1932

Abstract

It is widely appreciated that surface tension can dominate the behavior of liquids at small scales. Solids also have surface stresses of a similar magnitude, but they are usually overlooked. However, recent work has shown that these can play a central role in the mechanics of soft solids such as gels. Here, we review this emerging field. We outline the theory of surface stresses, from both mechanical and thermodynamic perspectives, emphasizing the relationship between surface stress and surface energy. We describe a wide range of phenomena at interfaces and contact lines where surface stresses play an important role. We highlight how surface stresses cause dramatic departures from classic theories for wetting (Young–Dupré), adhesion (Johnson–Kendall–Roberts), and composites (Eshelby). A common thread is the importance of the ratio of surface stress to an elastic modulus, which defines a length scale below which surface stresses can dominate.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031016-025326
2017-03-31
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/8/1/annurev-conmatphys-031016-025326.html?itemId=/content/journals/10.1146/annurev-conmatphys-031016-025326&mimeType=html&fmt=ahah

Literature Cited

  1. Shepherd RF, Ilievski F, Choi W, Morin SA, Stokes AA. 1.  et al. 2011. PNAS 108:20400–3 [Google Scholar]
  2. Morin SA, Shepherd RF, Kwok SW, Stokes AA, Nemiroski A, Whitesides GM. 2.  2012. Science 337:828–32 [Google Scholar]
  3. Wood R, Walsh C. 3.  2013. Sci. Transl. Med. 5:210210ed19 [Google Scholar]
  4. Suo Z, Ma E, Gleskova H, Wagner S. 4.  1999. Appl. Phys. Lett. 74:1177–79 [Google Scholar]
  5. Lingley AR, Ali M, Liao Y, Mirjalili R, Klonner M. 5.  et al. 2011. J. Micromech. Microeng. 21:125014 [Google Scholar]
  6. Keplinger C, Sun JY, Foo CC, Rothemund P, Whitesides GM, Suo Z. 6.  2013. Science 341:984–87 [Google Scholar]
  7. Sun JY, Keplinger C, Whitesides GM, Suo Z. 7.  2014. Adv. Mater. 26:7608–14 [Google Scholar]
  8. Shin H, Jo S, Mikos AG. 8.  2003. Biomaterials 24:4353–64 [Google Scholar]
  9. Gordon JE. 9.  1978. Structures: Or Why Things Don't Fall Down. Cambridge, MA: Da Capo [Google Scholar]
  10. Chen D, Cai S, Suo Z, Hayward RC. 10.  2012. Phys. Rev. Lett. 109:038001 [Google Scholar]
  11. Jagota A, Paretkar D, Ghatak A. 11.  2012. Phys. Rev. E 85:051602 [Google Scholar]
  12. Mora S, Phou T, Fromental JM, Pismen LM, Pomeau Y. 12.  2010. Phys. Rev. Lett. 105:214301 [Google Scholar]
  13. Style RW, Boltyanskiy R, Allen B, Jensen KE, Foote HP. 13.  et al. 2015. Nat. Phys. 11:82–87 [Google Scholar]
  14. Style RW, Dufresne ER. 14.  2012. Soft Matter 8:7177 [Google Scholar]
  15. Marchand A, Das S, Snoeijer JH, Andreotti B. 15.  2012. Phys. Rev. Lett. 109:236101 [Google Scholar]
  16. Style RW, Che Y, Wettlaufer JS, Wilen LA, Dufresne ER. 16.  2013. Phys. Rev. Lett. 110:066103 [Google Scholar]
  17. Johnson K, Kendall K, Roberts A. 17.  1971. Proc. R. Soc. A 324:301 [Google Scholar]
  18. Carrillo JMY, Dobrynin AV. 18.  2012. Langmuir 28:10881–90 [Google Scholar]
  19. Style RW, Hyland C, Boltyanskiy R, Wettlaufer JS, Dufresne ER. 19.  2013. Nat. Commun. 4:2728 [Google Scholar]
