman BL, Rijnders GJHM, Blank DHA, Rogalla H. 1998. Influence of the surface treatment on the homoepitaxial growth of SrTiO3. Mater. Sci. Eng. B 56:209–12 [Google Scholar]
  72. Ohtomo A, Hwang H. 2004. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427:423–26 [Google Scholar]
  73. Fork DK, Fenner DB, Barrera A, Phillips JM, Geballe TH et al. 1991. Buffer Layers for high-quality epitaxial YBCO films on Si. IEEE Trans. Appl. Supercond. 1:67–73; Fork DK, Char K, Bridges F, Tahara S, Lairson B, et al. 1989. YBCO films on YSZ and Al2O3 by pulsed laser deposition. Phys. C 162-164:121–22 [Google Scholar]
  74. Hellman ES, Schlom DG, Missert N, Char K, Harris JS et al. 1988. Molecular-beam epitaxy and deposition of high-Tc superconductors. J. Vac. Sci. Technol. B 6:799–803 [Google Scholar]
  75. Eckstein JN, Bozovic I, von Dessonneck KE, Schlom DG, Harris JS, Baumann SM. 1990. Appl. Phys. Lett. 57:931–33 [Google Scholar]
  76. Bozovic I, Logvenov G, Verhoeven MAJ, Caputo P, Goldobin E, Geballe TH. 2003. No mixing of superconductivity and antiferromagnetism in a high-temperature superconductor. Nature 422:873–75 [Google Scholar]
  77. Bozovic I, Eckstein JN, Klausmeier-Brown ME, Virshup G. 1992. Superconductivity in epitaxial Bi2Sr2CuO6/Bi2Sr2CaCu2O8 superlattices: The superconducting behavior of ultrathin cuprate slabs. J. Supercond. 5:19–23 [Google Scholar]
  78. Kihlstrom KE, Hammond RH, Talvacchio J, Geballe TH, Green AK, Rehn V. 1982. Preparation, tunneling, resistivity, and critical current measurements on homogeneous high-Tc A15 Nb3Ge thin films. J. Appl. Phys. 53:8907–14 [Google Scholar]
  79. Kwo J, Geballe TH. 1981. Superconducting tunneling into the A15 Nb3Al thin films. Phys. Rev. B 23:3230–39 [Google Scholar]
  80. Kihlstrom KE, Mael D, Geballe TH. 1984. Tunneling α2F(ω) and heat capacity measurements in high-Tc Nb3Ge. Phys. Rev. B 29:150–58 [Google Scholar]
  81. Early SR, Hellman F, Marshall J, Geballe TH. 1981. A silicon on sapphire thermometer for small sample low temperature calorimetry. Physica B&C 107:327–28 [Google Scholar]
  82. Hellman F, Geballe TH. 1987. Specific heat of thin-film A15 superconductors: an anomalous inhomogeneity discovered. Phys. Rev. B 36:107–20 [Google Scholar]
  83. Rudman DA, Beasley MR. 1984. Microscopic superconducting parameters from tunneling in A15 Nb-Sn. Phys. Rev. B 30:2590–94 [Google Scholar]
  84. Labbe J, Friedel J. 1966. Stabilité des modes de distorsion périodiques d'une chaine linéaire d'atomes de transition dans une structure cristalline du type V 3Si. J. Phys. France 27:708–16 [Google Scholar]
  85. Weger M, Goldberg JB. 1973. Some lattice and electronic properties of the β-tungstens. Solid State Phys. 28:1–177 [Google Scholar]
  86. Chu CW, Rusakov AP, Huang S, Early S, Geballe TH, Huang CY. 1978. Anomalies in cuprous chloride. Phys. Rev. B 18:2116–23 [Google Scholar]
  87. Chu CW, Early S, Geballe TH, Huang CY. 1978. Study of cuprous chloride under pressure. J. Less Common Met. 62:463–67 [Google Scholar]
  88. Geballe TH, Chu CW. 1979. Interface superconductivity in CuCl?. Comments Solid State Phys. 9:115–26 [Google Scholar]
  89. Osipov VV, Kochev IV, Naumov SV. 2001. Giant electric conductivity at the CuO-Cu interface: HTSC-like temperature variations. JETP 93:1082–90 [Google Scholar]
  90. Siemons W, Koster G, Blank DHA, Hammond RH, Geballe TH, Beasley MR. 2009. Tetragonal CuO: end member of the 3d transition metal monoxides. Phys. Rev. B 79:195122 [Google Scholar]
  91. Munakata K, Geballe TH, Beasley MR. 2011. Quenching of impurity spins at Cu/CuO interfaces: an antiferromagnetic proximity effect. Phys. Rev. B 84:161405R [Google Scholar]
