Since the discovery of high- cuprates, the quest for new superconductors has shifted toward more anisotropic, strongly correlated materials with lower carrier densities and competing magnetic and charge-density wave orders. Although these materials’ features enhance superconducting correlations, they also result in serious problems for applications at liquid nitrogen (and higher) temperatures and strong magnetic fields so that such conventional characteristics as the critical temperature and the upper critical field are no longer the main parameters of merit. This happens because of strong fluctuations of the order parameter, thermally activated hopping of pinned vortices, and electromagnetic granularity, as has been established after extensive investigations of cuprates and Fe-based superconductors (FBSs). In this paper, I give an overview of those mechanisms crucial for power and magnet applications and discuss the materials’ restrictions that must be satisfied to make superconductors useful at high temperatures and magnetic fields. These restrictions become more and more essential at higher temperatures and magnetic fields, particularly for the yet-to-be-discovered superconductors operating at room temperatures. In this case, the performance of superconductors is limited by destructive fluctuations of the order parameter so that higher superfluid density and weaker electronic anisotropy, which reduce these fluctuations, can become far more important than higher .


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Geballe TH, Hulm JK. 1996. Bernd Theodor Matthias Washington, DC: Natl. Acad. Press [Google Scholar]
  2. Berlincourt TG. 1987. IEEE Trans. Magn. 23:403–12 [Google Scholar]
  3. Onnes HK. 1913. Comm. Physical Lab., Univ. of Leiden Suppl. 34b to 133-144:37
  4. Meissner W, Oschenfeld R. 1933. Naturwissenschaften 21:787–88 [Google Scholar]
  5. Shubnikov LV, Khotkevich VI, Shepelev YuD, Ryabinin YuN. 1937. Zh. Exp. Teor. Fiz. 7:221–37 [Google Scholar]
  6. London F, London H. 1935. Proc. R. Soc. A149:71–88 [Google Scholar]
  7. Ginzburg VL, Landau LD. 1950. Zh. Eksp. Teor. Fiz 20:1064–81 Transl., LD Landau, 1985, in Collected Works, p. 546. Oxford: Pergamon [Google Scholar]
  8. Bardeen J, Cooper LN, Schrieffer JR. 1957. Phys. Rev. 108:1175–204 [Google Scholar]
  9. Abrikosov AA. 1957. Zh. Exp. Teor. Fiz. 22:1442–52 Transl., 1957, in J. Exp. Theor. Phys. 5:1174–82 [Google Scholar]
  10. Gorkov LP. 1959. Zh. Exp. Teor. Fiz. 37:1407–16 Transl., 1960, in J. Exp. Theor. Phys. 9:998–1004 [Google Scholar]
  11. Helfand E, Werthamer NR. 1966. Phys. Rev. 147:288–94 [Google Scholar]
  12. Larbalestier D, Gurevich A, Feldmann M, Polyanskii A. 2001. Nature 414:368–77 [Google Scholar]
  13. Larbalestier DC. 2012. See Ref. 134, pp. 627–42
  14. Eliashberg GM. 1960. Zh. Exp. Teor. Fiz. 38:966–974 Transl., 1960, in J. Exp. Theor. Phys. 11:696–702 [Google Scholar]