  20. de Gennes PG, Brochard-Wyart F, Quere D. 20.  2010. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. New York: Springer [Google Scholar]
  21. Shuttleworth R. 21.  1950. Proc. Phys. Soc. A 63:444 [Google Scholar]
  22. Nicolson MM. 22.  1955. Proc. R. Soc. A 228:490–510 [Google Scholar]
  23. Gurtin ME, Murdoch AI. 23.  1975. Arch. Rational Mech. Anal. 57:291–323 [Google Scholar]
  24. Gurtin ME, Murdoch AI. 24.  1978. Int. J. Solid. Struct. 14:431–40 [Google Scholar]
  25. Cammarata R, Sieradzki K. 25.  1994. Annu. Rev. Mater. Sci. 24:215–34 [Google Scholar]
  26. Spaepen F. 26.  2000. Acta Mater. 48:31–42 [Google Scholar]
  27. Haiss W. 27.  2001. Rep. Prog. Phys. 64:591 [Google Scholar]
  28. Sander D. 28.  2003. Curr. Opin. Solid State Mater. Sci. 7:51–57 [Google Scholar]
  29. Chen T, Chiu MS, Weng CN. 29.  2006. J. Appl. Phys. 100:074308 [Google Scholar]
  30. Javili A, McBride A, Steinmann P, Reddy B. 30.  2014. Comp. Mech. 54:745–62 [Google Scholar]
  31. Mora S, Abkarian M, Tabuteau H, Pomeau Y. 31.  2011. Soft Matter 7:10612 [Google Scholar]
  32. Jerison ER, Xu Y, Wilen LA, Dufresne ER. 32.  2011. Phys. Rev. Lett. 106:186103 [Google Scholar]
  33. Mora S, Maurini C, Phou T, Fromental JM, Audoly B, Pomeau Y. 33.  2013. Phys. Rev. Lett. 111:114301 [Google Scholar]
  34. Karpitschka S, Das S, van Gorcum M, Perrin H, Andreotti B, Snoeijer J. 34.  2015. Nat. Commun. 67891 [Google Scholar]
  35. Andreotti B, Baumchen O, Boulogne F, Daniels KE, Dufresne ER. 35.  et al. 2016. Soft Matter 12:2993–96 [Google Scholar]
  36. Gordan OD, Persson BN, Cesa CM, Mayer D, Hoffmann B. 36.  et al. 2008. Langmuir 24:6636–39 [Google Scholar]
  37. Paretkar D, Xu X, Hui CY, Jagota A. 37.  2014. Soft Matter 10:4084–90 [Google Scholar]
  38. Wang Q, Zhao X. 38.  2014. J. Appl. Mech. 81:051004 [Google Scholar]
  39. Wang Q, Zhao X. 39.  2013. Phys. Rev. E 88:042403 [Google Scholar]
  40. Biot MA. 40.  1963. Appl. Sci. Res. A 12:168–82 [Google Scholar]
  41. Chakrabarti A, Chaudhury MK. 41.  2013. Langmuir 29:6926–35 [Google Scholar]
  42. Chaudhury MK, Chakrabarti A, Ghatak A. 42.  2015. Euro. Phys. J. E 38:1–26 [Google Scholar]
  43. Plateau J. 43.  1873. Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires. 2 Paris: Gauthier-Villars [Google Scholar]
  44. Eshelby JD. 44.  1957. Proc. R. Soc. Lond. A 241:376–96 [Google Scholar]
  45. Ducloue L, Pitois O, Goyon J, Chateau X, Ovarlez G. 45.  2014. Soft Matter 10:5093–98 [Google Scholar]
  46. Sharma P, Ganti S. 46.  2004. J. Appl. Mech. 71:663–71 [Google Scholar]
  47. Yang F. 47.  2004. J. Appl. Phys. 95:3516–20 [Google Scholar]
  48. Brisard S, Dormieux L, Kondo D. 48.  2010. Comp. Mater. Sci. 50:403–10 [Google Scholar]
  49. Duan HL, Wang J, Huang ZP, Karihaloo BL. 49.  2005. Proc. R. Soc. A 461:3335–53 [Google Scholar]
  50. Duan HL, Yi X, Huang ZP, Wang J. 50.  2007. Mech. Mater. 39:81–93 [Google Scholar]
  51. Style RW, Wettlaufer JS, Dufresne ER. 51.  2015. Soft Matter 11:672–79 [Google Scholar]
  52. Wang Y, Henann DL. 52.  2016. Extreme Mech. Lett. 9147–57 [Google Scholar]
  53. Kundu S, Crosby AJ. 52a.  2009. Soft Matter 53963–68 [Google Scholar]