  92. Kapitulnik A, Kent AD, Geballe TH, Kaufman JH. 1987. Novel Superconductivity61–71 Wolf S, Kresin VZ. New York: Plenum Publ. Corp [Google Scholar]
  93. Bednorz JG, Müller KA. 1986. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Physik B 64:189–93 [Google Scholar]
  94. Uchida S, Takagi H, Kitazawa K, Tanaka S. 1987. High Tc superconductivity of La-Ba-Co oxides. Jpn. J. Appl. Phys. 26:L1–2 [Google Scholar]
  95. Wu MK, Ashburn JR, Torng CJ, Hor PH, Meng RL et al. 1987. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58:908–10 [Google Scholar]
  96. Lew D, Suzuki Y, Eom CB, Lee M, Triscone J-M et al. 1991. Vertical transport properties of A-axis oriented YBa2Cu3O7/PrBa2Cu3O7/YBa2Cu3O7 sandwich junctions. Physica C 185-189:2553–54 [Google Scholar]
  97. Kwo J, Hammond RH, Geballe TH. 1980. Nb3Al thin-film synthesis by electron-beam coevaporation. J. Appl. Phys. 51:1726–32 [Google Scholar]
  98. Sasaki S, Watanabe S, Yamada Y. 2007. Superconductivity driven by zigzag chain in Pr-based copper oxide evidenced by Cu-nuclear resonance. J. Magn. Magn. Mater. 310:696–97 [Google Scholar]
  99. Berg E, Geballe TH, Kivelson SA. 2007. Superconductivity in zigzag CuO chains. Phys. Rev. B 76:214505 [Google Scholar]
  100. Geballe TH, Moyzhes BY. 2004. Why the cuprate superconductors are unusual: an ionic approach. Ann. Phys. 13:20–26 [Google Scholar]
  101. Jin S, Tiefel TH, McCormack M, Fastnacht RA, Ramesh R, Chen LH. 1994. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264:413–15 [Google Scholar]
  102. Snyder GJ, Hiskes R, DiCarolis S, Beasley MR, Geballe TH. 1996. Intrinsic electrical transport and magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 MOCVD thin films and bulk material. Phys. Rev. B 53:14434–44 [Google Scholar]
  103. Worledge DC, Geballe TH. 2000. Spin-polarized tunneling in La0.67Sr0.33MnO3. Appl. Phys. Lett. 76:900–2 [Google Scholar]
  104. Meservey R, Tedrow PM. 1994. Spin-polarized electron tunneling. Phys. Rep. 238:173–243 [Google Scholar]
  105. Worledge DC, Geballe TH. 2000. Magnetoresistive double spin filter tunnel junction. J. Appl. Phys. 88:5277–79 [Google Scholar]
  106. Miao G-X, Müller M, Moodera JS. 2009. Magnetoresistance in double spin filter tunnel junctions with nonmagnetic electrodes and its unconventional bias dependence. Phys. Rev. Lett 102: 076601 [Google Scholar]
  107. Nemov SA, Ravich YI. 1998. Thallium dopant in lead chalcogenides: investigation methods and peculiarities. Physics-Uspekhi 41:735–59 [Google Scholar]
  108. Anderson PW. 1975. Model for the electronic structure of amorphous semiconductors. Phys. Rev. Lett. 34:953–55 [Google Scholar]
  109. Matsushita Y, Bluhm H, Geballe TH, Fisher I. 2005. Evidence for charge Kondo effect in superconducting Tl-doped PbTe. Phys. Rev. Lett. 94:157002 [Google Scholar]
  110. Erickson AS, Breznay NP, Nowadnick EA, Geballe TH, Fisher IR. 2010. Correlation of anomalous normal state properties with superconductivity in Pb1-xyTIxInyTe. Phys. Rev. B 81:134521–1–6 [Google Scholar]
  111. Dzero M, Schmalian J. 2005. Superconductivity in charge Kondo systems. Phys. Rev. Lett. 94:157003 [Google Scholar]
  112. Costi TA, Zlatić V. 2012. Charge Kondo anomalies in PbTe doped with Tl impurities. Phys. Rev. Lett. 108 036402 [Google Scholar]
  113. Terada N, Iyo A, Tanaka Y, Obara K, Ihara H. 2001. Photoemission Study of (Cu, Tl)-1223 and Tl-1223 with Tc above 130 K. IEEE Trans. Appl. Supercond. 11:3126–29 [Google Scholar]
  114. Iyo A, Tanaka Y, Kodama Y, Kito H, Tokiwa K, Watanabe T. 2006. Synthesis and physical properties of multilayered cuprates. Physica C 445-448:17–22 [Google Scholar]
  115. Raghu S, Thomale R, Geballe TH. 2012. Optimal Tc of cuprates: the role of screening and reservoir layers. Phys. Rev. B 86:094506.
