1932

Abstract

The unexpected discovery of the quantum Hall effect was the result of basic research on silicon field-effect transistors combined with my experience in metrology, the science of measurements. This personal review demonstrates that condensed matter physics is full of surprises and that access to excellent crystals and materials is a crucial ingredient of the success of experimentalists in condensed matter science.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031016-025148
2017-03-31
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/8/1/annurev-conmatphys-031016-025148.html?itemId=/content/journals/10.1146/annurev-conmatphys-031016-025148&mimeType=html&fmt=ahah

Literature Cited

  1. Ezawa ZF. 1.  2013. Quantum Hall Effects: Field Theoretical Approach and Related Topics Singapore: World Sci. [Google Scholar]
  2. Jain JK. 2.  2015. Composite fermion theory of exotic fractional quantum Hall effect. Annu. Rev. Condens. Matter Phys. 6:39–62 [Google Scholar]
  3. Eisenstein JP. 3.  2014. Exiton condensation in bilayer quantum Hall system. Annu. Rev. Condens. Matter Phys.159–81 [Google Scholar]
  4. Maciejko J, Hughes TL, Zhang SC. 4.  2011. The quantum spin Hall effect. Annu. Rev. Condens. Matter Phys. 2:31–53 [Google Scholar]
  5. Liu CX, Zhang SC, Qi XL. 5.  2016. Quantum anomalous Hall effect: theory and experiment. Annu. Rev. Condens. Matter Phys. 7:301–21 [Google Scholar]
  6. Dmitriev IA, Mirlin AD, Polyakov DG, Zudov MA. 6.  2012. Nonequilibrium phenomena in high Landau levels. Rev. Mod. Phys. 84:1709–63 [Google Scholar]
  7. Mani RG, Smet JH, von Klitzing K, Narayanamurti V, Jonson WB, Umansky V. 7.  2002. Zero-resistance states induced by electromagnetic-wave excitation in GaAs/AlGaAs heterostructures. Nature 420:646–50 [Google Scholar]
  8. Lilly MP, Cooper KB, Eisenstein JP, Pfeiffer LN, West KW. 8.  1999. Evidence for an anisotropic state of two-dimensional electrons in high Landau levels. Phys. Rev. Lett. 82:394–97 [Google Scholar]
  9. Friess B, Umansky V, Tiemann L, von Klitzing K, Smet JH. 9.  2014. Probing the microscopic structure of the stripe phase at filling factor 5/2. Phys. Rev. Lett. 113:076803 [Google Scholar]
  10. von Klitzing K, Dorda G, Pepper M. 10.  1980. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45:494–97 [Google Scholar]
  11. Landwehr G, Handler P. 11.  1962. Galvanomagnetic properties of grain boundaries in germanium bicrystals from 1.25 to 240 K. J. Phys. Chem. Solids 23:891–906 [Google Scholar]
  12. Adams EN, Holstein TD. 12.  1958. Quantum theory of transverse galvanomagnetic phenomena. J. Phys. Chem. Solids 10:254–76 [Google Scholar]
  13. von Klitzing K, Landwehr G. 13.  1971. Magnetic freeze-out and magnetoresistance of tellurium in strong magnetic fields. Phys. Stat. Solidi 45:K119–22 [Google Scholar]
  14. von Klitzing K, Landwehr G. 14.  1971. Surface quantum states in tellurium. Solid State Commun 9:2201–5 [Google Scholar]
  15. von Klitzing K, Landwehr G. 15.  1971. Resonance structure in the high field magnetoresistance of tellurium. Solid State Commun 9:1251–54 [Google Scholar]
  16. von Klitzing K. 16.  1978. Impurity spectroscopy on tellurium by means of magnetoresistance measurements under nonohmic conditions. Solid State Electron 21:223–28 [Google Scholar]
  17. von Klitzing K, Landwehr G. 17.  1972. Anomaly in the low temperature magnetoresistance of tellurium under warm carrier conditions. Proc. 11th Int. Conf. Phys. Semicond. July 25–29 445–50 Warsaw, Pol: PWN-Pol. Sci. Publ. [Google Scholar]
  18. Ando T, Matsumoto Y, Uemura Y. 18.  1972. Theory of quantum galvanomagnetic effects in the inversion layer of semiconductors. Proc. 11th Int. Conf. Physics Semicond. July 25–29 294–99 Warsaw, Pol: PWN-Pol. Sci. Publ. [Google Scholar]
  19. Tsui DC. 19.  1972. Quantum effects in a semiconductor surface layer. Proc. 11th Intern. Conf. on the Physics of Semicond. July 25–29 109–25 Warsaw, Pol: PWN-Pol. Sci. Publ. [Google Scholar]
  20. Fowler AB, Fang FF, Howard WE, Stiles PJ. 20.  1966. Magneto-oscillatory conductance in silicon surfaces. Phys. Rev. Lett. 16:901–3 [Google Scholar]
  21. Fowler AB, Fang FF, Howard WE, Stiles PJ. 21.  1966. Oscillatory magneto-conductance in Si surfaces. Proc. 8th Intern. Conf. Phys. Semicond. Kyoto. J. Phys. Soc. Jpn. 21:Suppl.331–35 [Google Scholar]
  22. von Klitzing K, Landwehr G, Dorda G. 22.  1974. Surface quantum oscillations in p-type channels on n-type silicon. Proc. 2nd Int. Conf. Solid Surf March 25–29 Jpn. J. Appl. Phys Suppl. 2:Part 2351–54 [Google Scholar]
  23. Oe T, Matsuhiro K, Itatani T, Gorwadkar S, Kiryu S, Kaneko NH. 23.  2013. New design of quantized Hall resistance array device. IEEE Trans. Inst. Meas. 62:1755–59 [Google Scholar]
  24. von Klitzing K. 24.  1974. Magnetophonon oscillations in tellurium under hot carrier conditions. Solid State Commun 15:1721–25 [Google Scholar]
