Epitaxial engineering of solid state heterointerfaces is a leading avenue to realizing enhanced or novel electronic states of matter. As a recent example, bulk FeSe is an unconventional superconductor with a modest transition temperature () of 9 K. However, when a single atomic layer of FeSe is grown on SrTiO, its can skyrocket by an order of magnitude to 65 K or 109 K. Since this discovery in 2012, efforts to reproduce, understand, and extend these findings continue to draw both excitement and scrutiny. In this review, we first present a critical survey of experimental measurements performed using a wide range of techniques. We then turn to the open question of microscopic mechanisms of superconductivity. We examine contrasting indications for both phononic (conventional) and magnetic/orbital (unconventional) means of electron pairing, as well as speculations about whether they could work cooperatively to boost in a monolayer of FeSe.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Reyren N, Thiel S, Caviglia AD, Kourkoutis LF, Hammerl G. 1.  et al. 2007. Science 317:1196–99 [Google Scholar]
  2. Gozar A, Logvenov G, Fitting Kourkoutis L, Bollinger AT, Giannuzzi LA. 2.  et al. 2008. Nature 455:782–85 [Google Scholar]
  3. Wang QY, Li Z, Zhang WH, Zhang ZC, Zhang JS. 3.  et al. 2012. Chin. Phys. Lett. 29:037402 [Google Scholar]
  4. He S, He J, Zhang W, Zhao L, Liu D. 4.  et al. 2013. Nat. Mater. 12:605–10 [Google Scholar]
  5. Tan S, Zhang Y, Xia M, Ye Z, Chen F. 5.  et al. 2013. Nat. Mater. 12:634–40 [Google Scholar]
  6. Lee JJ, Schmitt FT, Moore RG, Johnston S, Cui YT. 6.  et al. 2014. Nature 515:245–48 [Google Scholar]
  7. Zhang Z, Wang YH, Song Q, Liu C, Peng R. 7.  et al. 2015. Sci. Bull. 60:1301–4 [Google Scholar]
  8. Ge JF, Liu ZL, Liu C, Gao CL, Qian D. 8.  et al. 2015. Nat. Mater. 14:285–89 [Google Scholar]
  9. Hsu FC, Luo JY, Yeh KW, Chen TK, Huang TW. 9.  et al. 2008. PNAS 105:14262–64 [Google Scholar]
  10. Okamoto H. 10.  1991. J. Phase Equilib. 12:383–89 [Google Scholar]
  11. Song CL, Wang YL, Cheng P, Jiang YP, Li W. 11.  et al. 2011. Science 332:1410–13 [Google Scholar]
  12. Song CL, Wang YL, Jiang YP, Li Z, Wang L. 12.  et al. 2011. Phys. Rev. B 84:020503 [Google Scholar]
  13. Simonin J. 13.  1986. Phys. Rev. B 33:7830–32 [Google Scholar]
  14. Böhmer AE, Hardy F, Eilers F, Ernst D, Adelmann P. 14.  et al. 2013. Phys. Rev. B 87:180505 [Google Scholar]
  15. Schmidbauer M, Kwasniewski A, Schwarzkopf J. 15.  2012. Acta. Crystallogr. B 68:8–14 [Google Scholar]
  16. Zhang T, Cheng P, Li WJ, Sun YJ, Wang G. 16.  et al. 2010. Nat. Phys. 6:104–8 [Google Scholar]