  116. Hiroi Z, Takano M, Azuma M, Takeda Y. 1993. A new family of copper oxide superconductors Srn+1 CunO2n+1+δ stabilized at high pressure. Nature 364:315–17 [Google Scholar]
  117. Han PD, Chang L, Payne DA. 1994. High-pressure synthesis of the Sr2CuO3+δ superconductor observation of an increase in Tc from 70 K to 94 K with heat treatment. Physica C 228:129–36 [Google Scholar]
  118. Zhang H, Wang YY, Marks LD, Dravid VP, Han PD, Payne DA. 1995. A TEM study of the incommensurate modulated structure in Sr2CuO3+x superconductors synthesized under high pressure. B. Structural model. Physica C 255:257–65 [Google Scholar]
  119. Wang YY, Zhang H, Dravid VP, Marks LD, Han PD, Payne DA. 1995. A TEM study of the incommensurate modulated structure in Sr2CuO3 + δ superconductor synthesized under high pressure. A. Evolution of the incommensurate modulated structure and the electronic structure with post-heat treatment. Physica C 255:247–56 [Google Scholar]
  120. Liu QQ, Yang H, Qin XM, Yu Y, Yang LX et al. 2006. Enhancement of the superconducting critical temperature of Sr2CuO3+δ up to 95 K by ordering dopant atoms. Phys. Rev. B 74:100506R [Google Scholar]
  121. Geballe TH, Marezio M. 2009. Enhanced superconductivity in Sr2CuO4-v. Physica C 469:680–84 [Google Scholar]
  122. Chmaissem O, Grigoraviciute I, Yamauchi H, Karppinen M, Marezio M. 2010. Superconductivity and oxygen ordering correlations in the homologous series of (Cu, Mo)Sr2(Ce, Y)sCu2O5+2s+δ. . Phys. Rev. B 82: 104507 [Google Scholar]
  123. Hwang HY, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y. 2012. Emergent phenomena at oxide interfaces. Nat. Mat 11:103–13 [Google Scholar]
  124. Berg E, Orgad D, Kivelson S. 2008. Route to high-temperature superconductivity in composite systems. Phys. Rev. B 78: 094509-1–7 [Google Scholar]
  125. Taraphder A, Krishnamurthy HR, Pandit R, Ramakrishnan TV. 1995. Negative-U extended Hubbard model for doped barium bismuthates. Phys. Rev. B 52:1368–88 [Google Scholar]
  126. Geballe TH. 2006. The never-ending search for high-temperature superconductivity. J. Supercond. Novel. Magn 19:261–76 [Google Scholar]
  127. Gamble FR, Osiecki JH, Cais M, Pisharody R, Di Salvo FJ, Geballe TH. 1971. Intercalation complexes of Lewis bases and layered sulfides: a large class of new superconductors. Science 174:493–97 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-030212-184246
Loading
/content/journals/10.1146/annurev-conmatphys-030212-184246
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error