1932

Abstract

Epitaxial engineering of solid state heterointerfaces is a leading avenue to realizing enhanced or novel electronic states of matter. As a recent example, bulk FeSe is an unconventional superconductor with a modest transition temperature () of 9 K. However, when a single atomic layer of FeSe is grown on SrTiO, its can skyrocket by an order of magnitude to 65 K or 109 K. Since this discovery in 2012, efforts to reproduce, understand, and extend these findings continue to draw both excitement and scrutiny. In this review, we first present a critical survey of experimental measurements performed using a wide range of techniques. We then turn to the open question of microscopic mechanisms of superconductivity. We examine contrasting indications for both phononic (conventional) and magnetic/orbital (unconventional) means of electron pairing, as well as speculations about whether they could work cooperatively to boost in a monolayer of FeSe.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031016-025242
2017-03-31
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/8/1/annurev-conmatphys-031016-025242.html?itemId=/content/journals/10.1146/annurev-conmatphys-031016-025242&mimeType=html&fmt=ahah

Literature Cited

  1. Reyren N, Thiel S, Caviglia AD, Kourkoutis LF, Hammerl G. 1.  et al. 2007. Science 317:1196–99 [Google Scholar]
  2. Gozar A, Logvenov G, Fitting Kourkoutis L, Bollinger AT, Giannuzzi LA. 2.  et al. 2008. Nature 455:782–85 [Google Scholar]
  3. Wang QY, Li Z, Zhang WH, Zhang ZC, Zhang JS. 3.  et al. 2012. Chin. Phys. Lett. 29:037402 [Google Scholar]
  4. He S, He J, Zhang W, Zhao L, Liu D. 4.  et al. 2013. Nat. Mater. 12:605–10 [Google Scholar]
  5. Tan S, Zhang Y, Xia M, Ye Z, Chen F. 5.  et al. 2013. Nat. Mater. 12:634–40 [Google Scholar]
  6. Lee JJ, Schmitt FT, Moore RG, Johnston S, Cui YT. 6.  et al. 2014. Nature 515:245–48 [Google Scholar]
  7. Zhang Z, Wang YH, Song Q, Liu C, Peng R. 7.  et al. 2015. Sci. Bull. 60:1301–4 [Google Scholar]
  8. Ge JF, Liu ZL, Liu C, Gao CL, Qian D. 8.  et al. 2015. Nat. Mater. 14:285–89 [Google Scholar]
  9. Hsu FC, Luo JY, Yeh KW, Chen TK, Huang TW. 9.  et al. 2008. PNAS 105:14262–64 [Google Scholar]
  10. Okamoto H. 10.  1991. J. Phase Equilib. 12:383–89 [Google Scholar]
  11. Song CL, Wang YL, Cheng P, Jiang YP, Li W. 11.  et al. 2011. Science 332:1410–13 [Google Scholar]
  12. Song CL, Wang YL, Jiang YP, Li Z, Wang L. 12.  et al. 2011. Phys. Rev. B 84:020503 [Google Scholar]
  13. Simonin J. 13.  1986. Phys. Rev. B 33:7830–32 [Google Scholar]
  14. Böhmer AE, Hardy F, Eilers F, Ernst D, Adelmann P. 14.  et al. 2013. Phys. Rev. B 87:180505 [Google Scholar]