  15. Scalapino DJ, Schrieffer JR, Wilkins JW. 1966. Phys. Rev. 148:263–79 [Google Scholar]
  16. Allen PB, Dynes RC. 1975. Phys. Rev. B 12:905–22 [Google Scholar]
  17. Carbotte JP. 1990. Rev. Mod. Phys. 62:1027–57 [Google Scholar]
  18. Campbell AM, Evetts JE. 1972. Adv. Phys. 21:194–428 [Google Scholar]
  19. Wilson M. 1983. Superconducting Magnets Oxford: Clarendon [Google Scholar]
  20. Gurevich A, Patnaik S, Braccini V, Kim KH, Mielke C et al. 2004. Supercond. Sci. Technol. 17:278–86 [Google Scholar]
  21. Wilke RTH, Bud’ko SL, Canfield PC, Finnemore DK, Suplinskas RJ, Hannahs ST. 2004. Phys. Rev. Lett. 92:217003 [Google Scholar]
  22. Braccini V, Gurevich A, Giencke JE, Jewell MC, Eom C-B et al. 2005. Phys. Rev. B 71:012504 [Google Scholar]
  23. Flükiger R, Kumakura H. 2012. See Ref. 134, pp. 702–10
  24. Larkin AI, Varlamov AA. 2007. Fluctuations in Superconductors Oxford: Clarendon Press [Google Scholar]
  25. Blatter G, Feigelman MV, Geshkenbein VB, Larkin AI, Vinokur VV. 1994. Rev. Mod. Phys. 66:1125–388 [Google Scholar]
  26. Brandt EH. 1995. Rep. Prog. Phys. 58:1465–594 [Google Scholar]
  27. Tinkham M. 2004. Introduction to Superconductivity New York: McGraw-Hill, 2nd ed.. [Google Scholar]
  28. Fischer O. 1978. Appl. Phys. (Berl.) 16:1–28 [Google Scholar]
  29. Stewart GR. 1984. Rev. Mod. Phys. 56:755–87 [Google Scholar]
  30. Steglich F. 2012. See Ref. 134, pp. 283–87
  31. Jerome D, Schulz HJ. 2002. Adv. Phys. 51:293–479 [Google Scholar]
  32. Ishiguro T, Yamaji K, Saito G. 1998. Organic Superconductors. Springer Series in Solid State Physics Vol. 88 Berlin, Heidelberg: Springer-Verlag [Google Scholar]
  33. Bednortz JG, Muller P. 1986. Z. Phys. 64:189–93 [Google Scholar]
  34. Kamihara Y, Watanabe T, Hirano M, Hosono H. 2008. J. Am. Chem. Soc. 130:3296–97 [Google Scholar]
  35. Paglione J, Greene RL. 2010. Nat. Phys. 6:645–58 [Google Scholar]
  36. Canfield PC, Bud’ko SL. 2010. Annu. Rev. Condens. Matter Phys. 1:27–50 [Google Scholar]
  37. Johnston DC. 2010. Adv. Phys. 59:803–1061 [Google Scholar]
  38. Putti M, Pallecchi I, Bellinger E, Tropeano M, Ferdeghini C et al. 2010. Supercond. Sci. Technol. 23:034003 [Google Scholar]
  39. Tanabe K, Hosono H. 2012. Jpn. J. Appl. Phys. 51:010005 [Google Scholar]
  40. Wen HH, Li S. 2011. Annu. Rev. Condens. Matter Phys. 2:121–40 [Google Scholar]
  41. Hilgenkamp H, Mannhart J. 2002. Rev. Mod. Phys. 74:485–549 [Google Scholar]
  42. Durrell JH, Eom C-B, Gurevich A, Hellstrom EE, Tarantini C et al. 2011. Rep. Prog. Phys. 74:124511 [Google Scholar]
  43. Gurevich A. 2011. Rep. Prog. Phys. 74:124501 [Google Scholar]
  44. Tarantini A, Gurevich A, Jaroszynski J, Balakirev F, Bellingeri E et al. 2011. Phys. Rev. B 84:184522 [Google Scholar]
  45. Yeshurun Y, Malozemoff AP, Shaulov A. 1996. Rev. Mod. Phys. 68:911–49 [Google Scholar]
