1932

Abstract

Understanding Dirac-like fermions has become an imperative in modern condensed matter sciences: All across the research frontier, from graphene to high T superconductors to the topological insulators and beyond, various electronic systems exhibit properties that can be well described by the Dirac equation. Such physics is no longer the exclusive domain of quantum field theories and other esoteric mathematical musings; instead, physics of real condensed matter systems is governed by such equations, and important materials science and practical implications hinge on our understanding of Dirac particles in two and three dimensions. Although the physics that gives rise to the massless Dirac fermions in each of the above-mentioned materials is different, the low-energy properties are governed by the same Dirac kinematics. The aim of this article is to review a selected cross-section of this vast field by highlighting the generalities and contrasting the specifics of several physical systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031113-133841
2014-03-10
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/5/1/annurev-conmatphys-031113-133841.html?itemId=/content/journals/10.1146/annurev-conmatphys-031113-133841&mimeType=html&fmt=ahah

Literature Cited

  1. Dirac PAM. 1928. Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 117:778610–24 [Google Scholar]
  2. Wilczek F. 2009. Nat. Phys. 5:614–8 [Google Scholar]
  3. Weyl H. 1929. Z. Phys. 56:330–52 [Google Scholar]
  4. Majorana E. 1937. Nuovo Cim. 14:171–84 [Google Scholar]
  5. Beenakker CWJ. 2013. Annu. Rev. Condens. Matter Phys. 4:113–36 [Google Scholar]
  6. Nielsen HB, Ninomiya M. 1981. Nucl. Phys. B 185:20–40 [Google Scholar]
  7. Itzykson C, Drouffe J-M. 1989. Statistical Field Theory Vol. 1 Cambridge, UK: Cambridge Univ. Press403 [Google Scholar]
  8. Haldane FDM. 1988. Phys. Rev. Lett. 61:2015–8 [Google Scholar]
  9. Buttner B, Liu CX, Tkachov G, Novik EG, Brüne C et al. 2011. Nat. Phys. 7:418–22 [Google Scholar]
  10. Maciejko J, Hughes TL, Zhang S-C. 2011. Annu. Rev. Condens. Matter Phys. 2:31–53 [Google Scholar]
  11. Kaplan DB. 1992. Phys. Lett. B 288:342–7 [Google Scholar]
  12. Kaplan DB, Sun S. 2012. Phys. Rev. Lett. 108:181807 [Google Scholar]
  13. Volkov BA, Pankratov OA. 1985. JETP Lett. 42:178–81 [Google Scholar]
  14. Fradkin E, Dagotto E, Boyanovsky D. 1986. Phys. Rev. Lett. 57:2967–70 [Google Scholar]
  15. Boyanovsky D, Dagotto E, Fradkin E. 1987. Nucl. Phys. B 285:340–62 [Google Scholar]
  16. Fu L, Kane CL, Mele EJ. 2007. Phys. Rev. Lett. 98:106803 [Google Scholar]
  17. Fu L, Kane CL. 2007. Phys. Rev. B 76:045302 [Google Scholar]
  18. Thaller B. 1992. The Dirac Equation New York: Springer-Verlag [Google Scholar]
  19. Ludwig AWW, Fisher MPA, Shankar R, Grinstein G. 1994. Phys. Rev. B 50:7526–52 [Google Scholar]
  20. Young AF, Kim P. 2011. Annu. Rev. Condens. Matter Phys. 2:101–20 [Google Scholar]
  21. Schwinger J. 1951. Phys. Rev. 82:664–79 [Google Scholar]
  22. Allor D, Cohen TD, McGady DA. 2008. Phys. Rev. D Part. Fields Gravit. Cosmol. 78:096009 [Google Scholar]