  15. Schmidbauer M, Kwasniewski A, Schwarzkopf J. 15.  2012. Acta. Crystallogr. B 68:8–14 [Google Scholar]
  16. Zhang T, Cheng P, Li WJ, Sun YJ, Wang G. 16.  et al. 2010. Nat. Phys. 6:104–8 [Google Scholar]
  17. Liu D, Zhang W, Mou D, He J, Ou YB. 17.  et al. 2012. Nat. Commun. 3:931 [Google Scholar]
  18. Shimojima T, Suzuki Y, Sonobe T, Nakamura A, Sakano M. 18.  et al. 2014. Phys. Rev. B 90:121111 [Google Scholar]
  19. Nakayama K, Miyata Y, Phan GN, Sato T, Tanabe Y. 19.  et al. 2014. Phys. Rev. Lett. 113:237001 [Google Scholar]
  20. Watson MD, Kim TK, Haghighirad AA, Davies NR, McCollam A. 20.  et al. 2015. Phys. Rev. B 91:155106 [Google Scholar]
  21. Zhang P, Qian T, Richard P, Wang XP, Miao H. 21.  et al. 2015. Phys. Rev. B 91:214503 [Google Scholar]
  22. Peng R, Xu HC, Tan SY, Cao HY, Xia M. 22.  et al. 2014. Nat. Commun 5:5044 [Google Scholar]
  23. Zhang W, Li Z, Li F, Zhang H, Peng J. 23.  et al. 2014. Phys. Rev. B 89:060506 [Google Scholar]
  24. Peng R, Shen XP, Xie X, Xu HC, Tan SY. 24.  et al. 2014. Phys. Rev. Lett. 112:107001 [Google Scholar]
  25. Zhang WH, Sun Y, Zhang JS, Li FS, Guo MH. 25.  et al. 2014. Chin. Phys. Lett. 31:017401 [Google Scholar]
  26. Deng LZ, Lv B, Wu Z, Xue YY, Zhang WH. 26.  et al. 2014. Phys. Rev. B 90:214513 [Google Scholar]
  27. Sun Y, Zhang W, Xing Y, Li F, Zhao Y. 27.  et al. 2014. Sci. Rep. 4:6040 [Google Scholar]
  28. Cui YT, Moore RG, Zhang AM, Tian Y, Lee JJ. 28.  et al. 2015. Phys. Rev. Lett. 114:037002 [Google Scholar]
  29. Tian YC, Zhang WH, Li FS, Wu YL, Wu Q. 29.  et al. 2016. Phys. Rev. Lett. 116:107001 [Google Scholar]
  30. Li F, Ding H, Tang C, Peng J, Zhang Q. 30.  et al. 2015. Phys. Rev. B 91:220503 [Google Scholar]
  31. Zhao W, Zhang CZ, Jiang J, Moodera J, Chan M. 31.  2016. Bull. Am. Phys. Soc. 61:B11.00011 [Google Scholar]
  32. Zhu Y, Tsai CF, Wang H. 32.  2013. Supercond. Sci. Technol. 26:025009 [Google Scholar]
  33. Bozovic I, Ahn C. 33.  2014. Nat. Phys. 10:892–95 [Google Scholar]
  34. Božović I. 34.  2016. Nat. Phys. 12:22–24 [Google Scholar]
  35. Lin Y, Becerra-Toledo AE, Silly F, Poeppelmeier KR, Castell MR, Marks LD. 35.  2011. Surf. Sci. 605:L51–55 [Google Scholar]
  36. Huang D, Song CL, Webb TA, Fang S, Chang CZ. 36.  et al. 2015. Phys. Rev. Lett. 115:017002 [Google Scholar]
  37. Bang J, Li Z, Sun YY, Samanta A, Zhang YY. 37.  et al. 2013. Phys. Rev. B 87:220503 [Google Scholar]
  38. Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M. 38.  et al. 1994. Science 266:1540–42 [Google Scholar]
  39. Ohnishi T, Shibuya K, Lippmaa M, Kobayashi D, Kumigashira H. 39.  et al. 2004. Appl. Phys. Lett. 85:272–74 [Google Scholar]
  40. Connell JG, Isaac BJ, Ekanayake GB, Strachan DR, Seo SSA. 40.  2012. Appl. Phys. Lett. 101:251607 [Google Scholar]