  17. Liu D, Zhang W, Mou D, He J, Ou YB. 17.  et al. 2012. Nat. Commun. 3:931 [Google Scholar]
  18. Shimojima T, Suzuki Y, Sonobe T, Nakamura A, Sakano M. 18.  et al. 2014. Phys. Rev. B 90:121111 [Google Scholar]
  19. Nakayama K, Miyata Y, Phan GN, Sato T, Tanabe Y. 19.  et al. 2014. Phys. Rev. Lett. 113:237001 [Google Scholar]
  20. Watson MD, Kim TK, Haghighirad AA, Davies NR, McCollam A. 20.  et al. 2015. Phys. Rev. B 91:155106 [Google Scholar]
  21. Zhang P, Qian T, Richard P, Wang XP, Miao H. 21.  et al. 2015. Phys. Rev. B 91:214503 [Google Scholar]
  22. Peng R, Xu HC, Tan SY, Cao HY, Xia M. 22.  et al. 2014. Nat. Commun 5:5044 [Google Scholar]
  23. Zhang W, Li Z, Li F, Zhang H, Peng J. 23.  et al. 2014. Phys. Rev. B 89:060506 [Google Scholar]
  24. Peng R, Shen XP, Xie X, Xu HC, Tan SY. 24.  et al. 2014. Phys. Rev. Lett. 112:107001 [Google Scholar]
  25. Zhang WH, Sun Y, Zhang JS, Li FS, Guo MH. 25.  et al. 2014. Chin. Phys. Lett. 31:017401 [Google Scholar]
  26. Deng LZ, Lv B, Wu Z, Xue YY, Zhang WH. 26.  et al. 2014. Phys. Rev. B 90:214513 [Google Scholar]
  27. Sun Y, Zhang W, Xing Y, Li F, Zhao Y. 27.  et al. 2014. Sci. Rep. 4:6040 [Google Scholar]
  28. Cui YT, Moore RG, Zhang AM, Tian Y, Lee JJ. 28.  et al. 2015. Phys. Rev. Lett. 114:037002 [Google Scholar]
  29. Tian YC, Zhang WH, Li FS, Wu YL, Wu Q. 29.  et al. 2016. Phys. Rev. Lett. 116:107001 [Google Scholar]
  30. Li F, Ding H, Tang C, Peng J, Zhang Q. 30.  et al. 2015. Phys. Rev. B 91:220503 [Google Scholar]
  31. Zhao W, Zhang CZ, Jiang J, Moodera J, Chan M. 31.  2016. Bull. Am. Phys. Soc. 61:B11.00011 [Google Scholar]
  32. Zhu Y, Tsai CF, Wang H. 32.  2013. Supercond. Sci. Technol. 26:025009 [Google Scholar]
  33. Bozovic I, Ahn C. 33.  2014. Nat. Phys. 10:892–95 [Google Scholar]
  34. Božović I. 34.  2016. Nat. Phys. 12:22–24 [Google Scholar]
  35. Lin Y, Becerra-Toledo AE, Silly F, Poeppelmeier KR, Castell MR, Marks LD. 35.  2011. Surf. Sci. 605:L51–55 [Google Scholar]
  36. Huang D, Song CL, Webb TA, Fang S, Chang CZ. 36.  et al. 2015. Phys. Rev. Lett. 115:017002 [Google Scholar]
  37. Bang J, Li Z, Sun YY, Samanta A, Zhang YY. 37.  et al. 2013. Phys. Rev. B 87:220503 [Google Scholar]
  38. Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M. 38.  et al. 1994. Science 266:1540–42 [Google Scholar]
  39. Ohnishi T, Shibuya K, Lippmaa M, Kobayashi D, Kumigashira H. 39.  et al. 2004. Appl. Phys. Lett. 85:272–74 [Google Scholar]
  40. Connell JG, Isaac BJ, Ekanayake GB, Strachan DR, Seo SSA. 40.  2012. Appl. Phys. Lett. 101:251607 [Google Scholar]
