1932

Abstract

Weyl semimetals are conductors whose low-energy bulk excitations are Weyl fermions, whereas their surfaces possess metallic Fermi arc surface states. These Fermi arc surface states are protected by a topological invariant associated with the bulk electronic wave functions of the material. Recently, it has been shown that the TaAs and NbAs classes of materials harbor such a state of topological matter. We review the basic phenomena and experimental history of the discovery of the first Weyl semimetals, starting with the observation of topological Fermi arcs and Weyl nodes in TaAs and NbAs by angle and spin-resolved surface and bulk sensitive photoemission spectroscopy and continuing through magnetotransport measurements reporting the Adler–Bell–Jackiw chiral anomaly. We hope that this article provides a useful introduction to the theory of Weyl semimetals, a summary of recent experimental discoveries, and a guideline to future directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031016-025225
2017-03-31
2025-06-14
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/8/1/annurev-conmatphys-031016-025225.html?itemId=/content/journals/10.1146/annurev-conmatphys-031016-025225&mimeType=html&fmt=ahah

Literature Cited

  1. Wilczek F. 1.  1998. Phys. Today 51:11–13 [Google Scholar]
  2. Anderson PW. 2.  1984. Basic Notions of Condensed Matter Physics Reading, Mass.: Addison Wesley [Google Scholar]
  3. Geim AK, Novoselov KS. 3.  2007. Nat. Mater. 6:183–91 [Google Scholar]
  4. Hasan MZ, Kane CL. 4.  2010. Rev. Mod. Phys. 82:3045–67 [Google Scholar]
  5. Hasan MZ, Moore JE. 5.  2011. Annu. Rev. Condens. Matter Phys. 2:55–78 [Google Scholar]
  6. Qi X-L, Zhang S-C. 6.  2011. Rev. Mod. Phys. 83:1057–110 [Google Scholar]
  7. Volovik GE. 7.  2009. The Universe in a Helium Droplet Oxford, UK: Clarendon [Google Scholar]
  8. Turner AM, Vishwanath A. 8.  2013. Beyond band insulators: topology and semi-metals and interacting phases. arXiv:1301.0330 [Google Scholar]
  9. Hasan MZ, Xu S-Y, Neupane M. 9.  2015. Topological Insulators, Fundamentals and Perspectives F Ortmann, S Roche, SO Valenzuela 55–100 San Francisco: John Wiley & Sons [Google Scholar]
  10. Vafek O, Vishwanath A. 10.  2014. Annu. Rev. Condens. Matter Phys. 5:83–112 [Google Scholar]
  11. Hasan MZ, Xu S-Y, Bian G. 11.  2015. Phys. Scr. T164:014001 [Google Scholar]
  12. Weyl H. 12.  1929. Z. Phys. 56:330–52 [Google Scholar]
  13. Herring C. 13.  1937. Phys. Rev. 52:365–73 [Google Scholar]
  14. Abrikosov AA, Beneslavskii SD. 14.  1971. J. Low Temp. Phys. 5:141–54 [Google Scholar]
  15. Nielsen HB, Ninomiya M. 15.  1983. Phys. Lett. B 130:389–96 [Google Scholar]
  16. Murakami S. 16.  2007. New J. Phys. 9:356 [Google Scholar]
  17. Wan X, Turner AM, Vishwanath A, Savrasov SY. 17.  2011. Phys. Rev. B 83:205101 [Google Scholar]
  18. Yang K-Y, Lu Y-M, Ran Y. 18.  2011. Phys. Rev. B 84:075129 [Google Scholar]
  19. Burkov AA, Balents L. 19.  2011. Phys. Rev. Lett. 107:127205 [Google Scholar]
  20. Burkov AA, Hook MD, Balents L. 20.  2011. Phys. Rev. B 84:235126 [Google Scholar]
  21. Xu G, Weng H, Wang Z, Dai X, Fang Z. 21.  2011. Phys. Rev. Lett. 107:186806 [Google Scholar]
