1932

Abstract

Non-Fermi liquids are unconventional metals whose physical properties deviate qualitatively from those of noninteracting fermions due to strong quantum fluctuations near Fermi surfaces. They arise when metals are subject to singular interactions mediated by soft collective modes. In the absence of well-defined quasiparticles, universal physics of non-Fermi liquids is captured by interacting field theories which replace Landau Fermi liquid theory. However, it has been difficult to understand their universal low-energy physics due to a lack of theoretical methods that take into account strong quantum fluctuations in the presence of abundant low-energy degrees of freedom. In this review, we discuss two approaches that have been recently developed for non-Fermi liquid theory with emphasis on two space dimensions. The first is a perturbative scheme based on a dimensional regularization, which achieves a controlled access to the low-energy physics by tuning the codimension of Fermi surface. The second is a nonperturbative approach which treats the interaction ahead of the kinetic term through a non-Gaussian scaling called interaction-driven scaling. Examples of strongly coupled non-Fermi liquids amenable to exact treatments through the interaction-driven scaling are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031016-025531
2018-03-10
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/9/1/annurev-conmatphys-031016-025531.html?itemId=/content/journals/10.1146/annurev-conmatphys-031016-025531&mimeType=html&fmt=ahah

Literature Cited

  1. Landau L. 1.  1957. Sov. Phys. J. Exp. Theor. Phys 3920 [Google Scholar]
  2. Polchinski J. 2.  1992. Lectures presented at TASI Rep. No. NSF-ITP-92-132, UTTG-20-92 arXiv9210046 [Google Scholar]
  3. Shankar R. 3.  1994. Rev. Mod. Phys. 66:129–92 [Google Scholar]
  4. Hertz JA. 4.  1976. Phys. Rev. B 14:1165–84 [Google Scholar]
  5. Millis AJ. 5.  1993. Phys. Rev. B 48:7183–96 [Google Scholar]
  6. Löhneysen Hv, Rosch A, Vojta M, Wölfle P. 6.  2007. Rev. Mod. Phys 79:1015–75 [Google Scholar]
  7. Stewart GR. 7.  2001. Rev. Mod. Phys. 73:797–855 [Google Scholar]
  8. Senthil T. 8.  2008. Phys. Rev. B 78:035103 [Google Scholar]
  9. Holstein T, Norton RE, Pincus P. 9.  1973. Phys. Rev. B 8:2649–56 [Google Scholar]
  10. Reizer MY. 10.  1989. Phys. Rev. B 40:11571–75 [Google Scholar]
  11. Altshuler BL, Ioffe LB, Millis AJ. 11.  1994. Phys. Rev. B 50:14048–64 [Google Scholar]
  12. Kim YB, Furusaki A, Wen XG, Lee PA. 12.  1994. Phys. Rev. B 50:17917–32 [Google Scholar]
  13. Lee PA. 13.  1989. Phys. Rev. Lett. 63:680–83 [Google Scholar]
  14. Polchinski J. 14.  1994. Nucl. Phys. B 422:617–33 [Google Scholar]
  15. Lee PA, Nagaosa N. 15.  1992. Phys. Rev. B 46:5621–39 [Google Scholar]
  16. Nayak C, Wilczek F. 16.  1994. Nucl. Phys. B 417:359–73 [Google Scholar]
  17. Lee SS. 17.  2009. Phys. Rev. B 80:165102 [Google Scholar]
  18. Metlitski MA, Sachdev S. 18.  2010.a Phys. Rev. B 82:075127 [Google Scholar]
  19. Mross DF, McGreevy J, Liu H, Senthil T. 19.  2010. Phys. Rev. B 82:045121 [Google Scholar]
  20. Jiang HC, Block MS, Mishmash RV, Garrison JR, Sheng D. 20.  et al. 2013. Nature 493:39–44 [Google Scholar]
  21. Dalidovich D, Lee SS. 21.  2013. Phys. Rev. B 88:245106 [Google Scholar]
  22. Sur S, Lee SS. 22.  2014. Phys. Rev. B 90:045121 [Google Scholar]
  23. Holder T, Metzner W. 23.  2015. Phys. Rev. B 92:041112 [Google Scholar]
  24. Oganesyan V, Kivelson SA, Fradkin E. 24.  2001. Phys. Rev. B 64:195109 [Google Scholar]
  25. Metzner W, Rohe D, Andergassen S. 25.  2003. Phys. Rev. Lett 91:066402 [Google Scholar]
  26. Lawler MJ, Fradkin E. 26.  2007. Phys. Rev. B 75:033304 [Google Scholar]