  41. Berlijn T, Cheng HP, Hirschfeld PJ, Ku W. 41.  2014. Phys. Rev. B 89:020501 [Google Scholar]
  42. Li F, Zhang Q, Tang C, Liu C, Shi J. 42.  et al. 2016. 2D Mater. 3:024002 [Google Scholar]
  43. Li Z, Peng JP, Zhang HM, Zhang WH, Ding H. 43.  et al. 2014. J. Phys. Condens. Matter 26:265002 [Google Scholar]
  44. Fan Q, Zhang WH, Liu X, Yan YJ, Ren MQ. 44.  et al. 2015. Nat. Phys. 11:946–52 [Google Scholar]
  45. Li N, Li Z, Ding H, Ji S, Chen X, Xue QK. 45.  2013. Appl. Phys. Exp. 6:113101 [Google Scholar]
  46. Moore R. 46.  2015. Bull. Am. Phys. Soc. 60:Z51.00001 [Google Scholar]
  47. Zhou G, Zhang D, Liu C, Tang C, Wang X. 47.  et al. 2016. Appl. Phys. Lett. 108:202603 [Google Scholar]
  48. Zhang P, Peng XL, Qian T, Richard P, Shi X. 48.  et al. 2016. Phys. Rev. B 94:104510 [Google Scholar]
  49. Ding H, Lv YF, Zhao K, Wang WL, Wang L. 49.  et al. 2016. Phys. Rev. Lett. 117:067001 [Google Scholar]
  50. Rebec S, Jia T, Zhang C, Hashimoto M, Lu D. 50.  et al. 2016. arXiv:1606.09358
  51. Zou K, Mandal S, Albright SD, Peng R, Pu Y. 51.  et al. 2016. Phys. Rev. B 93:180506 [Google Scholar]
  52. Erdman N, Poeppelmeier KR, Asta M, Warschkow O, Ellis DE, Marks LD. 52.  2002. Nature 419:55–58 [Google Scholar]
  53. Herger R, Willmott PR, Bunk O, Schlepütz CM, Patterson BD, Delley B. 53.  2007. Phys. Rev. Lett. 98:076102 [Google Scholar]
  54. Huang D, Webb TA, Fang S, Song CL, Chang CZ. 54.  et al. 2016. Phys. Rev. B 93:125129 [Google Scholar]
  55. Drozdov AP, Eremets MI, Troyan IA, Ksenofontov V, Shylin SI. 55.  2015. Nature 525:73–76 [Google Scholar]
  56. Gao L, Xue YY, Chen F, Xiong Q, Meng RL. 56.  et al. 1994. Phys. Rev. B 50:4260–63 [Google Scholar]
  57. Mazin II, Singh DJ, Johannes MD, Du MH. 57.  2008. Phys. Rev. Lett. 101:057003 [Google Scholar]
  58. Kuroki K, Onari S, Arita R, Usui H, Tanaka Y. 58.  et al. 2008. Phys. Rev. Lett. 101:087004 [Google Scholar]
  59. Boeri L, Dolgov OV, Golubov AA. 59.  2008. Phys. Rev. Lett. 101:026403 [Google Scholar]
  60. Onari S, Kontani H. 60.  2009. Phys. Rev. Lett. 103:177001 [Google Scholar]
  61. Choudhury N, Walter EJ, Kolesnikov AI, Loong CK. 61.  2008. Phys. Rev. B 77:134111 [Google Scholar]
  62. Xie Y, Cao HY, Zhou Y, Chen S, Xiang H, Gong XG. 62.  2015. Sci. Rep. 5:10011 [Google Scholar]
  63. Wang Z, McKeown Walker S, Tamai A, Wang Y, Ristic Z. 63.  et al. 2016. Nat. Mater. 3:1–6 [Google Scholar]
  64. Lee DH. 64.  2015. Chin. Phys. B 24:117405 [Google Scholar]
  65. Rademaker L, Wang Y, Berlijn T, Johnston S. 65.  2016. New J. Phys. 18:022001 [Google Scholar]
  66. Mazin II. 66.  2015. Nat. Mater. 14:755–56 [Google Scholar]