  46. Haugan TJ, Barnes PN, Wheeler R, Meisenkothen F, Sumption MD. 2004. Nature 430:867–70 [Google Scholar]
  47. MacManus-Driscoll JL, Foltyn SR, Jia QX, Wang H, Serquis A et al. 2004. Nat. Mater. 3:439–43 [Google Scholar]
  48. Mele P, Matsumoto K, Horide T, Miura O, Ichinose A et al. 2006. Supercond. Sci. Technol. 19:44–50 [Google Scholar]
  49. Kang S, Goyal A, Li J, Gapud AA, Martin PM et al. 2006. Science 311:1911–14 [Google Scholar]
  50. Gutierrez J, Llordes A, Gazquez J, Gibert M, Roma N et al. 2007. Nat. Mater. 6:367–73 [Google Scholar]
  51. Maiorov B, Baily SA, Zhou H, Ugurlu O, Kennison JA et al. 2009. Nat. Mater. 8:398–404 [Google Scholar]
  52. Schilling A, Fisher RA, Phillips NE, Welp U, Kwok WK, Crabtree GW. 1997. Phys. Rev. Lett. 78:4833–36 [Google Scholar]
  53. Malozemoff AP, Yamada Y. 2012. See Ref. 134, pp. 689–701
  54. Malozemoff AP. 2013. PhysicaC 494:1–4
  55. Ott HR. 2004. High-Tc Superconductivity. The Physics of Superconductors Vol. 1 Bennemann KH, Ketterson JD. 385–494 Berlin: Springer-Verlag [Google Scholar]
  56. Tsuei CC, Kirtley JR. 2000. Rev. Mod. Phys. 72:969–1016 [Google Scholar]
  57. Norman MR, Pines D, Kallin C. 2005. Adv. Phys. 54:715–33 [Google Scholar]
  58. Lee PA, Nagaosa N, Wen X-G. 2008. Rev. Mod. Phys. 78:17–85 [Google Scholar]
  59. Zaanen J. 2012. See Ref. 134, pp. 92–114
  60. Varma CM. 2012. Rep. Prog. Phys. 75:052501 [Google Scholar]
  61. Scalapino DJ. 2012. Rev. Mod. Phys. 84:1383–717 [Google Scholar]
  62. Hirschfeld PJ, Korshunov MM, Mazin II. 2011. Rep. Prog. Phys. 74:124508 [Google Scholar]
  63. Chubukov AV. 2012. Annu. Rev. Condens. Matter Phys. 3:57–92 [Google Scholar]
  64. Dagoto E. 2005. Science 309:257–62 [Google Scholar]
  65. Maple MB, Bauer ED, Zapf VS, Wosnitza J. 2008. In Superconductivity. Conventional and Unconventional superconductors, Vol. 1, ed. KH Bennemann, JD Ketterson, pp. 639–762. Berlin: Springer-Verlag
  66. Cohen ML. 1964. Rev. Mod. Phys. 36:240–43 [Google Scholar]
  67. Blase X, Bustarret E, Chapelier C, Klein T, Marcenat C. 2009. Nat. Mater. 8:375–82 [Google Scholar]
  68. Gunnarsson O. 1997. Rev. Mod. Phys. 69:575–606 [Google Scholar]
  69. Beasley MR. 2011. Mater. Res. Bull. 36:597–600 [Google Scholar]
  70. Gurevich A. 2011. Nat. Mater. 10:255–59 [Google Scholar]
  71. Emery VJ, Kivelson SA. 1995. Nature 374:434–37 [Google Scholar]
  72. Carson EW, Emery VJ, Kivelson SA, Orgad D. 2004. Physics of Conventional and Inconventional Superconductivity Vol. 2 Bennemann KH, Ketterson JD. 275–452 Berlin, Heidelberg, New York: Springer-Verlag [Google Scholar]
  73. Tallon JL, Storey JG, Makket B. 2012. Physica C 482:45–49 [Google Scholar]
  74. Tinkham M. 1988. Phys. Rev. Lett. 66:1658–61 [Google Scholar]
  75. Shiohara Y, Taneda T, Yoshizimi M. 2012. Jpn. J. Appl. Phys. 51:010007 [Google Scholar]
  76. Kumakura H. 2012. Jpn. J. Appl. Phys. 51:010003 [Google Scholar]
