1932

Abstract

Origami has emerged as a tool for designing three-dimensional structures from flat films. Because they can be fabricated by lithographic or roll-to-roll processing techniques, they have great potential for the manufacture of complicated geometries and devices. This article discusses the mechanics of origami and kirigami with a view toward understanding how to design self-folding origami structures. Whether an origami structure can be made to fold autonomously depends strongly on the geometry and kinematics of the origami fold pattern. This article collects some of the results on origami rigidity into a single framework, and discusses how these aspects affect the foldability of origami. Despite recent progress, most problems in origami and origami design remain completely open.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031016-025316
2017-03-31
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/8/1/annurev-conmatphys-031016-025316.html?itemId=/content/journals/10.1146/annurev-conmatphys-031016-025316&mimeType=html&fmt=ahah

Literature Cited

  1. Kuribayashi K, Tsuchiya K, You Z, Tomus D, Umemoto M. 1.  2006. Mater. Sci. Eng.: A 419:131–37 [Google Scholar]
  2. Nishiyama Y. 2.  2012. Int. J. Pure Appl. Math. 79:269–79 [Google Scholar]
  3. Kimionis J, Georgiadis A, Isakov M, Qi HJ, Tentzeris MM. 3.  2015. Presented at IEEE Int. Microw. Symp., Phoenix, AZ
  4. Liu X, Yao S, Cook BS, Tentzeris MM, Georgakopoulos SV. 4.  2015. IEEE Trans. Antennas Propag. 63:5897–903 [Google Scholar]
  5. Audoly B, Pomeau Y. 5.  2010. Elasticity and Geometry: From Hair Curls to the Non-Linear Response of Shells New York: Oxford Univ. Press [Google Scholar]
  6. Han Q, Hong JX. 6.  2006. Isometric Embedding of Riemannian Manifolds in Euclidean Spaces Vol. 130. Providence: RI: Am. Math. Soc. [Google Scholar]
  7. Leong TG, Lester PA, Koh TL, Call EK, Gracias DH. 7.  2007. Langmuir: ACS J. Surf. Colloids 23:8747–51 [Google Scholar]
  8. Bassik N, Stern GM, Gracias DH. 8.  2009. Appl. Phys. Lett. 95:9 [Google Scholar]
  9. Roman B, Bico J. 9.  2010. J. Phys.: Condens. Matter 22:493101 [Google Scholar]
  10. Jamal M, Zarafshar AM, Gracias DH. 10.  2011. Nat. Commun. 2:527 [Google Scholar]
  11. Jeong KU, Jang JH, Kim DY, Nah C, Lee JH. 11.  et al. 2011. J. Mater. Chem. 21:6824 [Google Scholar]
  12. Cho JH, Keung MD, Verellen N, Lagae L, Moshchalkov VV. 12.  et al. 2011. Small (Weinheim an der Bergstrasse, Germany) 7:1943–48 [Google Scholar]
  13. Liu Y, Boyles JK, Genzer J, Dickey MD. 13.  2012. Soft Matter 8:1764 [Google Scholar]
  14. Davis D, Mailen R, Genzer J, Dickey MD. 14.  2015. RSC Adv. 5:89254–61 [Google Scholar]
  15. An B, Miyashita S, Tolley MT, Aukes DM, Meeker L. 15.  et al. 2014. Proc. IEEE Int. Conf. Robot. Autom., Hong Kong, China1466–73 Washington, DC: IEEE [Google Scholar]
  16. Na JH, Evans AA, Bae J, Chiappelli MC, Santangelo CD. 16.  et al. 2015. Adv. Mater. 27:79–85 [Google Scholar]
  17. Ge Q, Dunn CK, Qi HJ, Dunn ML. 17.  2014. Smart Mater. Struct. 23:094007 [Google Scholar]
  18. Ryu J, D'Amato M, Cui X, Long KN, Qi HJ, Dunn ML. 18.  2012. Appl. Phys. Lett. 100:161908 [Google Scholar]
  19. Klein Y, Efrati E, Sharon E. 19.  2007. Science 315:1116–20 [Google Scholar]
