1932

Abstract

Quantum-thermal fluctuations of electromagnetic waves are the cornerstone of quantum statistics and inherent to phenomena such as thermal radiation and van der Waals forces. Although the principles are found in elementary texts, recent experimental and technological advances make it necessary to come to terms with counterintuitive consequences at short scales—the so-called near-field regime. We focus on three manifestations: () The Stefan–Boltzmann law describes radiation from macroscopic bodies but fails for small objects. () The heat transfer between two bodies at close proximity is dominated by evanescent waves and can be orders of magnitude larger than the classical (propagating) contribution. () Casimir forces, dominant at submicron separation, are not sufficiently explored for objects at different temperatures (at least experimentally). We explore these phenomena using fluctuational quantum electrodynamics (QED), introduced by Rytov in the 1950s, combined with scattering formalisms. This enables investigation of different material properties, shapes, separations, and arrangements.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031016-025203
2017-03-31
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/8/1/annurev-conmatphys-031016-025203.html?itemId=/content/journals/10.1146/annurev-conmatphys-031016-025203&mimeType=html&fmt=ahah

Literature Cited

  1. Planck M. 1.  1901. Ann. Phys. (NY) 4:553 [Google Scholar]
  2. Boltzmann L. 2.  1884. Ann. Phys. (NY) 22:291 [Google Scholar]
  3. Parsegian VA. 3.  2006. Van der Waals forces: A Handbook for Biologists, Chemists, Engineers, and Physicists Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  4. Casimir HBG. 4.  1948. Proc. K. Ned. Akad. Wet. 51:793 [Google Scholar]
  5. Lifshitz EM. 5.  1956. Sov. Phys. J. Exp. Theoret. Phys. 2:73 [Google Scholar]
  6. Krüger M, Emig T, Bimonte G, Kardar M. 6.  2011. Europhys. Lett. 95:21002 [Google Scholar]
  7. Milonni W. 7.  1994. The Quantum Vacuum San Diego: Academic [Google Scholar]
  8. Golyk VA. 8.  2014. Non-equilibrium fluctuation-induced phenomena in quantum electrodynamics. PhD Thesis, Mass. Inst. Technol., Cambridge, MA [Google Scholar]
  9. Pendry JB. 9.  1999. J. Phys.: Condens. Matter 11:6621 [Google Scholar]
  10. Majumdar A. 10.  1999. Annu. Rev. Mater. Sci. 29:505 [Google Scholar]
  11. Rytov SM, Kravtsov YA, Tatarskii VI. 11.  1978. Principles of Statistical Radiophysics 3 Berlin: Springer [Google Scholar]
  12. Bordag M, Klimchitskaya GK, Mohideen U, Mostepanenko VM. 12.  2009. Advances in the Casimir Effect Oxford, UK: Oxford Univ. Press [Google Scholar]
  13. Antezza M, Pitaevskii LP, Stringari S, Svetovoy VB. 13.  2008. Phys. Rev. A 77:022901 [Google Scholar]
  14. Emig T, Graham N, Jaffe RL, Kardar M. 14.  2007a. Phys. Rev. Lett. 99:170403 [Google Scholar]