  22. Singh B, Sharma A, Lin H, Hasan MZ, Prasad R, Bansil A. 22.  2012. Phys. Rev. B 86:115208 [Google Scholar]
  23. Xu S-Y, Xia Y, Wray LA, Jia S, Meier F. 23.  et al. 2011. Science 332:560–64 [Google Scholar]
  24. Balents L. 24.  2011. Physics 4:36 [Google Scholar]
  25. Vishwanath A. 25.  2015. Physics 8:84 [Google Scholar]
  26. Huang SM, Xu S-Y, Belopolski I, Lee CC, Chang G. 26.  et al. 2015. Nat. Commun. 6:7373 [Google Scholar]
  27. Weng H, Fang C, Fang Z, Bernevig BA, Dai X. 27.  2015. Phys. Rev. X 5:011029 [Google Scholar]
  28. Xu S-Y, Belopolski I, Alidoust N, Neupane M, Bian G. 28.  et al. 2015. Science 349:613–17 [Google Scholar]
  29. Xu S-Y, Liu C, Kushwaha SK, Sankar R, Krizan JW. 29.  et al. 2015. Science 347:294–98 [Google Scholar]
  30. Xu S-Y, Alidoust N, Belopolski I, Zhang C, Bian G. 30.  et al. 2015. Nat. Phys. 11:748–54 [Google Scholar]
  31. Xu S-Y, Belopolski I, Sanchez DS, Guo C, Chang G. 31.  et al. 2015. Sci. Adv. 13e1501092 [Google Scholar]
  32. Lv BQ, Weng HM, Fu BB, Wang XP, Miao H. 32.  et al. 2015. Phys. Rev. X 5:031013 [Google Scholar]
  33. Lv BQ, Xu N, Weng HM, Ma JZ, Richard P. 33.  et al. 2015. Nat. Phys. 11:724–27 [Google Scholar]
  34. Lu L, Wang Z, Ye D, Ran L, Fu L. 34.  et al. 2015. Science 349:622–24 [Google Scholar]
  35. Belopolski I, Xu S-Y, Sanchez DS, Chang G, Guo C. 35.  et al. 2016. Phys. Rev. Lett. 116:066802 [Google Scholar]
  36. Meng T, Balents L. 36.  2012. Phys. Rev. B 86:1054504 [Google Scholar]
  37. Bednik G, Zyuzin AA, Burkov AA. 37.  2015. Phys. Rev. B 92:035153 [Google Scholar]
  38. Li Y, Haldane FDM. 38.  2015. Topological nodal Cooper pairing in doped Weyl metals. arXiv:1510.01730 [Google Scholar]
  39. Taft FF, Ishikawa JJ, McCollam A, Nakatsuji S, Julian SR. 39.  2012. Phys. Rev. B 85:205104 [Google Scholar]
  40. Ueda K, Fujioka J, Takahashi Y, Suzuki T, Ishiwata S. 40.  et al. 2012. Phys. Rev. Lett. 109:136402 [Google Scholar]
  41. Shapiro MC, Riggs SC, Stone MB. Cruz CR, Chi S. 41. , de la et al. 2012. Phys. Rev. B 85:214434 [Google Scholar]
  42. Liu H, Tong W, Ling L, Zhang S, Zhang R. 42.  et al. 2012. Solid State Commun. 179:1 [Google Scholar]
  43. Sushkov AB, Hofmann JB, Jenkins GS, Ishikawa J, Nakatsuji S. 43.  et al. 2015. Phys. Rev. B 92:241108 [Google Scholar]
  44. Bulmash D, Liu C-X, Qi X-L. 44.  2015. Phys. Rev. Lett. 115:087002 [Google Scholar]
  45. Liu ZK, Zhou B, Zhang Y, Wang ZJ, Weng HM. 45.  et al. 2014. Science 343:864 [Google Scholar]
  46. Xu S-Y, Liu C, Belopolski I, Kushwaha SK, Sankar R. 46.  et al. 2015. Phys. Rev. B 92:075115 [Google Scholar]
  47. Neupane M, Xu S-Y, Sankar R, Alidoust N, Bian G. 47.  et al. 2014. Nat. Commun. 5:3786 [Google Scholar]
  48. Liu ZK, Jian J, Zhou B, Wang ZJ, Zhang Y. 48.  et al. 2014. Nat. Mat. 13:677 [Google Scholar]
  49. Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner G. 49.  et al. 2014. Phys. Rev. Lett. 113:027603 [Google Scholar]
  50. Guan T, Lin C, Yang C, Shi Y, Ren C. 50.  et al. 2015. Phys. Rev. Lett. 115:087002 [Google Scholar]
  51. Halász GB, Balents L. 51.  2012. Phys. Rev. B 85:035103 [Google Scholar]
  52. Liu J, Vanderbilt D. 52.  2014. Phys. Rev. B 90:155316 [Google Scholar]
  53. Shekhar C, Nayak AK, Sun Y, Schmidt M, Nicklas M. 53.  et al. 2015. Nat. Phys. 11:645–49 [Google Scholar]