  20. Kim J, Hanna JA, Byun M, Santangelo CD, Hayward RC. 20.  2012. Science 335:1201–5 [Google Scholar]
  21. Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. 21.  2016. Nat. Mater. 15:4413–18 [Google Scholar]
  22. Hawkes E, An B, Benbernou NM, Tanaka H, Kim S. 22.  et al. 2010. PNAS 107:12441–45 [Google Scholar]
  23. Cauchy A. 23.  1813. J. l‘École Polytech. 9:66–86 [Google Scholar]
  24. Gluck H. 24.  1975. Geometric Topology LC Glaser, TB Rushing, pp. 225–39 Berlin: Springer-Verlag [Google Scholar]
  25. Connelly R. 25.  1977. Publ. Math. l'I.H.É.S. 47:333–38 [Google Scholar]
  26. Lang RJ. 26.  1994. Symmetry: Cult. Sci. 5:115–52 [Google Scholar]
  27. Tachi T. 27.  2010. IEEE Trans. Vis. Comput. Graph. 16:298–311 [Google Scholar]
  28. Zirbel SA, Lang RJ, Thomson MW, Sigel DA, Walkemeyer PE. 28.  et al. 2013. J. Mech. Des. 135:111005 [Google Scholar]
  29. Tachi T. 29.  2011. Origami 5:253–64 [Google Scholar]
  30. Tachi T. 30.  2010. Proc. Int. Assoc. Shell Spat. Struct. Symp. 2010, Shanghai, China Nov. 8–12, pp. 771–82 Madrid: IASS [Google Scholar]
  31. Dudte LH, Vouga E, Tachi T, Mahadevan L. 31.  2016. Nat. Mater. 15:5583–88 [Google Scholar]
  32. Chien CW, Lee K, Shlian M, Forrest S, Shtein M, Ku PC. 32.  2015. Presented at IEEE Photovolt. Spec. Conf. (PVSC), 42nd, New Orleans
  33. Holland A, Lysford W, Pearson J, Straub J, Kerlin S. 33.  2016. Origami style solar panels with development of dual purpose integrated phased array communications system. Presented at Univ. North Dak. Grad. Sch. Sch. Forum 2016, Grand Forks, ND [Google Scholar]
  34. Felton S, Tolley M, Demaine E, Rus D, Wood R. 34.  2014. Science 345:644–46 [Google Scholar]
  35. Miura K. 35.  1985. ISAS Rep. No. 618, Inst. Space Astron. Sci., Tokyo. https://repository.exst.jaxa.jp/dspace/handle/a-is/7293
  36. Kobayashi H, Kresling B, Vincent JF. 36.  1998. Proc. R. Soc. Lond. B 265:147–54 [Google Scholar]
  37. Mahadevan L, Rica S. 37.  2005. Science 307:1740 [Google Scholar]
  38. Lv C, Krishnaraju D, Konjevod G, Yu H, Jiang H. 38.  2014. Sci. Rep. 4:5979 [Google Scholar]
  39. Filipov ET, Tachi T, Paulino GH. 39.  2015. PNAS 112:12321–26 [Google Scholar]
  40. Fuchi K, Diaz AR, Rothwell EJ, Ouedraogo RO, Tang J. 40.  2012. J. Appl. Phys. 111:084905 [Google Scholar]
  41. Yasuda H, Yang J. 41.  2015. Phys. Rev. Lett. 114:185502 [Google Scholar]
  42. Schenk M, Guest SD. 42.  2013. PNAS 110:3276–81 [Google Scholar]
  43. Wei ZY, Guo ZV, Dudte L, Liang HY, Mahadevan L. 43.  2013. Phys. Rev. Lett. 110:215501 [Google Scholar]
  44. Silverberg JL, Evans AA, McLeod L, Hayward RC, Hull T. 44.  et al. 2014. Science 345:647–50 [Google Scholar]
  45. Eidini M, Paulino GH. 45.  2015. Sci. Adv. 1:e1500224 [Google Scholar]
  46. Seung H, Nelson DR. 46.  1988. Phys. Rev. A 38:1005 [Google Scholar]
  47. Di Francesco P, Guitter E. 47.  1994. Europhys. Lett. 26:455 [Google Scholar]
  48. Di Francesco P. 48.  2000. Bull. Am. Math. Soc. 37:251–307 [Google Scholar]
  49. Bowick MJ, Travesset A. 49.  2001. Phys. Rep. 344:255–308 [Google Scholar]
  50. Steck TL. 50.  1974. J. Cell Biol. 62:1–19 [Google Scholar]
  51. Ginepro J, Hull TC. 51.  2014. J. Integer Seq. 17:3 [Google Scholar]