  25. Nicholas RJ, von Klitzing K, Stradling RA. 25.  1976. An observation by photoconductivity of strain splitting of shallow bulk donors located near to the surface in silicon MOS devices. Solid State Commun 20:77–80 [Google Scholar]
  26. Crease RP. 26.  2011. Metrology in the balance. Phys. World 24:39–45 [Google Scholar]
  27. Josephson BD. 27.  1962. Possible new effects in superconductive tunneling. Phys. Lett. 1:251–53 [Google Scholar]
  28. Tsai JS, Jain AK, Lukens JE. 28.  1983. High-precision test of the universality of the Josephson voltage-frequency relation. Phys. Rev. Lett. 51:316–19 [Google Scholar]
  29. Field BF, Finnegan TF, Toots J. 29.  1973. Volt maintenance at NBS via 2e/h: a new definition of the NBS volt. Metrologia 9:155–66 [Google Scholar]
  30. Englert T, von Klitzing K. 30.  1978. Analysis of ρxx minima in surface quantum oscillations on (100) n-type silicon inversion layers. Surf. Sci. 73:70–80 [Google Scholar]
  31. Kawaji S. 31.  1978. Quantum galvanomagnetic experiments in silicon inversion layers under strong magnetic fields. Surf. Sci. 73:46–79 [Google Scholar]
  32. Ando T, Uemura Y. 32.  1974. Theory of quantum transport in a two-dimensional electron system under magnetic fields. I. Characteristics of level broadening and transport under strong fields. J. Phys. Soc. Jpn. 36:959–67 [Google Scholar]
  33. Ando T, Matsumoto Y, Uemura Y. 33.  1975. Theory of Hall effect in a two-dimensional electron system. J. Phys. Soc. Jpn. 39:279–88 [Google Scholar]
  34. von Klitzing K, Tuchendler J. 34.  1981. Impurity states of tellurium in high magnetic fields. Proc. Phys. High Magn. Fields S Chikazumi, M Miura Springer Ser. Solid-State Sci 24139–47 Berlin/Heidelberg/New York: Springer-Verlag [Google Scholar]
  35. Aoki H, Kamimura H. 35.  1977. Anderson localization in a two dimensional electron system under strong magnetic fields. Solid State Comm 21:45–47 [Google Scholar]
  36. Abstreiter G, Kotthaus JP, Koch JF, Dorda G. 36.  1974. Cyclotron resonance of electrons in an inversion layer on silicon. Phys. Rev. Lett. 32:104–7 [Google Scholar]
  37. Tsui DC, Störmer HL, Gossard AC. 37.  1982. Two-dimensional transport in the extreme quantum limit. Phys. Rev. Lett. 48:1559–62 [Google Scholar]
  38. Stein D, von Klitzing K, Weimann G. 38.  1983. Electron-spin resonance on GaAs-AlGaAs heterostructures. Phys. Rev. Lett. 51:130–33 [Google Scholar]
  39. Weiss D, von Klitzing K, Ploog K, Weimann G. 39.  1989. Magnetoresistance oscillations in a two-dimensional electron gas induced by a submicrometer periodic potential. Europhys. Lett. 8:179–84 [Google Scholar]
  40. Smet JH, Weiss D, von Klitzing K, Coleridge PT, Wasilewski ZW. 40.  et al. 1997. Composite fermions in periodic and random antidote lattices. Phys. Rev. B 56:3598–601 [Google Scholar]
  41. Albrecht C, Smet JH, von Klitzing K, Weiss D, Umansky V, Schweizer H. 41.  2001. Evidence of Hofstadter's fractal energy spectrum in the quantized hall conductance. Phys. Rev. Lett. 86:147–50 [Google Scholar]
  42. Kronmüller S, Dietsche W, Weis J, von Klitzing K, Wegscheider W, Bichler M. 42.  1998. New resistance maxima in the fractional quantum Hall effect regime. Phys. Rev. Lett. 81:2526–29 [Google Scholar]
  43. Smet JH, Deutschmann RA, Ertl F, Wegscheider W, Abstreiter G, von Klitzing K. 43.  2002. Gate-voltage control of spin interactions between electrons and nuclei in a semiconductor. Nature 415:281–86 [Google Scholar]
  44. Weis J, von Klitzing K. 44.  2011. Metrology and microscopic picture of the integer quantum Hall effect. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369:3954–74 [Google Scholar]
  45. Jeckelmann B, Jeanneret B. 45.  2001. The quantum Hall effect as an electrical resistance standard. Rep. Prog. Phys. 64:1603–55 [Google Scholar]
  46. Schopfer F, Poirier W. 46.  2013. Quantum resistance standard accuracy close to the zero-dissipation state. J. Appl. Phys. 114:064508 [Google Scholar]
  47. Janssen TJBM, Williams JM, Fletcher NE, Goebel R, Tzalenchuk A. 47.  et al. 2012. Precision comparison of the quantum Hall effect in graphene and gallium arsenide. Metrologia 49:294–306 [Google Scholar]
  48. Schurr J, Bürkel V, Kibble BP. 48.  2009. Realization of farad from two ac quantum Hall resistances. Metrologia 46:619–28 [Google Scholar]
  49. Schurr J, Ahlers F, Kibble BP. 49.  2012. The ac quantum Hall resistance as an electrical impedance standard and its role in the SI. Meas. Sci. Technol. 23:124009 [Google Scholar]
  50. Newell DB. 50.  2014. A more fundamental International System of Units. Phys. Today 67:35–41 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031016-025148
Loading
/content/journals/10.1146/annurev-conmatphys-031016-025148
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error