  23. Dora B, Moessner R. 2010. Phys. Rev. B 81:165431 [Google Scholar]
  24. Rosenstein B, Lewkowicz M, Kao HC, Korniyenko Y. 2010. Phys. Rev. B 81:041416 [Google Scholar]
  25. Gavrilov SP, Gitman DM, Yokomizo N. 2012. Phys. Rev. D Part. Fields Gravit. Cosmol. 86:125022 [Google Scholar]
  26. Brey L, Fertig HA. 2009. Phys. Rev. Lett. 103:046809 [Google Scholar]
  27. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. 2009. Rev. Mod. Phys. 81:109–62 [Google Scholar]
  28. MacDonald AH. 1983. Phys. Rev. B 28:2235–6 [Google Scholar]
  29. Lukose V, Shankar R, Baskaran G. 2007. Phys. Rev. Lett. 98:116802 [Google Scholar]
  30. Jackiw R, Rebbi C. 1976. Phys. Rev. D Part. Fields 13:3398–409 [Google Scholar]
  31. Rice MJ, Mele EJ. 1982. Phys. Rev. Lett. 49:1455–9 [Google Scholar]
  32. Su WP, Schrieffer JR, Heeger AJ. 1979. Phys. Rev. Lett. 42:1698–701 [Google Scholar]
  33. Jackiw R, Schrieffer JR. 1981. Nucl. Phys. B 190:253–65 [Google Scholar]
  34. Heeger AJ, Kivelson S, Schrieffer JR, Su W-P. 1988. Rev. Mod. Phys. 60:781–850 [Google Scholar]
  35. Jackiw R, Rossi P. 1981. Nucl. Phys. B 190:681–91 [Google Scholar]
  36. Weinberg EJ. 1981. Phys. Rev. D Part. Fields 24:2669–73 [Google Scholar]
  37. Bell JS, Jackiw R. 1969. Nuovo Cim., A 60:47–61 [Google Scholar]
  38. Adler SL. 1969. Phys. Rev. 177:2426–38 [Google Scholar]
  39. Bertlmann RA. 1996. Anomalies in Quantum Field Theory New York: Oxford Univ. Press [Google Scholar]
  40. Peskin ME, Schroeder DV. 1995. An Introduction to Quantum Field Theory Cambridge, MA: Perseus Books842 [Google Scholar]
  41. Smythe WR. 1950. Static and Dynamic Electricity York, Pa.: McGraw-Hill616, 2nd ed.. [Google Scholar]
  42. Emelyanenko A, Boinovich L. 2008. J. Phys. Condens. Matter 20:494227 [Google Scholar]
  43. Wehling TO, Şaşıoğlu E, Friedrich C, Lichtenstein AI, Katsnelson MI, Blügel S. 2011. Phys. Rev. Lett. 106:236805 [Google Scholar]
  44. Herbut IF. 2006. Phys. Rev. Lett. 97:146401 [Google Scholar]
  45. Giuliani A, Mastropietro V. 2010. Commun. Math. Phys. 293:301–46 [Google Scholar]
  46. Giuliani A, Mastropietro V. 2009. Phys. Rev. B 79:201403 [Google Scholar]
  47. Fisher MPA, Grinstein G, Girvin SM. 1990. Phys. Rev. Lett. 64:587–90 [Google Scholar]
  48. Herbut IF. 2001. Phys. Rev. Lett. 87:137004(4)
  49. Gonzalez J, Guinea F, Vozmediano MAH. 1994. Nucl. Phys. B 424:595–618 [Google Scholar]
  50. Vafek O. 2007. Phys. Rev. Lett. 98:216401(4)
  51. Sheehy DE, Schmalian J. 2007. Phys. Rev. Lett. 99:226–803 [Google Scholar]
  52. Herbut IF, Juričić V, Vafek O. 2008. Phys. Rev. Lett. 100:046403 [Google Scholar]
  53. Mishchenko EG. 2008. Europhys. Lett. 83:17005 [Google Scholar]
  54. Sheehy DE, Schmalian J. 2009. Phys. Rev. B 80:193411 [Google Scholar]
  55. Juričić V, Vafek O, Herbut IF. 2010. Phys. Rev. B 82:235402 [Google Scholar]
  56. Sodemann I, Fogler MM. 2012. Phys. Rev. B 86:115408 [Google Scholar]
  57. Kotov VN, Uchoa B, Casto-Neto AH. 2008. Phys. Rev. B 78:035119 [Google Scholar]
  58. Rosenstein B, Lewkowicz M, Maniv T. 2013. Phys. Rev. Lett. 110:066602 [Google Scholar]