  54. Wang Z, Zheng Y, Shen Z, Lu Y, Fang H. 54.  et al. 2015. Phys. Rev. B 93:121112(R) [Google Scholar]
  55. Huang S-M, Xu S-Y, Belopolski I, Lee C-C, Chang G. 55.  et al. 2016. PNAS 113:1180–85 [Google Scholar]
  56. Xu S-Y, Alidoust N, Change G, Lu H, Singh B. 56.  et al. 2016. Discovery of Lorentz-violating Weyl fermion semimetal state in LaAlGe materials. arXiv:1603.07318 [Google Scholar]
  57. Chang G, Singh B, Xu S-Y, Bian G, Huang S-M. 57.  et al. 2016. Theoretical prediction of magnetic and noncentrosymmetric Weyl fermion semimetal states in the R-Al-X family of compounds (R = rare earth, Al = aluminium, X = Si, Ge). arXiv:1604.02124 [Google Scholar]
  58. Soluyanov AA, Gresh D, Wang Z, Wu QS, Troyer M. 58.  et al. 2015. Nature 527:495–98 [Google Scholar]
  59. Chang T-R, Xu S-Y, Chang G, Lee C-C, Huang S-M. 59.  et al. 2016. Nat. Commun. 7:10639 [Google Scholar]
  60. Sun Y, Wu S-C, Ali MN, Felser C, Yan G. 60.  2015. Phys. Rev. B 92:161107(R) [Google Scholar]
  61. Chang G, Xu S-Y, Sanchez DS, Huang S-M, Lee C-C. 61.  et al. 2015. Sci. Adv. 2:e1600295 [Google Scholar]
  62. Koepernik K, Kasinathan D, Efremov DV, Khim S, Borisenko S. 62.  et al. 2016. Phys. Rev. B 93:201101(R) [Google Scholar]
  63. Autés G, Gresh D, Troyer M, Soluyanov AA, Yazyev OV. 63.  2016. Phys. Rev. Lett. 117:066402 [Google Scholar]
  64. Liu C-C, Zhou J-J, Yao Y, Zhang F. 64.  2016. Phys. Rev. Lett. 116:066801 [Google Scholar]
  65. Hosur P, Qi X. 65.  2013. C. R. Phys. 14:857–70 [Google Scholar]
  66. Grushin AG. 66.  2012. Phys. Rev. D 86:045001 [Google Scholar]
  67. Bergholtz EJ, Liu Z, Trescher M, Moessner R, Udagawa M. 67.  2015. Phys. Rev. Lett. 114:016806 [Google Scholar]
  68. Trescher M, Sbierski B, Brouwer PW, Bergholtz EJ. 68.  2015. Phys. Rev. B 91:115135 [Google Scholar]
  69. Beenakker C. 69.  2015. Journal Club for Condensed Matter Physics commentary posted in August [Google Scholar]
  70. Zyuzin AA, Tiwari RP. 70.  2016. J. Exp. Theoret. Phys. 103:717–22 [Google Scholar]
  71. Isobe H, Nagaosa N. 71.  2016. Phys. Rev. Lett. 116:116803 [Google Scholar]
  72. Yang LX, Liu ZK, Sun Y, Peng H, Yang HF. 72.  et al. 2015. Nat. Phys. 11:728–32 [Google Scholar]
  73. Xu N, Weng HM, Lv BQ, Matt CE, Park J. 73.  et al. 2016. Nat. Commun. 7:11006 [Google Scholar]
  74. Liu Z, Yang LX, Sun Y, Zhang T, Peng H. 74.  et al. 2016. Nat. Mat. 15:27–31 [Google Scholar]
  75. Xu DF, Du Y-P, Wang Z, Li Y-P, Niu X-H. 75.  et al. 2015. Chin. Phys. Lett. 32:107101 [Google Scholar]
  76. Souma S, Wang Z, Kotaka H, Sato T, Nakayama K. 76.  et al. 2016. Phys. Rev. B. 93:161112 [Google Scholar]
  77. Lv BQ, Muss S, Qian T, Song ZD, Nie SM. 77.  et al. 2015. Phys. Rev. Lett. 115:217601 [Google Scholar]
  78. Xu S-Y, Belopolski I, Sanchez DS, Neupane M, Chang G. 78.  et al. 2016. Phys. Rev. Lett. 116:096801 [Google Scholar]
  79. Bertlmann RA. 79.  2001. Anomalies in Quantum Field Theory International Series of Monographs on Physics. 91 Oxford, UK: Oxford Univ. Press. Rev. Ed. [Google Scholar]
  80. Adler S. 80.  1969. Phys. Rev. 177:2426–38 [Google Scholar]
  81. Bell JS, Jackiw R. 81.  1969. Il Nuovo Cim. A 60:47 [Google Scholar]
  82. Duval C, Horvath Z, Horvathy PA, Martina L, Stichel PC. 82.  2006. Mod. Phys. Lett. B 20:373–78 [Google Scholar]