  41. Berlijn T, Cheng HP, Hirschfeld PJ, Ku W. 41.  2014. Phys. Rev. B 89:020501 [Google Scholar]
  42. Li F, Zhang Q, Tang C, Liu C, Shi J. 42.  et al. 2016. 2D Mater. 3:024002 [Google Scholar]
  43. Li Z, Peng JP, Zhang HM, Zhang WH, Ding H. 43.  et al. 2014. J. Phys. Condens. Matter 26:265002 [Google Scholar]
  44. Fan Q, Zhang WH, Liu X, Yan YJ, Ren MQ. 44.  et al. 2015. Nat. Phys. 11:946–52 [Google Scholar]
  45. Li N, Li Z, Ding H, Ji S, Chen X, Xue QK. 45.  2013. Appl. Phys. Exp. 6:113101 [Google Scholar]
  46. Moore R. 46.  2015. Bull. Am. Phys. Soc. 60:Z51.00001 [Google Scholar]
  47. Zhou G, Zhang D, Liu C, Tang C, Wang X. 47.  et al. 2016. Appl. Phys. Lett. 108:202603 [Google Scholar]
  48. Zhang P, Peng XL, Qian T, Richard P, Shi X. 48.  et al. 2016. Phys. Rev. B 94:104510 [Google Scholar]
  49. Ding H, Lv YF, Zhao K, Wang WL, Wang L. 49.  et al. 2016. Phys. Rev. Lett. 117:067001 [Google Scholar]
  50. Rebec S, Jia T, Zhang C, Hashimoto M, Lu D. 50.  et al. 2016. arXiv:1606.09358
  51. Zou K, Mandal S, Albright SD, Peng R, Pu Y. 51.  et al. 2016. Phys. Rev. B 93:180506 [Google Scholar]
  52. Erdman N, Poeppelmeier KR, Asta M, Warschkow O, Ellis DE, Marks LD. 52.  2002. Nature 419:55–58 [Google Scholar]
  53. Herger R, Willmott PR, Bunk O, Schlepütz CM, Patterson BD, Delley B. 53.  2007. Phys. Rev. Lett. 98:076102 [Google Scholar]
  54. Huang D, Webb TA, Fang S, Song CL, Chang CZ. 54.  et al. 2016. Phys. Rev. B 93:125129 [Google Scholar]
  55. Drozdov AP, Eremets MI, Troyan IA, Ksenofontov V, Shylin SI. 55.  2015. Nature 525:73–76 [Google Scholar]
  56. Gao L, Xue YY, Chen F, Xiong Q, Meng RL. 56.  et al. 1994. Phys. Rev. B 50:4260–63 [Google Scholar]
  57. Mazin II, Singh DJ, Johannes MD, Du MH. 57.  2008. Phys. Rev. Lett. 101:057003 [Google Scholar]
  58. Kuroki K, Onari S, Arita R, Usui H, Tanaka Y. 58.  et al. 2008. Phys. Rev. Lett. 101:087004 [Google Scholar]
  59. Boeri L, Dolgov OV, Golubov AA. 59.  2008. Phys. Rev. Lett. 101:026403 [Google Scholar]
  60. Onari S, Kontani H. 60.  2009. Phys. Rev. Lett. 103:177001 [Google Scholar]
  61. Choudhury N, Walter EJ, Kolesnikov AI, Loong CK. 61.  2008. Phys. Rev. B 77:134111 [Google Scholar]
  62. Xie Y, Cao HY, Zhou Y, Chen S, Xiang H, Gong XG. 62.  2015. Sci. Rep. 5:10011 [Google Scholar]
  63. Wang Z, McKeown Walker S, Tamai A, Wang Y, Ristic Z. 63.  et al. 2016. Nat. Mater. 3:1–6 [Google Scholar]
  64. Lee DH. 64.  2015. Chin. Phys. B 24:117405 [Google Scholar]
  65. Rademaker L, Wang Y, Berlijn T, Johnston S. 65.  2016. New J. Phys. 18:022001 [Google Scholar]
  66. Mazin II. 66.  2015. Nat. Mater. 14:755–56 [Google Scholar]