  59. Khveshchenko DV. 2001. Phys. Rev. Lett. 87:246802 [Google Scholar]
  60. Leal H, Khveshchenko DV. 2004. Nucl. Phys. B 687:323–31 [Google Scholar]
  61. Herbut IF, Juričić V, Vafek O. 2009. Phys. Rev. B 80:075432 [Google Scholar]
  62. Sorella S, Tosatti E. 1992. Europhys. Lett. 19:699–704 [Google Scholar]
  63. Paiva T, Scalettar RT, Zheng W, Singh RRP, Oitmaa J. 2005. Phys. Rev. B 72:085123 [Google Scholar]
  64. Meng ZY, Lang TC, Wessel S, Assaad FF, Muramatsu A. 2010. Nature 464:847–51 [Google Scholar]
  65. Sorella S, Otsuka Y, Yunoki S. 2012. Sci. Rep. 2:992 [Google Scholar]
  66. Assaad FF, Herbut IF. 2013. arXiv:1304:6340
  67. Drut JE, Lähde TA. 2009. Phys. Rev. Lett. 102:026802 [Google Scholar]
  68. Drut JE, Lähde TA. 2009. Phys. Rev. B 79:241405 [Google Scholar]
  69. Drut JE, Lähde TA. 2009. Phys. Rev. B 79:165425 [Google Scholar]
  70. Brower RC, Rebbi C, Schaich D. 2011. arXiv:1101.5131 [hep-lat]
  71. Brower R, Rebbi C, Schaich D. 2012. arXiv:1204.5424 [hep-lat]
  72. Buividovich PV, Luschevskaya EV, Pavlovsky OV, Polikarpov MI, Ulybyshev MV. 2012. Phys. Rev. B 86:045107 [Google Scholar]
  73. Buividovich PV, Polikarpov MI. 2012. Phys. Rev. B 86:245117 [Google Scholar]
  74. Ulybyshev MV, Buividovich PV, Katsnelson MI, Polikarpov MI. 2013. arXiv:1304.3660 [cond-mat.str-el]
  75. Geim AK, MacDonald AK. 2007. Phys. Today 60:35–41 [Google Scholar]
  76. Slater JC, Koster GF. 1954. Phys. Rev. 94:1498–524 [Google Scholar]
  77. Kane CL, Mele EJ. 2005. Phys. Rev. Lett. 95:226801 [Google Scholar]
  78. Yao Y, Ye F, Qu X-L, Zhang S-C, Fang Z. 2007. Phys. Rev. B 75:041401 [Google Scholar]
  79. Min H, Hill JE, Sinitsyn NA, Sahu BR, Kleinman L, MacDonald AH. 2006. Phys. Rev. B 74:165310 [Google Scholar]
  80. Luttinger JM, Kohn W. 1955. Phys. Rev. 97:869–83 [Google Scholar]
  81. DiVincenzo DP, Mele EJ. 1984. Phys. Rev. B 29:1685–94 [Google Scholar]
  82. Miller DL, Kubista KD, Rutter GM, Ruan M, de Heer WA et al. 2009. Science 324:924–7 [Google Scholar]
  83. Li G, Luican A, Andrei EY. 2009. Phys. Rev. Lett. 102:176804 [Google Scholar]
  84. Luican A, Li G, Andrei EY. 2011. Phys. Rev. B 83:041405 [Google Scholar]
  85. Vandecasteele N, Barreiro A, Lazzeri M, Bachtold A, Mauri F. 2010. Phys. Rev. B 82:045416 [Google Scholar]
  86. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ et al. 2008. Science 320:1308 [Google Scholar]
  87. Li ZQ, Henriksen EA, Jiang Z, Hao Z, Martin MC et al. 2008. Nat. Phys. 4:532–5 [Google Scholar]
  88. Elias DC, Gorbechev RV, Mayorov AS, Morozov SV, Zhukov AA et al. 2011. Nat. Phys. 7:701–4 [Google Scholar]
  89. Guinea F, Katsnelson MI, Geim AK. 2010. Nat. Phys. 6:30–3 [Google Scholar]
  90. Levy N, Burke SA, Meaker KL, Panlasigui M, Zettl A et al. 2010. Science 329:544–7 [Google Scholar]
  91. Vozmediano MAH, Katsnelson MI, Guinea F. 2010. Phys. Rep. 496:109–48 [Google Scholar]
  92. Wang Y, Wong D, Shytov AV, Brar VW, Choi S et al. 2013. 340:737–40
  93. Das Sarma S, Adam S, Hwang EH, Rossi E. 2011. Rev. Mod. Phys. 83:407–70 [Google Scholar]