  67. Coh S, Cohen ML, Louie SG. 67.  2015. New J. Phys. 17:073027 [Google Scholar]
  68. Tang C, Liu C, Zhou G, Li F, Ding H. 68.  et al. 2016. Phys. Rev. B 93:020507 [Google Scholar]
  69. Chen W, Zeng C, Kaxiras E, Zhang Z. 69.  2016. Phys. Rev. B 93:064517 [Google Scholar]
  70. Lu XF, Wang NZ, Wu H, Wu YP, Zhao D. 70.  et al. 2015. Nat. Mater. 14:325–29 [Google Scholar]
  71. Zhao L, Liang A, Yuan D, Hu Y, Liu D. 71.  et al. 2016. Nat. Commun. 7:10608 [Google Scholar]
  72. Niu XH, Peng R, Xu HC, Yan YJ, Jiang J. 72.  et al. 2015. Phys. Rev. B 92:060504 [Google Scholar]
  73. Du Z, Yang X, Lin H, Fang D, Du G. 73.  et al. 2016. Nat. Commun. 7:10565 [Google Scholar]
  74. Yan YJ, Zhang WH, Ren MQ, Liu X, Lu XF. 74.  et al. 2016. Phys Rev. B 94:134502 [Google Scholar]
  75. Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T. 75.  2015. Nat. Mater. 14:775–79 [Google Scholar]
  76. Wen CHP, Xu HC, Chen C, Huang ZC, Lou X. 76.  et al. 2016. Nat. Commun. 7:10840 [Google Scholar]
  77. Ye ZR, Zhang CF, Ning HL, Li W, Chen L. 77.  et al. 2015. arXiv:1512.02526
  78. Tang C, Zhang D, Zang Y, Liu C, Zhou G. 78.  et al. 2015. Phys. Rev. B 92:180507 [Google Scholar]
  79. Zhang WH, Liu X, Wen CHP, Peng R, Tan SY. 79.  et al. 2016. Nano Lett. 16:1969–73 [Google Scholar]
  80. Song CL, Zhang HM, Zhong Y, Hu XP, Ji SH. 80.  et al. 2016. Phys. Rev. Lett. 116:157001 [Google Scholar]
  81. Wen CHP, Xu HC, Chen C, Huang ZC, Lou X. 81.  et al. 2016. Nat. Commun. 7:10840 [Google Scholar]
  82. Rahn MC, Ewings RA, Sedlmaier SJ, Clarke SJ, Boothroyd AT. 82.  2015. Phys. Rev. B 91:180501 [Google Scholar]
  83. Wang Q, Shen Y, Pan B, Hao Y, Ma M. 83.  et al. 2016. Nat. Mater. 15:159–63 [Google Scholar]
  84. Wang Q, Shen Y, Pan B, Zhang X, Ikeuchi K. 84.  et al. 2016. Nat. Commun. 7:12182 [Google Scholar]
  85. McQueen TM, Williams AJ, Stephens PW, Tao J, Zhu Y. 85.  et al. 2009. Phys. Rev. Lett. 103:057002 [Google Scholar]
  86. Zhang Y, Yi M, Liu ZK, Li W, Lee JJ. 86.  et al. 2016. 94:115153
  87. Medvedev S, McQueen TM, Troyan IA, Palasyuk T, Eremets MI. 87.  et al. 2009. Nat. Mater. 8:630–33 [Google Scholar]
  88. Fernandes RM, Schmalian J. 88.  2012. Supercond. Sci. Technol. 25:084005 [Google Scholar]
  89. Yamase H, Zeyher R. 89.  2013. Phys. Rev. B 88:180502 [Google Scholar]
  90. Lederer S, Schattner Y, Berg E, Kivelson SA. 90.  2015. Phys. Rev. Lett. 114:097001 [Google Scholar]
  91. Dumitrescu PT, Serbyn M, Scalettar RT, Vishwanath A. 91.  2016. Phys Rev. B 94:155127 [Google Scholar]
  92. Li ZX, Wang F, Yao H, Lee DH. 92.  2016. Sci. Bull. 61:925–30 [Google Scholar]
  93. Kang J, Fernandes RM. 93.  2016. arXiv:1606.01170