  77. Li B, Zhou D, Xu K, Hara S, Tsuzuki K et al. 2012. Physica C 482:50–57 [Google Scholar]
  78. Sato K, Kobayashi S, Nakashima T. 2012. Jpn. J. Appl. Phys. 51:010006 [Google Scholar]
  79. Rupich MW, Hellstrom EE. 2012. See Ref. 134, pp. 671–88
  80. Oomen M, Herkert W, Bayer D, Kummeth P, Nick W, Arndt T. 2012. Physica C 482:111–18 [Google Scholar]
  81. Zhou D, Izumi M, Miki M, Felder F, Ida T, Kitano ML. 2012. Supercond. Sci. Technol. 25:103101 [Google Scholar]
  82. Trociewitz UP, Dalban-Canassy M, Hannion M, Hilton DK, Jaroszynski J et al. 2011. Appl. Phys. Lett. 99:202506 [Google Scholar]
  83. Ma Y. 2012. Supercond. Sci. Technol. 25:113001 [Google Scholar]
  84. Tarantini C, Lee S, Kametani F, Jiang J, Weiss J et al. 2012. Phys. Rev. B 86:214504 [Google Scholar]
  85. Lee S, Tarantini C, Gao P, Jiang J, Weiss JD et al. 2013. Nat. Mater. 12:392–96 [Google Scholar]
  86. Yao C, Ma Y, Zhang X, Wang D, Wang C et al. 2013. Appl. Phys. Lett. 102:082602 [Google Scholar]
  87. Ding Q-P, Prombood T, Tsuchiya Y, Nakajima Y, Tamegai T. 2012. Supercond. Sci. Technol. 25:035019 [Google Scholar]
  88. Ding Y, Li GZ, Yang Y, Kovacs CJ, Susner MA et al. 2012. Physica C 483:13–16 [Google Scholar]
  89. Yao C, Wang C, Zhang X, Wang L, Gao Z et al. 2012. Supercond. Sci. Technol. 25:035020 [Google Scholar]
  90. Gao Z, Ma Y, Yao C, Zhang X, Wang C et al. 2012. Sci. Reports 2:998 [Google Scholar]
  91. Wang L, Ma Y, Wang Q, Li K, Zhang X et al. 2011. Appl. Phys. Lett. 98:222505 [Google Scholar]
  92. Si W, Han SJ, Shi X, Ehrlich SN, Jaroszynski J et al. 2013. Nature Commun. 4:1347 [Google Scholar]
  93. Weiss JD, Tarantini C, Jiang J, Kametani F, Polyanskii AA et al. 2012. Nat. Mater. 11:682–85 [Google Scholar]
  94. Fang L, Jia Y, Chaparro C, Sheet G, Claus H et al. 2012. Appl. Phys. Lett. 101:012601 [Google Scholar]
  95. Orlando TP, McNiff EJ, Foner S, Beasley MR. 1979. Phys. Rev. B 19:4545–61 [Google Scholar]
  96. Basov DN, Liang R, Bonn DA, Hardy WN, Dabrovsky B et al. 1995. Phys. Rev. Lett. 74:598–601 [Google Scholar]
  97. Prozorov R, Giannetta RW, Carrington A, Fournier P, Green RL et al. 2000. Appl. Phys. Lett. 77:4202–4 [Google Scholar]
  98. Leong KT, Booth JC, Claassen JH. 2007. J. Supercond. Nov. Magn. 19:637–48 [Google Scholar]
  99. Bonn DA, Hardy WH. 2007. Handbook of High Temperature Superconductivity Schrieffer JR, Brooks JS. 145–214 New York: Springer [Google Scholar]
  100. Gordon RT, Kim H, Salovich N, Giannetta RW, Fernandeset RM et al. 2010. Phys. Rev. B 82:054507 [Google Scholar]
  101. Kim H, Martin C, Gordon RT, Tanatar MA, Hu J et al. 2010. Phys. Rev. B 81:180503 [Google Scholar]
  102. Ofer O, Baglo JC, Hossain MD, Kiefl RF, Hardy WN et al. 2012. Phys. Rev. B 85:060506 [Google Scholar]
  103. Maurer SM, Yeh N-C, Tombrello TA. 1998. J. Phys. Condens. Matter 10:7429–43 [Google Scholar]