  27. Rech J, Pépin C, Chubukov AV. 27.  2006. Phys. Rev. B 74:195126 [Google Scholar]
  28. Maslov DL, Chubukov AV. 28.  2010. Phys. Rev. B 81:045110 [Google Scholar]
  29. Zacharias M, Wölfle P, Garst M. 29.  2009. Phys. Rev. B 80:165116 [Google Scholar]
  30. Lee SS. 30.  2008. Phys. Rev. B 78:085129 [Google Scholar]
  31. Säterskog P, Meszena B, Schalm K. 31.  2017. Phys. Rev. B 96:155125 [Google Scholar]
  32. Fitzpatrick AL, Kachru S, Kaplan J, Raghu S. 32.  2014. Phys. Rev. B 89:165114 [Google Scholar]
  33. Mandal I, Lee SS. 33.  2015. Phys. Rev. B 92:035141 [Google Scholar]
  34. Chakravarty S, Norton RE, Syljuåsen OF. 34.  1995. Phys. Rev. Lett 74:1423–26 [Google Scholar]
  35. Fitzpatrick AL, Kachru S, Kaplan J, Raghu S. 35.  2013. Phys. Rev. B 88:125116 [Google Scholar]
  36. Senthil T, Shankar R. 36.  2009. Phys. Rev. Lett 102:046406 [Google Scholar]
  37. Sur S, Lee SS. 37.  2015. Phys. Rev. B 91:125136 [Google Scholar]
  38. Eberlein A, Mandal I, Sachdev S. 38.  2016. Phys. Rev. B 94:045133 [Google Scholar]
  39. Eberlein A, Patel AA, Sachdev S. 39.  2017. Phys. Rev. B 95:075127 [Google Scholar]
  40. Son DT. 40.  1999. Phys. Rev. D 59:094019 [Google Scholar]
  41. Metlitski MA, Mross DF, Sachdev S, Senthil T. 41.  2015. Phys. Rev. B 91:115111 [Google Scholar]
  42. Raghu S, Torroba G, Wang H. 42.  2015. Phys. Rev. B 92:205104 [Google Scholar]
  43. Lederer S, Schattner Y, Berg E, Kivelson SA. 43.  2015. Phys. Rev. Lett 114:097001 [Google Scholar]
  44. Mandal I. 44.  2016. Phys. Rev. B 94:115138 [Google Scholar]
  45. Lederer S, Schattner Y, Berg E, Kivelson SA. 45.  2017. PNAS 114:4905–10 [Google Scholar]
  46. Xu XY, Sun K, Schattner Y, Berg E, Meng ZY. 46.  2017. Phys. Rev. X 7:031058 [Google Scholar]
  47. Wang Y, Abanov A, Altshuler BL, Yuzbashyan EA, Chubukov AV. 47.  2016. Phys. Rev. Lett 117:157001 [Google Scholar]
  48. Balents L, Fisher MPA. 48.  1996. Phys. Rev. Lett 76:2782–85 [Google Scholar]
  49. Wen XG. 49.  1990. Phys. Rev. B 41:12838–44 [Google Scholar]
  50. Patel AA, Sachdev S. 50.  2017. PNAS 114:1844–49 [Google Scholar]
  51. Abanov A, Chubukov AV. 51.  2000. Phys. Rev. Lett. 84:5608–11 [Google Scholar]
  52. Abanov A, Chubukov A. 52.  2004. Phys. Rev. Lett. 93:255702 [Google Scholar]
  53. Metlitski MA, Sachdev S. 53.  2010.b Phys. Rev. B 82:075128 [Google Scholar]
  54. Schlief A, Lunts P, Lee SS. 54.  2017.b Phys. Rev. X 7:021010 [Google Scholar]
  55. Lunts P, Schlief A, Lee SS. 55.  2017. Phys. Rev. B 95:245109 [Google Scholar]
  56. Sur S, Lee SS. 56.  2016. Phys. Rev. B 94:195135 [Google Scholar]
  57. Huh Y, Sachdev S. 57.  2008. Phys. Rev. B 78:064512 [Google Scholar]
  58. Abanov A, Chubukov AV, Schmalian J. 58.  2003. Adv. Phys. 52:119–218 [Google Scholar]
  59. Maier SA, Strack P. 59.  2016. Phys. Rev. B 93:165114 [Google Scholar]
  60. Scalapino D, Loh E Jr., Hirsch J. 60.  1986. Phys. Rev. B 34:8190 [Google Scholar]
  61. Miyake K, Schmitt-Rink S, Varma CM. 61.  1986. Phys. Rev. B 34:6554–56 [Google Scholar]
  62. Moriya T, Takahashi Y, Ueda K. 62.  1990. J. Phys. Soc. Jpn. 59:2905–15 [Google Scholar]
  63. Berg E, Metlitski MA, Sachdev S. 63.  2012. Science 338:1606–9 [Google Scholar]
  64. Li ZX, Wang F, Yao H, Lee DH. 64.  2016. Sci. Bull 61:925 [Google Scholar]
  65. Schattner Y, Gerlach MH, Trebst S, Berg E. 65.  2016. Phys. Rev. Lett. 117:097002 [Google Scholar]
  66. Monthoux P, Balatsky AV, Pines D. 66.  1992. Phys. Rev. B 46:14803–17 [Google Scholar]
  67. Chubukov AV, Schmalian J. 67.  2005. Phys. Rev. B 72:174520 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031016-025531
Loading
/content/journals/10.1146/annurev-conmatphys-031016-025531
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error