  94. Moore JE, Balents L. 2007. Phys. Rev. B 75:121306 [Google Scholar]
  95. Roy R. 2009. Phys. Rev. B 79:195322 [Google Scholar]
  96. Zhang H, Liu C-X, Qi X-L, Dai X, Fang Z et al. 2009. Nat. Phys. 6:438–42 [Google Scholar]
  97. Liu C-X, Qi X-L, Zhang H, Dai X, Fang Z et al. 2010. Phys. Rev. B 82:045122 [Google Scholar]
  98. Hasan MZ, Moore JE. 2011. Annu. Rev. Condens. Matter Phys. 2:55–78 [Google Scholar]
  99. Harrison W. 1989. Electronic Structure and the Properties of Solids Mineola, NY: Dover Publications, Inc [Google Scholar]
  100. Ando T, Nakanishi T. 1998. J. Phys. Soc. Jpn. 67:1704–13 [Google Scholar]
  101. Bardarson JH, Twordzyło J, Brouwer PW, Beenakker CWJ. 2007. Phys. Rev. Lett. 99:106801 [Google Scholar]
  102. Nomura K, Koshino M, Ryu S. 2007. Phys. Rev. Lett. 99:146806 [Google Scholar]
  103. Lewenkopf CH, Mucciolo ER, Castro Neto AH. 2008. Phys. Rev. B 77:081410 [Google Scholar]
  104. McCann E, Kechedzhi K, Fal’ko VI, Suzuura H, Ando T, Altshuler BL. 2006. Phys. Rev. Lett. 97:146805 [Google Scholar]
  105. Aleiner IL, Efetov KB. 2006. Phys. Rev. Lett. 97:236801 [Google Scholar]
  106. Shon NH, Ando T. 1998. J. Phys. Soc. Jpn. 67:2421–9 [Google Scholar]
  107. Mucciolo ER, Lewenkopf CH. 2010. J. Phys. Condens. Matter 22:273201 [Google Scholar]
  108. Schubert G, Fehske H, Fritz L, Vojta M. 2012. Phys. Rev. B 85:201105 [Google Scholar]
  109. Ostrovsky PM, Gornyi IV, Mirlin AD. 2010. Phys. Rev. Lett. 105:036803 [Google Scholar]
  110. Bardarson JH, Moore JE. 2012. arXiv:1209.3280 [cond-mat.mes-hall]
  111. Lee DH. 2009. Phys. Rev. Lett. 103:196804 [Google Scholar]
  112. Vafek O. 2011. Phys. Rev. B 84:245417 [Google Scholar]
  113. Zhang Y-Y, Wang X-R, Xie XC. 2012. J. Phys. Condens. Matter 24:015004 [Google Scholar]
  114. Brüne C, Liu CX, Novik EG, Hankiewicz EM, Buhmann H et al. 2011. Phys. Rev. Lett. 106:126803 [Google Scholar]
  115. Dolgopolov VT, Shashkin AA, Zhitenev NB, Dorozhkin SI. 1992. Phys. Rev. B 46:12560–7 [Google Scholar]
  116. Wilczek F. 1987. Phys. Rev. Lett. 58:1799–802 [Google Scholar]
  117. Qi X-L, Hughes TL, Zhang SC. 2008. Phys. Rev. B 78:195424 [Google Scholar]
  118. Franz M. 2008. Physics 1:36 [Google Scholar]
  119. Essin AM, Moore JE, Vanderbilt D. 2009. Phys. Rev. Lett. 102:146805 [Google Scholar]
  120. Van Harlingen DJ. 1995. Rev. Mod. Phys. 67:515–35 [Google Scholar]
  121. Kirtley JR, Tsuei CC. 2000. Rev. Mod. Phys. 72:969–1016 [Google Scholar]
  122. Kirtley JR, Tsuei CC, Ariando, Verwijs CJM, Harkema S, Hilgenkamp H. 2006. Nat. Phys. 2:190–4
  123. Volovik GE. 1993. JETP Lett. 58:457–61 [Google Scholar]
  124. Wang Y, MacDonald AH. 1995. Phys. Rev. B 52:R3876–9 [Google Scholar]
  125. Simon SH, Lee PA. 1997. Phys. Rev. Lett. 78:1548–51 [Google Scholar]
  126. Yasui K, Kita T. 1999. Phys. Rev. Lett. 83:4168–71 [Google Scholar]
  127. Franz M, Tesanovic Z. 2000. Phys. Rev. Lett. 84:554–7 [Google Scholar]
  128. Marinelli L, Halperin BI, Simon SH. 2000. Phys. Rev. B 62:3488–501 [Google Scholar]
  129. Vafek O, Melikyan A, Franz M, Tesanovic Z. 2001. Phys. Rev. B 63:134509 [Google Scholar]