  67. Coh S, Cohen ML, Louie SG. 67.  2015. New J. Phys. 17:073027 [Google Scholar]
  68. Tang C, Liu C, Zhou G, Li F, Ding H. 68.  et al. 2016. Phys. Rev. B 93:020507 [Google Scholar]
  69. Chen W, Zeng C, Kaxiras E, Zhang Z. 69.  2016. Phys. Rev. B 93:064517 [Google Scholar]
  70. Lu XF, Wang NZ, Wu H, Wu YP, Zhao D. 70.  et al. 2015. Nat. Mater. 14:325–29 [Google Scholar]
  71. Zhao L, Liang A, Yuan D, Hu Y, Liu D. 71.  et al. 2016. Nat. Commun. 7:10608 [Google Scholar]
  72. Niu XH, Peng R, Xu HC, Yan YJ, Jiang J. 72.  et al. 2015. Phys. Rev. B 92:060504 [Google Scholar]
  73. Du Z, Yang X, Lin H, Fang D, Du G. 73.  et al. 2016. Nat. Commun. 7:10565 [Google Scholar]
  74. Yan YJ, Zhang WH, Ren MQ, Liu X, Lu XF. 74.  et al. 2016. Phys Rev. B 94:134502 [Google Scholar]
  75. Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T. 75.  2015. Nat. Mater. 14:775–79 [Google Scholar]
  76. Wen CHP, Xu HC, Chen C, Huang ZC, Lou X. 76.  et al. 2016. Nat. Commun. 7:10840 [Google Scholar]
  77. Ye ZR, Zhang CF, Ning HL, Li W, Chen L. 77.  et al. 2015. arXiv:1512.02526
  78. Tang C, Zhang D, Zang Y, Liu C, Zhou G. 78.  et al. 2015. Phys. Rev. B 92:180507 [Google Scholar]
  79. Zhang WH, Liu X, Wen CHP, Peng R, Tan SY. 79.  et al. 2016. Nano Lett. 16:1969–73 [Google Scholar]
  80. Song CL, Zhang HM, Zhong Y, Hu XP, Ji SH. 80.  et al. 2016. Phys. Rev. Lett. 116:157001 [Google Scholar]
  81. Wen CHP, Xu HC, Chen C, Huang ZC, Lou X. 81.  et al. 2016. Nat. Commun. 7:10840 [Google Scholar]
  82. Rahn MC, Ewings RA, Sedlmaier SJ, Clarke SJ, Boothroyd AT. 82.  2015. Phys. Rev. B 91:180501 [Google Scholar]
  83. Wang Q, Shen Y, Pan B, Hao Y, Ma M. 83.  et al. 2016. Nat. Mater. 15:159–63 [Google Scholar]
  84. Wang Q, Shen Y, Pan B, Zhang X, Ikeuchi K. 84.  et al. 2016. Nat. Commun. 7:12182 [Google Scholar]
  85. McQueen TM, Williams AJ, Stephens PW, Tao J, Zhu Y. 85.  et al. 2009. Phys. Rev. Lett. 103:057002 [Google Scholar]
  86. Zhang Y, Yi M, Liu ZK, Li W, Lee JJ. 86.  et al. 2016. 94:115153
  87. Medvedev S, McQueen TM, Troyan IA, Palasyuk T, Eremets MI. 87.  et al. 2009. Nat. Mater. 8:630–33 [Google Scholar]
  88. Fernandes RM, Schmalian J. 88.  2012. Supercond. Sci. Technol. 25:084005 [Google Scholar]
  89. Yamase H, Zeyher R. 89.  2013. Phys. Rev. B 88:180502 [Google Scholar]
  90. Lederer S, Schattner Y, Berg E, Kivelson SA. 90.  2015. Phys. Rev. Lett. 114:097001 [Google Scholar]
  91. Dumitrescu PT, Serbyn M, Scalettar RT, Vishwanath A. 91.  2016. Phys Rev. B 94:155127 [Google Scholar]
  92. Li ZX, Wang F, Yao H, Lee DH. 92.  2016. Sci. Bull. 61:925–30 [Google Scholar]
  93. Kang J, Fernandes RM. 93.  2016. arXiv:1606.01170