  15. Maia Neto PA, Lambrecht A, Reynaud S. 15.  2008. Phys. Rev. A 78:012115 [Google Scholar]
  16. Rahi SJ, Emig T, Graham N, Jaffe RL, Kardar M. 16.  2009. Phys. Rev. D 80:085021 [Google Scholar]
  17. Krüger M, Bimonte G, Emig T, Kardar M. 17.  2012. Phys. Rev. B 86:115423 [Google Scholar]
  18. Wuttke C, Rauschenbeutel A. 18.  2013. Phys. Rev. Lett. 111:024301 [Google Scholar]
  19. Shen S, Narayanaswamy A, Chen G. 19.  2009. Nano Lett. 9:2909 [Google Scholar]
  20. Banishev AA, Wagner J, Emig T, Zandi R, Mohideen U. 20.  2013a. Phys. Rev. Lett. 110:250403 [Google Scholar]
  21. Rytov SM. 21.  1959. Theory of Electric Fluctuations and Thermal Radiation Bedford, MA: Air Force Cambridge Res. Cent. [Google Scholar]
  22. Singer SB, Mecklenburg M, White ER, Regan BC. 22.  2011. Phys. Rev. B 83:233404 [Google Scholar]
  23. Bimonte G, Cappellin L, Carugno G, Ruoso G, Saadeh D. 23.  2009. New J. Phys. 11:033014 [Google Scholar]
  24. Krüger M, Emig T, Kardar M. 24.  2011. Phys. Rev. Lett. 106:210404 [Google Scholar]
  25. Kattawar GW, Eisner M. 25.  1970. Appl. Opt. 9:2685 [Google Scholar]
  26. Bohren CF, Huffmann DR. 26.  2004. Absorption and Scattering of Light by Small Particles Weinheim, Ger.: Wiley [Google Scholar]
  27. Hansen K, Campbell EEB. 27.  1998. Phys. Rev. E 58:5477 [Google Scholar]
  28. Ruan Z, Fan S. 28.  2010. Phys. Rev. Lett. 105:013901 [Google Scholar]
  29. Polder D, Van Hove M. 29.  1971. Phys. Rev. B 4:3303 [Google Scholar]
  30. Hargreaves CM. 30.  1969. Phys. Lett. A 30:491 [Google Scholar]
  31. Domoto GA, Boehm RF, Tien CL. 31.  1970. J. Heat Transf. 92:412 [Google Scholar]
  32. Narayanaswamy A, Chen G. 32.  2008a. Phys. Rev. B 78:115303 [Google Scholar]
  33. Kittel A, Müller-Hirsch W, Parisi J, Biehs S-A. 33.  2005. Phys. Rev. Lett. 95:224301 [Google Scholar]
  34. de Wilde Y, Formanek F, Carminati R, Gralak B, Lemoine PA. 34.  et al. 2006. Nature 444:740 [Google Scholar]
  35. Rousseau E, Siria A, Jourdan G, Volz S, Comin F. 35.  et al. 2009. Nat. Photonics 3:514 [Google Scholar]
  36. Ottens RS, Quetschke V, Wise S, Alemi AA, Lundock R. 36.  et al. 2011. Phys. Rev. Lett. 107:014301 [Google Scholar]
  37. Kim K, Song B, Fernandez-Hurtado V, Lee W, Jeong W. 37.  et al. 2015. Nature 528:387 [Google Scholar]
  38. Loomis JJ, Maris HJ. 38.  1994. Phys. Rev. B 50:18517 [Google Scholar]
  39. Biehs SA, Greffet JJ. 39.  2010. Phys. Rev. B 82:245410 [Google Scholar]
  40. Volokitin AI, Persson BNJ. 40.  2001. Phys. Rev. B 63:205404 [Google Scholar]
  41. Otey C, Fan S. 41.  2011. Phys. Rev. B 84:245431 [Google Scholar]
  42. Domingues G, Volz S, Joulain K, Greffet JJ. 42.  2005. Phys. Rev. Lett. 94:085901 [Google Scholar]
  43. Narayanaswamy A, Chen G. 43.  2008b. Phys. Rev. B 77:075125 [Google Scholar]