  54. Creton C, Ciccotti M. 53.  2016. Rep. Prog. Phys. 79:046601 [Google Scholar]
  55. Liu T, Long R, Hui CY. 54.  2014. Soft Matter 10:7723–29 [Google Scholar]
  56. Hui CY, Liu T, Schwaab ME. 55.  2016. Extreme Mech. Lett. 6:31–36 [Google Scholar]
  57. Young T. 56.  1805. Philos. Trans. R. Soc. Lond. 95:65 [Google Scholar]
  58. Dupré A, Dupré P. 57.  1869. Théorie Mécanique de la Chaleur. Paris: Gauthier-Villars [Google Scholar]
  59. Neumann F. 58.  1894. Vorlesungen ber die Theorie der Capillaritt. Leipzig, Ger.: B.G. Teubner [Google Scholar]
  60. Maxwell JC. 59.  1878. Encylopaedia Britannica 556–71 New York: Samuel L. Hall. 9th ed. [Google Scholar]
  61. Shanahan M, de Gennes PG. 60.  1986. C. R. Acad. Sci. Paris 302:517 [Google Scholar]
  62. Shanahan M. 61.  1987. J. Phys. D: Appl. Phys. 20:945–50 [Google Scholar]
  63. Rusanov AI. 62.  1975. Colloid J. USSR 37:614–22 [Google Scholar]
  64. Rusanov AI. 63.  1978. J. Colloid Interface Sci. 63:330–45 [Google Scholar]
  65. White LR. 64.  2003. J. Colloid Interface Sci. 258:82–96 [Google Scholar]
  66. Hui CY, Jagota A. 65.  2014. Proc. R. Soc. A 470:20140085 [Google Scholar]
  67. Marchand A, Das S, Snoeijer JH, Andreotti B. 66.  2012. Phys. Rev. Lett. 108:094301 [Google Scholar]
  68. Pericet-Cmara R, Best A, Butt HJ, Bonaccurso E. 67.  2008. Langmuir 24:10565–68 [Google Scholar]
  69. Pericet-Camara R, Auernhammer GK, Koynov K, Lorenzoni S, Raiteri R, Bonaccurso E. 68.  2009. Soft Matter 5:3611 [Google Scholar]
  70. Park SJ, Weon BM, San Lee J, Lee J, Kim J, Je JH. 69.  2014. Nat. Commun. 5:4369 [Google Scholar]
  71. Olives J. 70.  2010. J. Phys. Condens. Matter 22:085005 [Google Scholar]
  72. Lubbers LA, Weijs JH, Botto L, Das S, Andreotti B, Snoeijer JH. 71.  2014. J. Fluid Mech. 747:R1 [Google Scholar]
  73. Bostwick JB, Shearer M, Daniels KE. 72.  2014. Soft Matter 10:7361–69 [Google Scholar]
  74. Weijs JH, Andreotti B, Snoeijer JH. 73.  2013. Soft Matter 9:8494–503 [Google Scholar]
  75. Weijs JH, Snoeijer JH, Andreotti B. 74.  2014. Phys. Rev. E 89:042408 [Google Scholar]
  76. Leonforte F, Muller M. 75.  2011. J. Chem. Phys. 135:214703 [Google Scholar]
  77. Cao Z, Dobrynin AV. 76.  2015. Macromolecules 48:443–51 [Google Scholar]
  78. Style RW, Che Y, Park SJ, Weon BM, Je JH. 77.  et al. 2013. PNAS 110:12541 [Google Scholar]
  79. Nadermann N, Hui CY, Jagota A. 78.  2013. PNAS 110:10541–45 [Google Scholar]
  80. Roman B, Bico J. 79.  2010. J. Phys. Condens. Matter 22:493101 [Google Scholar]
  81. Mastrangelo C, Hsu C. 80.  1993. J. Microelectromech. Syst. 2:33–43 [Google Scholar]
  82. Bico J, Roman B, Moulin L, Boudaoud A. 81.  2004. Nature 432:690 [Google Scholar]
  83. Kim HY, Mahadevan L. 82.  2006. J. Fluid Mech. 548:141–50 [Google Scholar]
  84. Py C, Reverdy P, Doppler L, Bico J, Roman B, Baroud CN. 83.  2007. Phys. Rev. Lett. 98:156103 [Google Scholar]
  85. Duprat C, Protiere S, Beebe AY, Stone HA. 84.  2012. Nature 482:510–13 [Google Scholar]
  86. Wei Z, Schneider T, Kim J, Kim HY, Aizenberg J, Mahadevan L. 85.  2015. Proc. R. Soc. A 471:217520140593 [Google Scholar]