  94. Linscheid A, Maiti S, Wang Y, Johnston S, Hirschfeld PJ. 94.  2016. Phys. Rev. Lett. 117:077003 [Google Scholar]
  95. Glasbrenner JK, Mazin II, Jeschke HO, Hirschfeld PJ, Fernandes RM, Valentí R. 95.  2015. Nat. Phys. 11:953–58 [Google Scholar]
  96. Wang F, Kivelson SA, Lee DH. 96.  2015. Nat. Phys. 11:959–63 [Google Scholar]
  97. Chubukov AV, Fernandes RM, Schmalian J. 97.  2015. Phys. Rev. B 91:201105 [Google Scholar]
  98. Yu R, Si Q. 98.  2015. Phys. Rev. Lett. 115:116401 [Google Scholar]
  99. Gastiasoro MN, Eremin I, Fernandes RM, Andersen BM. 99.  2016. arXiv:1607.04711
  100. Tafti FF, Juneau-Fecteau A, Delage ME, René de Cotret S, Reid JP. 100.  et al. 2013. Nat. Phys. 9:349–52 [Google Scholar]
  101. Hirschfeld PJ, Korshunov MM, Mazin II. 101.  2011. Rep. Prog. Phys. 74:124508 [Google Scholar]
  102. Wollman DA, Van Harlingen DJ, Lee WC, Ginsberg DM, Leggett AJ. 102.  1993. Phys. Rev. Lett. 71:2134–37 [Google Scholar]
  103. Hirschfeld PJ, Altenfeld D, Eremin I, Mazin II. 103.  2015. Phys. Rev. B 92:184513 [Google Scholar]
  104. Mazin II. 104.  2011. Phys. Rev. B 84:024529 [Google Scholar]
  105. Maier TA, Graser S, Hirschfeld PJ, Scalapino DJ. 105.  2011. Phys. Rev. B 83:100515 [Google Scholar]
  106. Kreisel A, Wang Y, Maier TA, Hirschfeld PJ, Scalapino DJ. 106.  2013. Phys. Rev. B 88:094522 [Google Scholar]
  107. Chen X, Maiti S, Linscheid A, Hirschfeld PJ. 107.  2015. Phys. Rev. B 92:224514 [Google Scholar]
  108. Zhang Y, Lee JJ, Moore RG, Li W, Yi M. 108.  et al. 2016. Phys. Rev. Lett. 117:117001 [Google Scholar]
  109. Beaird R, Vekhter I, Zhu JX. 109.  2012. Phys. Rev. B 86:140507 [Google Scholar]
  110. Xiang YY, Wang F, Wang D, Wang QH, Lee DH. 110.  2012. Phys. Rev. B 86:134508 [Google Scholar]
  111. Bazhirov T, Cohen ML. 111.  2013. J. Phys. Condens. Matter 25:105506 [Google Scholar]
  112. Zheng F, Wang Z, Kang W, Zhang P. 112.  2013. Sci. Rep. 3:2213 [Google Scholar]
  113. Miao H, Qian T, Shi X, Richard P, Kim TK. 113.  et al. 2015. Nat. Commun. 6:6056 [Google Scholar]
  114. Chen X, Mishra V, Maiti S, Hirschfeld PJ. 114.  2016. Phys. Rev. B 94:054524 [Google Scholar]
  115. Zhang P, Richard P, Xu N, Xu YM, Ma J. 115.  et al. 2014. Appl. Phys. Lett. 105:172601 [Google Scholar]
  116. Liu ZH, Richard P, Xu N, Xu G, Li Y. 116.  et al. 2012. Phys. Rev. Lett. 109:037003 [Google Scholar]
  117. Shi X, Han ZQ, Peng XL, Richard P, Qian T. 117.  et al. 2016. arXiv:1606.01470
  118. Zhang S, Guan J, Jia X, Liu B, Wang W. 118.  et al. 2016. Phys. Rev. B 94:081116R [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031016-025242
Loading
/content/journals/10.1146/annurev-conmatphys-031016-025242
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error