  44. McCauley AP, Reid MTH, Krüger M, Johnson SG. 44.  2012. Phys. Rev. B 85:165104 [Google Scholar]
  45. Bimonte G. 45.  2009a. Phys. Rev. A 80:042102 [Google Scholar]
  46. Messina R, Antezza M. 46.  2011a. Europhys. Lett. 95:61002 [Google Scholar]
  47. Messina R, Antezza M. 47.  2011b. Phys. Rev. A 84:042102 [Google Scholar]
  48. Rodriguez AW, Reid MTH, Johnson SG. 48.  2012. Phys. Rev. B 86:220302 [Google Scholar]
  49. Polimeridis AG, Reid MTH, Jin W, Johnson SG, White JK, Rodriguez AW. 49.  2015. Phys. Rev. B 92:134202 [Google Scholar]
  50. Huth O, Rüting F, Biehs S, Holthaus M. 50.  2010. Eur. Phys. J. Appl. Phys.50 [Google Scholar]
  51. Incardone R, Emig T, Krüger M. 51.  2014. Europhys. Lett. 106:41001 [Google Scholar]
  52. Lamoreaux SK. 52.  1997. Phys. Rev. Lett. 78:5 [Google Scholar]
  53. Mohideen U, Roy A. 53.  1998. Phys. Rev. Lett. 81:4549 [Google Scholar]
  54. Bressi G, Carugno G, Onofrio R, Ruoso G. 54.  2002. Phys. Rev. Lett. 88:041804 [Google Scholar]
  55. Milton KA. 55.  2001. The Casimir Effect: Physical Manifestations of Zero-Point Energy Singapore: World Sci. [Google Scholar]
  56. Mostepanenko VM, Trunov NN. 56.  1997. The Casimir Effect and Its Applications Oxford, UK: Clarendon [Google Scholar]
  57. Dalvit D, Milonni P, Roberts D, da Rosa F. 57.  2011. Casimir Physics Berlin/Heidelberg, Ger.: Springer-Verlag [Google Scholar]
  58. Rodriguez AW, Capasso F, Johnson SJ. 58.  2011. Nat. Photonics 5:211 [Google Scholar]
  59. Antezza M, Pitaevskii LP, Stringari S. 59.  2005. Phys. Rev. Lett. 95:113202 [Google Scholar]
  60. Obrecht JM, Wild RJ, Antezza M, Pitaevskii LP, Stringari S, Cornell EA. 60.  2007. Phys. Rev. Lett. 98:063201 [Google Scholar]
  61. Antezza M, Pitaevskii LP, Stringari S, Svetovoy VB. 61.  2006. Phys. Rev. Lett. 97:223203 [Google Scholar]
  62. Bimonte G. 62.  2014a. Phys. Rev. Lett. 112:240401 [Google Scholar]
  63. Bimonte G. 63.  2014b. Phys. Rev. Lett. 113:240405 [Google Scholar]
  64. Bimonte G. 64.  2015a. Phys. Rev. B 91:205443 [Google Scholar]
  65. Bimonte G. 65.  2015b. Phys. Rev. A 92:025028 [Google Scholar]
  66. Decca RS. 66.  2016. Int. J. Mod. Phys. A 31:1641024 [Google Scholar]
  67. Bimonte G, Lopez D, Decca RS. 67.  2016. Phys. Rev. B 93:184434 [Google Scholar]
  68. Rytov S. 68.  1958. Sov. Phys. J. Exp. Theoret. Phys. 6:130 [Google Scholar]
  69. Callen HB, Welton TA. 69.  1951. Phys. Rev. 83:34 [Google Scholar]
  70. Agarwal G. 70.  1975. Phys. Rev. A 11:230 [Google Scholar]
  71. Bimonte G, Santamato E. 71.  2007. Phys. Rev. A 76:013810 [Google Scholar]
  72. Landau L, Lifshitz E. 72.  1963. Electrodynamics of Continuous Media Oxford, UK: Pergamon [Google Scholar]
  73. Kats EI. 73.  1977. Sov. Phys. J. Exp. Theoret. Phys. 46:109 [Google Scholar]
  74. Milton KA, Brevik I, Ellingsen SA. 74.  2012. Phys. Scr. T 151:014070 [Google Scholar]