  87. Huang J, Juszkiewicz M, de Jeu WH, Cerda E, Emrick T. 86.  et al. 2007. Science 317:650–53 [Google Scholar]
  88. Vella D, Huang J, Menon N, Russell TP, Davidovitch B. 87.  Phys. Rev. Lett. 114:014301 [Google Scholar]
  89. Hui CY, Jagota A. 88.  2015. Soft Matter 11:8960–67 [Google Scholar]
  90. Schulman RD, Dalnoki-Veress K. 89.  2015. Phys. Rev. Lett. 115:206101 [Google Scholar]
  91. Hertz H. 90.  1882. J. Reine Angew. Math. 92:156–71 [Google Scholar]
  92. Chaudhury MK, Whitesides GM. 91.  1991. Langmuir 7:1013–25 [Google Scholar]
  93. Shull KR. 92.  2002. Mater. Sci. Eng. R: Rep. 36:1–45 [Google Scholar]
  94. Lin YY, Chen HY. 93.  2006. J. Polym. Sci. B 44:2912–22 [Google Scholar]
  95. Xu X, Jagota A, Hui CY. 94.  2014. Soft Matter 10:4625–32 [Google Scholar]
  96. Cao Z, Dobrynin AV. 95.  2015. Langmuir 31:12520–29 [Google Scholar]
  97. Hui C-Y, Liu T, Salez T, Raphael E, Jagota A. 96.  2015. Proc. R. Soc. A 471:217520140727 [Google Scholar]
  98. Carrillo JMY, Raphael E, Dobrynin AV. 97.  2010. Langmuir 26:12973–79 [Google Scholar]
  99. Maugis D. 98.  1992. J. Colloid Interface Sci. 150:243–69 [Google Scholar]
  100. Karpitschka S, van Wijngaarden L, Snoeijer JH. 99.  2016. Soft Matter 12:4463–71 [Google Scholar]
  101. Cao Z, Stevens MJ, Dobrynin AV. 100.  2014. Macromolecules 47:3203–9 [Google Scholar]
  102. Jensen KE, Sarfati R, Style RW, Boltyanskiy R, Chakrabarti A. 101.  et al. 2015. PNAS 112:14490–94 [Google Scholar]
  103. Liu Q, Suo Z. 102.  2016. Extreme Mech. Lett. 7:27–33 [Google Scholar]
  104. Rowlinson JS, Widom B. 103.  2013. Molecular Theory of Capillarity. Oxford, UK: Clarendon [Google Scholar]
  105. Fuller GG, Vermant J. 104.  2012. Annu. Rev. Chem. Biomol. Eng. 3:519–43 [Google Scholar]
  106. Hermans E, Bhamla MS, Kao P, Fuller GG, Vermant J. 105.  2015. Soft Matter 11:8048–57 [Google Scholar]
  107. Scriven L. 106.  1960. Chem. Eng. Sci. 12:98–108 [Google Scholar]
  108. Cammarata R. 107.  2008. Philos. Mag. 88:927–48 [Google Scholar]
  109. Cahn JW. 108.  1980. Acta Metall. 28:1333–38 [Google Scholar]
  110. Hui CY, Jagota A. 109.  2013. Langmuir 29:11310–16 [Google Scholar]
  111. Lu W, Suo Z. 110.  2001. J. Mech. Phys. Solids 49:1937–50 [Google Scholar]
  112. Benveniste Y, Miloh T. 111.  2007. J. Elastic. 88:87–111 [Google Scholar]
  113. Hajji M. 112.  1978. J. Appl. Mech. 45:320–24 [Google Scholar]
  114. Dervaux J, Limat L. 113.  2015. Proc. R. Soc. A 471:217620140813 [Google Scholar]
  115. Sneddon IN. 114.  1995. Fourier Transforms. New York: Dover [Google Scholar]
  116. Abramovich M, Stegun IA. 115.  1968. Handbook of Mathematical Functions. New York: Dover [Google Scholar]
  117. Henann DL, Bertoldi K. 116.  2014. Soft Matter 10:709–17 [Google Scholar]
  118. Saksono P, Perić D. 117.  2006. Comp. Mech. 38:265–81 [Google Scholar]
  119. Jagota A, Argento C, Mazur S. 118.  1998. J. Appl. Phys. 83:250–59 [Google Scholar]
  120. Li S, Fan H. 119.  2015. Proc. R. Soc. A 471:20150224 [Google Scholar]
  121. Cao Z, Stevens MJ, Dobrynin AV. 120.  2014. Macromolecules 47:6515–21 [Google Scholar]
  122. Snoeijer JH, Andreotti B. 121.  2008. Phys. Fluids 20:057101 [Google Scholar]