  52. Gracias DH, Kavthekar V, Love JC, Paul KE, Whitesides GM. 52.  2002. Adv. Mater. 14:235–38 [Google Scholar]
  53. Shenoy VB, Gracias DH. 53.  2012. MRS Bull. 37:847–54 [Google Scholar]
  54. Tolley MT, Felton SM, Miyashita S, Aukes D, Rus D, Wood RJ. 54.  2014. Smart Mater. Struct. 23:094006 [Google Scholar]
  55. Martinez RV, Fish CR, Chen X, Whitesides GM. 55.  2012. Adv. Funct. Mater. 22:1376–84 [Google Scholar]
  56. Py C, Reverdy P, Doppler L, Bico J, Roman B, Baroud CN. 56.  2007. Phys. Rev. Lett. 98:156103 [Google Scholar]
  57. Janssen G, Abdalla M, van Keulen F, Pujada B, Van Venrooy B. 57.  2009. Thin Solid Films 517:1858–67 [Google Scholar]
  58. Miskin M, Dorsey K, Rose P, Cohen I, McEuen P. 58.  2016. Bull. Am. Phys. Soc. #H40.010 (Abstr.) [Google Scholar]
  59. Kawasaki T. 59.  1989. Proc. 1st Int. Meet. Origami Sci. Technol., Ferrara, Italy Dec. 6–7 229–37 [Google Scholar]
  60. Justin J. 60.  1989. Proc. 1st Int. Meet. Origami Sci. Technol., Ferrara, Italy Dec. 6–7 263–77 [Google Scholar]
  61. Justin J. 61.  1986. Br. Origami 118:28–30 [Google Scholar]
  62. Hull T. 62.  1994. Congressus Numerantium 100:215–24 [Google Scholar]
  63. Bern M, Hayes B. 63.  1996. Proc. 7th Annu. ACM-SIAM Symp. Discret. Algorithms Atlanta, GA, Jan. 28–30, pp. 175–83 Philadelphia, PA: Soc. Ind. Appl. Math. [Google Scholar]
  64. Ballinger B, Damian M, Eppstein D, Flatland R, Ginepro J, Hull T. 64.  2015. Proc. 26th Annu. ACM-SIAM Symp. Discret. Algorithms San Diego, CA, Jan. 4–6, pp. 136–47 Philadelphia, PA: Soc. Ind. Appl. Math. [Google Scholar]
  65. Waitukaitis S, Menaut R, Chen BGg, van Hecke M. 65.  2015. Phys. Rev. Lett. 114:055503 [Google Scholar]
  66. Lechenault F, Thiria B, Adda-Bedia M. 66.  2014. Phys. Rev. Lett. 112:244301 [Google Scholar]
  67. Lechenault F, Adda-Bedia M. 67.  2015. Phys. Rev. Lett. 115:235501 [Google Scholar]
  68. Tachi T. 68.  2009. J. Int. Assoc. Shell Spat. Struct. 50:1622287–94 [Google Scholar]
  69. Evans TA, Lang RJ, Magleby SP, Howell LL. 69.  2015. Origami6: I. Mathematics K Miura, T Kawasaki, T Tachi, R Uehara, RJ Lang, P Wang-Iverson, pp. 119–32 Providence, RI: Am. Math. Soc. [Google Scholar]
  70. Silverberg JL, Na JH, Evans AA, Liu B, Hull TC. 70.  et al. 2015. Nat. Mater. 14:389–93 [Google Scholar]
  71. Chen BGg, Liu B, Evans AA, Paulose J, Cohen I. 71.  et al. 2016. Phys. Rev. Lett. 116:135501 [Google Scholar]
  72. Witten T. 72.  2007. Rev. Mod. Phys. 79:643 [Google Scholar]
  73. Castle T, Cho Y, Gong X, Jung E, Sussman DM. 73.  et al. 2014. Phys. Rev. Lett. 113:245502 [Google Scholar]
  74. Sussman DM, Cho Y, Castle T, Gong X, Jung E. 74.  et al. 2015. PNAS 112:7449–53 [Google Scholar]
  75. Overvelde JT, de Jong TA, Shevchenko Y, Becerra SA, Whitesides GM. 75.  et al. 2016. Nat. Commun. 7:10929 [Google Scholar]
  76. Pandey S, Ewing M, Kunas A, Nguyen N, Gracias DH, Menon G. 76.  2011. PNAS 108:19885–90 [Google Scholar]
  77. Fuchi K, Diaz AR. 77.  2013. J. Mech. Des. 135:111003 [Google Scholar]
  78. Zhou X, Wang H, You Z. 78.  2015. Proc. R. Soc. A 471:20150407 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031016-025316
Loading
/content/journals/10.1146/annurev-conmatphys-031016-025316
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error