  104. Priour DJ, Fertig HA. 2003. Phys. Rev. B 67:054504 [Google Scholar]
  105. Gurevich A, Cooley LD. 1994. Phys. Rev. B 50:13563–76 [Google Scholar]
  106. Labusch R. 1969. Cryst. Lattice Defects 1:1–16 [Google Scholar]
  107. Blatter G, Geshkenbein VB, Koopmann JAG. 2004. Phys. Rev. Lett. 92:067009 [Google Scholar]
  108. Brandt EH. 1992. Phys. Rev. Lett. 69:1105–9 [Google Scholar]
  109. Gurevich A. 2007. Supercond. Sci. Technol. 20:S128–35 [Google Scholar]
  110. Koshelev AE, Kolton AB. 2011. Phys. Rev. B 84:104528 [Google Scholar]
  111. Llordes A, Palau A, Gazquez J, Coll M, Vlad R et al. 2012. Nat. Mater. 11:329–36 [Google Scholar]
  112. Civale L. 1997. Supercond. Sci. Technol. 10:A11–28 [Google Scholar]
  113. Nelson DR, Vinokur VV. 1993. Phys. Rev. B 48:13060–97 [Google Scholar]
  114. Hwa T, LeDoussal P, Nelson DR, Vinokur VM. 1993. Phys. Rev. Lett. 71:3545–48 [Google Scholar]
  115. Gurevich A, Pashitskii EA. 1998. Phys. Rev. B 57:13878–93 [Google Scholar]
  116. Graser S, Hirschfeld PJ, Kopp T, Gutser R, Andersen BM, Mannhart J. 2010. Nat. Phys. 6:609–12 [Google Scholar]
  117. Song X, Daniels G, Feldmann MD, Gurevich A, Larbalestier D. 2005. Nat. Mater. 4:470–75 [Google Scholar]
  118. Wolf FA, Graser S, Loder F, Kopp T. 2012.. Phys. Rev. Lett. 108::117002 [Google Scholar]
  119. Little WA. 1964. Phys. Rev. 134:A1416–24 [Google Scholar]
  120. Ginzburg VL. 1970. Usp. Fiziol. Nauk 101:185 [Sov. Phys. Uspekhi 13:335] [Google Scholar]
  121. Allender D, Bray J, Bardeen J. 1973. Phys. Rev. B 7:1020–29 [Google Scholar]
  122. Pickett WE. 2006. J. Supercond. Novel Magn. 19:291–97 [Google Scholar]
  123. Geballe TH, Kostner G. 2007. Handbook of High Temperature Superconductivity Schrieffer JR, Brooks JS. 325–44 New York: Springer [Google Scholar]
  124. Chu CW. 2012. Physica C 482:33–44 [Google Scholar]
  125. Nguyen AK, Sudbo A. 1999. Phys. Rev. B 60:15307–31 [Google Scholar]
  126. Frantz M, Teszanovic Z. 2001. Phys. Rev. Lett. 87:257003 [Google Scholar]
  127. Sachdev S. 2012. Annu. Rev. Condens. Matter Phys. 3:9–33 [Google Scholar]
  128. Minnhagen P. 1987. Rev. Mod. Phys. 59:1001–66 [Google Scholar]
  129. McCumber DE, Halperin BI. 1970. Phys. Rev. B 1:1054–69 [Google Scholar]
  130. Binder K, Luijten E. 2001. Phys. Rep. 344:179–253 [Google Scholar]
  131. Berg E, Orgad D, Kivelson SA. 2008. Phys. Rev. B 78:094509 [Google Scholar]
  132. Kivelson SA, Fradkin E. 2007. Handbook of High Temperature Superconductivity Schrieffer JR, Brooks JS. 570–96 New York: Springer [Google Scholar]
  133. Taillefer L. 2010. Annu. Rev. Condens. Matter Phys. 1:51–70 [Google Scholar]
  134. Balatsky AV, Vekhter I, Zhu J-X. 2006. Rev. Mod. Phys. 78:373–433 [Google Scholar]
  135. Rogall H, Kes PH. 2012.. 100 Years of Superconductivity Boca Raton, FL: Taylor & Francis> [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error