  83. Fukushima K, Kharzeev DE, Warringa HJ. 83.  2008. Phys. Rev. D 78:074033 [Google Scholar]
  84. Son DT, Spivak BZ. 84.  2013. Phys. Rev. B 88:104412 [Google Scholar]
  85. Burkov AA. 85.  2014. Phys. Rev. Lett. 113:247203 [Google Scholar]
  86. Suzuki T, Chisnell R, Devarakonda A, Liu Y-T, Feng W. 85a.  et al. 2016. Nat. Phys. 12:1119–23 [Google Scholar]
  87. Xiong J, Kushwaha SK, Liang T, Krizan JW, Wang W. 86.  et al. 2015. Evidence for the chiral anomaly in the Dirac semimetal Na3 Bi. Presented at 2015 Am. Phys. Soc. March Meet., San Antonio, TX arXiv:1503.08179 [Google Scholar]
  88. Zhang C, Zhang E, Liu Y, Chen Z-G, Liang S. 87.  et al. 2015. Detection of chiral anomaly and valley transport in Dirac semimetals. arxiv:1504.07698 [Google Scholar]
  89. Kim H-J, Kim K-S, Wang J-F, Sasaki M, Satoh N. 88.  et al. 2013. Phys. Rev. Lett. 111:246603 [Google Scholar]
  90. Ritchie L, Xiao G, Ji Y, Chen TY, Chien CL, Zhang M. 89.  et al. 2003. Phys. Rev. B 68:104430 [Google Scholar]
  91. Pippard AB. 90.  1989. Magnetoresistance in Metals Cambridge, UK: Cambridge University Press [Google Scholar]
  92. Hu J, Rosenbaum TF, Betts JB. 91.  2005. Phys. Rev. Lett. 95:186603 [Google Scholar]
  93. Argyres PN, Adams EN. 92.  1956. Phys. Rev. 104:900 [Google Scholar]
  94. Sugihara K, Tokumoto M, Yamanouchi C, Yoshihiro K. 93.  1976. J. Phys. Soc. Jpn. 41:109–15 [Google Scholar]
  95. Kikugawa Goswami P, Kiswandhi A, Choi ES, Graf D. 94.  et al. 2016. Nat. Commun. 7:10903 [Google Scholar]
  96. Goswami P, Pixley JH, Das Sarma S. 95.  2015. Phys. Rev. B 92:075205 [Google Scholar]
  97. Huang X, Zhao L, Long Y, Wang P, Chen D. 96.  et al. 2015. Phys. Rev. X 5:031023 [Google Scholar]
  98. Zhang C-L, Xu S-Y, Belopolski I, Yuan Z, Lin Z. 97.  et al. 2016. Nat. Commun. 7:10735 [Google Scholar]
  99. Ghimire NJ, Luo Y, Neupane M, Williams DJ, Bauer ED, Ronning F. 98.  2015. J. Phys.: Condens. Matter 27:152201 [Google Scholar]
  100. Luo Y, Ghimire NJ, Wartenbe M, Choi H, Neupane M. 99.  et al. 2015. Phys. Rev. B 92:205134 [Google Scholar]
  101. Moll PJW, Potter AC, Ramshaw B, Modic K, Riggs S. 100.  et al. 2016. Nat. Commun. 7:12492 [Google Scholar]
  102. Yang X, Liu Y, Wang Z, Zheng Y, Xu Z-A. 101.  et al. 2015. Chiral anomaly induced negative magneoresistance in topological Weyl semimetal NbAs. arxiv:1506.03190 [Google Scholar]
  103. Zhang C, Guo C, Lu H, Zhang X, Yuan Z. 102.  et al. 2015. Phys. Rev. B 92:041203(R) [Google Scholar]
  104. Zhang C, Lin Z, Guo C, Xu S-Y, Lee C-C. 103.  et al. 2015. Quantum phase transitions in Weyl semimetal tantalum monophosphide. arxiv:1507.06301 [Google Scholar]
  105. Du J, Wang H, Chen Q, Mao Q, Khan R. 104.  et al. 2016. Sci. China Phys. Mech. Astron. 59:657406 [Google Scholar]
  106. Arnold F, Shekhir C, Wu S-C, Sun Y, Donizeth dos Reis R. 105.  et al. 2016. Nat. Commun. 7:11615 [Google Scholar]
  107. Jia S, Xu S-Y, Hasan MZ. 106.  2016. Weyl semimetals, Fermi arcs and chiral anomalies (a short review). arXiv:1612.00416
/content/journals/10.1146/annurev-conmatphys-031016-025225
Loading
/content/journals/10.1146/annurev-conmatphys-031016-025225
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error