  75. Bezerra VB, Klimchitskaya GL, Mostepanenko VM. 75.  2002. Phys. Rev. A 66:052113 [Google Scholar]
  76. Buenzli PR, Martin PA. 76.  2008. Phys. Rev. E 77:011114 [Google Scholar]
  77. Bimonte G. 77.  2009b. Phys. Rev. A 79:042107 [Google Scholar]
  78. Intravaia F, Henkel C. 78.  2009. Phys. Rev. Lett. 103:130405 [Google Scholar]
  79. Banishev AA, Klimchitskaya GL, Mostepanenko VM, Mohideen U. 79.  2013b. Phys. Rev. Lett. 110:137401 [Google Scholar]
  80. Decca RS, López D, Fischbach E, Klimchitskaya GL, Krause DE, Mostepanenko VM. 80.  2005. Ann. Phys. (NY) 318:37 [Google Scholar]
  81. Decca RS, López D, Fischbach E, Klimchitskaya GL, Krause DE, Mostepanenko VM. 81.  2007. Eur. Phys. J. C 51:963 [Google Scholar]
  82. Sushkov AO, Kim WJ, Dalvit DAR, Lamoreaux SK. 82.  2011. Nat. Phys. 7:230 [Google Scholar]
  83. Joulain K, Mulet J-P, Marquier F, Carminati R, Greffet J-J. 83.  2005. Surf. Sci. Rep. 57:59–112 [Google Scholar]
  84. Volokitin AI, Persson BNJ. 84.  2007. Rev. Mod. Phys. 79:1291 [Google Scholar]
  85. Challener WA, Peng C, Itagi AV, Karns D, Peng W. 85.  et al. 2009. Nat. Photonics 3:220 [Google Scholar]
  86. Basu S, Zhang ZM, Fu CJ. 86.  2009. Int. J. Energy Res. 33:1203 [Google Scholar]
  87. Bimonte G, Emig T, Krüger M, Kardar M. 87.  2011. Phys. Rev. A 84:042503 [Google Scholar]
  88. Waterman PC. 88.  1971. Phys. Rev. D 3:825 [Google Scholar]
  89. Langbein D. 89.  1974. Theory of van der Waals Attraction Heidelberg, Ger.: Springer [Google Scholar]
  90. Jaekel MT, Reynaud S. 90.  1991. J. Phys. I 1:1395 [Google Scholar]
  91. Genet C, Lambrecht A, Reynaud S. 91.  2003. Phys. Rev. A 67:043811 [Google Scholar]
  92. Lambrecht A, Maia Neto PA, Reynaud S. 92.  2006. New J. Phys. 8:243 [Google Scholar]
  93. Balian R, Duplantier B. 93.  1977. Ann. Phys (NY) 104:300 [Google Scholar]
  94. Balian R, Duplantier B. 94.  1978. Ann. Phys. (NY) 112:165 [Google Scholar]
  95. Krein MG. 95.  1953. Mat. Sborn. (NS) 33:597 [Google Scholar]
  96. Krein MG. 96.  1962. Sov. Math. Dokl. 3:707 [Google Scholar]
  97. Birman MS, Krein MG. 97.  1962. Sov. Math. Dokl. 3:740 [Google Scholar]
  98. Henseler M, Wirzba A, Guhr T. 98.  1997. Ann. Phys. (NY) 258:286 [Google Scholar]
  99. Wirzba A. 99.  1999. Phys. Rep. 309:1 [Google Scholar]
  100. Bulgac A, Wirzba A. 100.  2001. Phys. Rev. Lett. 87:120404 [Google Scholar]
  101. Bulgac A, Magierski P, Wirzba A. 101.  2006. Phys. Rev. D 73:025007 [Google Scholar]
  102. Wirzba A. 102.  2008. J. Phys. A: Math. Theor. 41:164003 [Google Scholar]
  103. Bordag M, Robaschik D, Wieczorek E. 103.  1985. Ann. Phys. (NY) 165:192–213 [Google Scholar]
  104. Robaschik D, Scharnhorst K, Wieczorek E. 104.  1987. Ann. Phys. (NY) 174:401–29 [Google Scholar]