  94. Linscheid A, Maiti S, Wang Y, Johnston S, Hirschfeld PJ. 94.  2016. Phys. Rev. Lett. 117:077003 [Google Scholar]
  95. Glasbrenner JK, Mazin II, Jeschke HO, Hirschfeld PJ, Fernandes RM, Valentí R. 95.  2015. Nat. Phys. 11:953–58 [Google Scholar]
  96. Wang F, Kivelson SA, Lee DH. 96.  2015. Nat. Phys. 11:959–63 [Google Scholar]
  97. Chubukov AV, Fernandes RM, Schmalian J. 97.  2015. Phys. Rev. B 91:201105 [Google Scholar]
  98. Yu R, Si Q. 98.  2015. Phys. Rev. Lett. 115:116401 [Google Scholar]
  99. Gastiasoro MN, Eremin I, Fernandes RM, Andersen BM. 99.  2016. arXiv:1607.04711
  100. Tafti FF, Juneau-Fecteau A, Delage ME, René de Cotret S, Reid JP. 100.  et al. 2013. Nat. Phys. 9:349–52 [Google Scholar]
  101. Hirschfeld PJ, Korshunov MM, Mazin II. 101.  2011. Rep. Prog. Phys. 74:124508 [Google Scholar]
  102. Wollman DA, Van Harlingen DJ, Lee WC, Ginsberg DM, Leggett AJ. 102.  1993. Phys. Rev. Lett. 71:2134–37 [Google Scholar]
  103. Hirschfeld PJ, Altenfeld D, Eremin I, Mazin II. 103.  2015. Phys. Rev. B 92:184513 [Google Scholar]
  104. Mazin II. 104.  2011. Phys. Rev. B 84:024529 [Google Scholar]
  105. Maier TA, Graser S, Hirschfeld PJ, Scalapino DJ. 105.  2011. Phys. Rev. B 83:100515 [Google Scholar]
  106. Kreisel A, Wang Y, Maier TA, Hirschfeld PJ, Scalapino DJ. 106.  2013. Phys. Rev. B 88:094522 [Google Scholar]
  107. Chen X, Maiti S, Linscheid A, Hirschfeld PJ. 107.  2015. Phys. Rev. B 92:224514 [Google Scholar]
  108. Zhang Y, Lee JJ, Moore RG, Li W, Yi M. 108.  et al. 2016. Phys. Rev. Lett. 117:117001 [Google Scholar]
  109. Beaird R, Vekhter I, Zhu JX. 109.  2012. Phys. Rev. B 86:140507 [Google Scholar]
  110. Xiang YY, Wang F, Wang D, Wang QH, Lee DH. 110.  2012. Phys. Rev. B 86:134508 [Google Scholar]
  111. Bazhirov T, Cohen ML. 111.  2013. J. Phys. Condens. Matter 25:105506 [Google Scholar]
  112. Zheng F, Wang Z, Kang W, Zhang P. 112.  2013. Sci. Rep. 3:2213 [Google Scholar]
  113. Miao H, Qian T, Shi X, Richard P, Kim TK. 113.  et al. 2015. Nat. Commun. 6:6056 [Google Scholar]
  114. Chen X, Mishra V, Maiti S, Hirschfeld PJ. 114.  2016. Phys. Rev. B 94:054524 [Google Scholar]
  115. Zhang P, Richard P, Xu N, Xu YM, Ma J. 115.  et al. 2014. Appl. Phys. Lett. 105:172601 [Google Scholar]
  116. Liu ZH, Richard P, Xu N, Xu G, Li Y. 116.  et al. 2012. Phys. Rev. Lett. 109:037003 [Google Scholar]
  117. Shi X, Han ZQ, Peng XL, Richard P, Qian T. 117.  et al. 2016. arXiv:1606.01470
  118. Zhang S, Guan J, Jia X, Liu B, Wang W. 118.  et al. 2016. Phys. Rev. B 94:081116R [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error