  123. 122. Simulia 2015. Abaqus User Manuals 6.13. Fremont, CA: Dassault Syst. [Google Scholar]
  124. Rubinstein M, Colby RH. 123.  2003. Polymer Physics. Oxford, UK: Oxford Univ. Press [Google Scholar]
  125. Dee GT, Sauer BB. 124.  1998. Adv. Phys. 47:161–205 [Google Scholar]
  126. Seifert U. 125.  1997. Adv. Phys. 46:13–137 [Google Scholar]
  127. Helfrich W. 126.  1973. Z. Naturforsch. C Bio. Sci. 28:693–703 [Google Scholar]
  128. Hutchinson J. 127.  1970. Proc. R. Soc. A 319:247–72 [Google Scholar]
  129. Rice JR. 128.  1968. J. Appl. Mech. 35:379–86 [Google Scholar]
  130. Zemel A, Rehfeldt F, Brown AEX, Discher DE, Safran SA. 129.  2010. Nat. Phys. 6:468–73 [Google Scholar]
  131. Schwarz US, Safran SA. 130.  2013. Rev. Mod. Phys. 85:1327–81 [Google Scholar]
  132. German G, Bertola V. 131.  2009. J. Phys.: Condens. Matter 21:375111 [Google Scholar]
  133. Style RW, Isa L, Dufresne ER. 132.  2015. Soft Matter 11:7412–19 [Google Scholar]
  134. Gonzalez-Rodriguez D, Sart S, Babataheri A, Tareste D, Barakat AI. 133.  et al. 2015. Phys. Rev. Lett. 115:088102 [Google Scholar]
  135. Karpitschka S, Pandey A, Lubbers LA, Weijs JH, Botto L. 134.  et al. 2016. PNAS 113:277403–7 [Google Scholar]
  136. Chakrabarti A, Chaudhury MK. 135.  2014. Langmuir 30:4684–93 [Google Scholar]
  137. Chakrabarti A, Chaudhury MK. 136.  2014. Langmuir 31:1911–20 [Google Scholar]
  138. Sokuler M, Auernhammer GK, Roth M, Liu C, Bonaccurso E, Butt HJ. 137.  2010. Langmuir 26:1544–47 [Google Scholar]
  139. Eslami F, Elliott JAW. 138.  2011. J. Phys. Chem. B 115:10646–53 [Google Scholar]
  140. Lopes MC, Bonaccurso E. 139.  2012. Soft Matter 8:7875–81 [Google Scholar]
  141. Mehrabian H, Harting J, Snoeijer JH. 140.  2016. Soft Matter 12:41062–73 [Google Scholar]
  142. Petit J, Bonaccurso E. 141.  2014. Langmuir 30:1160–68 [Google Scholar]
  143. Lopes MC, Bonaccurso E. 142.  2013. Soft Matter 9:7942–50 [Google Scholar]
  144. Weijs JH, Lohse D. 143.  2013. Phys. Rev. Lett. 110:054501 [Google Scholar]
  145. Rose S, Prevoteau A, Elzire P, Hourdet D, Marcellan A, Leibler L. 144.  2014. Nature 505:382–85 [Google Scholar]
  146. Wexler JS, Heard TM, Stone HA. 145.  2014. Phys. Rev. Lett. 112:066102 [Google Scholar]
  147. Li K, Cai S. 146.  2014. Soft Matter 10:8202–9 [Google Scholar]
  148. Labonte D, Federle W. 147.  2015. Philos. Trans. R. Soc. Lond. B 370:20140027 [Google Scholar]
  149. Carre A, Gastel JC, Shanahan MER. 148.  1996. Nature 379:432–34 [Google Scholar]
  150. Chen L, Auernhammer GK, Bonaccurso E. 149.  2011. Soft Matter 7:9084–89 [Google Scholar]
  151. Kajiya T, Daerr A, Narita T, Royon L, Lequeux F, Limat L. 150.  2013. Soft Matter 9:454–61 [Google Scholar]
  152. Chakrabarti A, Chaudhury MK. 151.  2014. Extreme Mech. Lett. 1:47–53 [Google Scholar]
  153. Neukirch S, Antkowiak A, Marigo JJ. 152.  2014. Phys. Rev. E 89:012401 [Google Scholar]
  154. Andreotti B, Snoeijer JH. 153.  2016. Europhys. Lett. 113:66001 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031016-025326
Loading
/content/journals/10.1146/annurev-conmatphys-031016-025326
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error