  105. Li H, Kardar M. 105.  1991. Phys. Rev. Lett. 67:3275–78 [Google Scholar]
  106. Li H, Kardar M. 106.  1992. Phys. Rev. A 46:6490–500 [Google Scholar]
  107. Emig T, Hanke A, Golestanian R, Kardar M. 107.  2001. Phys. Rev. Lett. 87:260402 [Google Scholar]
  108. Emig T, Hanke A, Golestanian R, Kardar M. 108.  2003. Phys. Rev. A 67:022114 [Google Scholar]
  109. Büscher R, Emig T. 109.  2005. Phys. Rev. Lett. 94:133901 [Google Scholar]
  110. Kenneth O, Klich I. 110.  2006. Phys. Rev. Lett. 97:160401 [Google Scholar]
  111. Emig T, Graham N, Jaffe RL, Kardar M. 111.  2007b. Phys. Rev. Lett. 99:170403 [Google Scholar]
  112. Emig T, Graham N, Jaffe RL, Kardar M. 112.  2008. Phys. Rev. D 77:025005 [Google Scholar]
  113. Schwinger J. 113.  1975. Lett. Math. Phys. 1:43 [Google Scholar]
  114. Kenneth O, Klich I. 114.  2008. Phys. Rev. B 78:014103 [Google Scholar]
  115. Milton KA, Parashar P, Wagner J. 115.  2008a. Phys. Rev. Lett. 101:160402 [Google Scholar]
  116. Reid MTH, Rodriguez AW, White J, Johnson SG. 116.  2009. Phys. Rev. Lett. 103:040401 [Google Scholar]
  117. Golestanian R. 117.  2009. Phys. Rev. A 80:012519 [Google Scholar]
  118. Ttira CC, Fosco CD, Losada EL. 118.  2010. J. Phys. A 43:235402 [Google Scholar]
  119. Teo L. 119.  2013. Phys. Rev. D 88:045019 [Google Scholar]
  120. Fosco CD, Lombardo FC, Mazzitelli FD. 120.  2011. Phys. Rev. D 84:105031 [Google Scholar]
  121. Bimonte G, Emig T, Jaffe RL, Kardar M. 121.  2012. Europhys. Lett. 97:50001 [Google Scholar]
  122. Bimonte G, Emig T, Kardar M. 122.  2012. Appl. Phys. Lett. 100:074110 [Google Scholar]
  123. Derjaguin BV, Abrikosova II. 123.  1957. Sov. Phys. J. Exp. Theoret. Phys. 3:819 [Google Scholar]
  124. Stefan J. 124.  1879. Sitz. Math.-Naturwiss. Cl. Kais. Akad. Wiss. 79:391–428 [Google Scholar]
  125. Golyk VA, Krüger M, Kardar M. 125.  2012. Phys. Rev. E 85:046603 [Google Scholar]
  126. Öhman Y. 126.  1961. Nature 192:254 [Google Scholar]
  127. Borghesani A, Carugno G. 127.  2016. Int. J. Therm. Sci. 104:101 [Google Scholar]
  128. Golyk VA, Krüger M, McCauley AP, Kardar M. 128.  2013. Europhys. Lett. 101:34002 [Google Scholar]
  129. Sasihithlu K, Narayanaswamy A. 129.  2011. Phys. Rev. B. 83:161406 [Google Scholar]
  130. Boyer TH. 130.  1975. Phys. Rev. A 11:1650 [Google Scholar]
  131. Rahi S, Kardar M, Emig T. 131.  2010. Phys. Rev. Lett. 105:070404 [Google Scholar]
  132. Müller B, Krüger M. 132.  2016. Phys. Rev. A 93:032505 [Google Scholar]
  133. Henkel C, Joulain K, Mulet JP, Greffet JJ. 133.  2002. J. Opt. A: Pure Appl. Opt. 4:S109 [Google Scholar]
  134. Cohen AE, Mukamel S. 134.  2003. Phys. Rev. Lett. 91:233202 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031016-025203
Loading
/content/journals/10.1146/annurev-conmatphys-031016-025203
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error