  130. Vishwanath A. 2001. Phys. Rev. Lett. 87:217004 [Google Scholar]
  131. Vafek O, Melikyan A, Tesanovic Z. 2001. Phys. Rev. B 64:224508 [Google Scholar]
  132. Vishwanath A. 2002. Phys. Rev. B 66:064504 [Google Scholar]
  133. Hussey NE, Abdel-Jawad M, Carrington A, Mackenzie AP, Balicas L. 2003. Nature 425:814–7 [Google Scholar]
  134. Vignolle B, Carrington A, Cooper RA, French MMJ, Mackenzie AP et al. 2008. Nature 455:952–5 [Google Scholar]
  135. Melikyan A, Tesanovic Z. 2007. Phys. Rev. B 76:094509 [Google Scholar]
  136. Vafek O, Melikyan A. 2006. Phys. Rev. Lett. 96:167005 [Google Scholar]
  137. Melikyan A, Vafek O. 2008. Phys. Rev. B 78:020502 [Google Scholar]
  138. Melikyan A, Tesanovic Z. 2006. Phys. Rev. B 74:144501 [Google Scholar]
  139. Fournier D, Levy G, Pennec Y, McChesney JL, Bostwick A et al. 2010. Nat. Phys. 6:905–18 [Google Scholar]
  140. Riggs SC, Vafek O, Kemper JB, Betts JB, Migliori A et al. 2011. Nat. Phys. 7:332–5 [Google Scholar]
  141. Moler KA, Baar DJ, Urbach JS, Liang R, Hardy WN, Kapitulnik A. 1994. Phys. Rev. Lett. 73:2744–7 [Google Scholar]
  142. Wang Y, Revaz B, Erb A, Junod A. 2001. Phys. Rev. B 63:094508 [Google Scholar]
  143. Fisher RA, Gordon JE, Phillips N. 2007. Handbook of High-Temperature Superconductivity Schrieffer JR, Brooks JS. 326–97 New York: Springer [Google Scholar]
  144. Von Neumann J, Wigner E. 1929. Phys. Z. 30:467–70 [Google Scholar]
  145. Herring C. 1937. Phys. Rev. 52:365–73 [Google Scholar]
  146. Wan X, Turner AM, Vishwanath A, Savrasov SY. 2011. Phys. Rev. B 83:205101 [Google Scholar]
  147. Murakami S. 2007. New J. Phys. 9:356 [Google Scholar]
  148. Yang KY, Lu YM, Ran Y. 2011. Phys. Rev. B 84:075129 [Google Scholar]
  149. Delplace P, Li J, Carpentier D. 2012. Europhys. Lett. 97:67004 [Google Scholar]
  150. Balents L. 2011. Physics 4:36 [Google Scholar]
  151. Son DT, Yamamoto N. 2012. Phys. Rev. Lett. 109:181602 [Google Scholar]
  152. Yanagishima D, Maeno Y. 2001. J. Phys. Soc. Jpn. 70:2880–3 [Google Scholar]
  153. Taira N, Wakeshima M, Hinatsu Y. 2001. J. Phys. Condens. Matter 13:5527–33 [Google Scholar]
  154. Zhao S, Mackie JM, MacLaughlin DE, Bernal OO, Ishikawa JJ et al. 2011. Phys. Rev. B 83:180402 [Google Scholar]
  155. Tafti FF, Ishikawa JJ, McCollam A, Nakatsuji S, Julian SR. 2012. Phys. Rev. B 85:205104 [Google Scholar]
  156. Wan X, Vishwanath A, Savrasov SY. 2012. Phys. Rev. Lett. 108:146601 [Google Scholar]
  157. Xu G, Weng H, Wang Z, Dai X, Fang Z. 2011. Phys. Rev. Lett. 107:186806 [Google Scholar]
  158. Burkov AA, Balents L. 2011. Phys. Rev. Lett. 107:127205 [Google Scholar]
  159. Halász G, Balents L. 2012. Phys. Rev. B 85:035103 [Google Scholar]
  160. Ling L, Fu L, Joannopoulos JD, Soljačić M. 2013. Nat. Photonics 7:294–9
  161. Mañes JL. 2012. Phys. Rev. B 85:155118 [Google Scholar]
  162. Turner A, Vishwanath A. 2013. arXiv:1301.0330 [cond-mat.str-el]
/content/journals/10.1146/annurev-conmatphys-031113-133841
Loading
/content/journals/10.1146/annurev-conmatphys-031113-133841
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error