1932

Abstract

The question of whether the dramatic slowing down of the dynamics of glass-forming liquids near the structural glass transition is caused by the growth of one or more correlation lengths has received much attention in recent years. Several proposals have been made for both static and dynamic length scales that may be responsible for the growth of timescales as the glass transition is approached. These proposals are critically examined with emphasis on the dynamic length scale associated with spatial heterogeneity of local dynamics and the static point-to-set or mosaic length scale of the random first-order transition theory of equilibrium glass transition. Available results for these length scales, obtained mostly from simulations, are summarized, and the relation of the growth of timescales near the glass transition with the growth of these length scales is examined. Some of the outstanding questions about length scales in glass-forming liquids are discussed, and studies in which these questions may be addressed are suggested.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031113-133848
2014-03-10
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/5/1/annurev-conmatphys-031113-133848.html?itemId=/content/journals/10.1146/annurev-conmatphys-031113-133848&mimeType=html&fmt=ahah

Literature Cited

  1. Debenedetti P. 1997. Metastable Liquids Princeton, NJ: Princeton Univ. Press [Google Scholar]
  2. Berthier L, Biroli G. 2011. Rev. Mod. Phys. 83:587–645 [Google Scholar]
  3. Angell CA. 1988. J. Phys. Chem. Solids 49:863–71 [Google Scholar]
  4. Vogel H. 1921. Z. Phys. 22:645–56 [Google Scholar]
  5. Fulcher GS. 1925. J. Am. Ceram. Soc. 8:339–45 [Google Scholar]
  6. Tammann D. 1925. J. Soc. Glass Technol. 9:166–84 [Google Scholar]
  7. Martinez-Garcia JC, Rzoska SJ, Drozd-Roska A, Martinez-Garcia J. 2013. Nat. Commun. 4:1823 [Google Scholar]
  8. Kauzmann W. 1948. Chem. Rev. 43:219–56 [Google Scholar]
  9. Adam G, Gibbs JH. 1965. J. Chem. Phys. 43:139–46 [Google Scholar]
  10. Sengupta S, Karmakar S, Dasgupta C, Sastry S. 2012. Phys. Rev. Lett. 109:095705 [Google Scholar]
  11. Hohenberg PC, Halperin BI. 1977. Rev. Mod. Phys. 49:435–79 [Google Scholar]
  12. Young AP. 1998. Spin Glasses and Random Fields Singapore: World Sci. [Google Scholar]
  13. Montanari A, Semerjian G. 2006. J. Stat. Phys 124:103–89 [Google Scholar]
  14. Garrahan JP, Sollich P, Toninelli C. 2011. See Ref. 112, pp. 341–66
  15. Keys AS, Hedges LO, Garrahan JP, Glotzer SC, Chandler D. 2011. Phys. Rev. X 1:021013 [Google Scholar]
  16. Liu AJ, Nagel SR, van Saarloos W, Wyart M. 2011. See Ref. 112, pp. 298–336
  17. Barrat J-L, Lemaitre A. 2011. See Ref. 112, pp. 265–93
  18. Lubchenko V, Wolynes PG. 2007. Annu. Rev. Phys. Chem. 58:235–66 [Google Scholar]
  19. Ediger MD. 2000. Annu. Rev. Phys. Chem. 51:99–128 [Google Scholar]
  20. Cipellitti L, Weeks EW. 2011. See Ref. 112, pp. 110–43
  21. Harrowell P. 2011. See Ref. 112, pp. 229–59
  22. Chaudhuri P, Berthier L, Kob W. 2007. Phys. Rev. Lett. 99:060604 [Google Scholar]
  23. Kob W, Donati C, Plimpton SJ, Poole PH, Glotzer SC. 1997. Phys. Rev. Lett. 79:2827–30 [Google Scholar]
  24. Weeks ER, Crocker JC, Levitt AC, Schofeld A, Weitz DA. 2000. Science 287:627–31 [Google Scholar]
  25. Donati C, Glotzer SC, Poole PH, Kob W, Plimpton SJ. 1999. Phys. Rev. E 60:3107–19 [Google Scholar]
  26. Langer JS. 2006. Phys. Rev. Lett. 97:115704 [Google Scholar]
  27. Starr FW, Douglas JF, Sastry S. 2013. J. Chem. Phys 138:12A541 [Google Scholar]
  28. Giovambattista N, Buldyrev SV, Stanley HE, Starr FW. 2005. Phys. Rev. E 72:011202 [Google Scholar]
  29. Dasgupta C, Indrani AV, Ramaswamy S, Phani MK. 1991. Europhys. Lett. 15:307–12 [Google Scholar]
  30. Donati C, Franz S, Glotzer SC, Parisi G. 2002. J. Non-Cryst. Solids 307–310:215–24 [Google Scholar]
  31. Franz S, Parisi G. 2000. J. Phys. Condens. Matter 12:6335 [Google Scholar]
  32. Lacevic N, Starr FW, Schroder TB, Novikov VN, Glotzer SC. 2002. Phys. Rev. E 66:030101 [Google Scholar]
  33. Flenner E, Szamel G. 2009. Phys. Rev. E 79:051502 [Google Scholar]
  34. Dauchot O, Marty G, Biroli G. 2005. Phys. Rev. Lett. 95:265701 [Google Scholar]
  35. Flenner E, Szamel G. 2010. Phys. Rev. Lett. 105:217801 [Google Scholar]
  36. Flenner E, Zhang M, Szamel G. 2011. Phys. Rev. E 83:051501 [Google Scholar]
  37. Kim K, Saito S. 2013. J Chem. Phys 138:12A506 [Google Scholar]
  38. Karmakar S, Dasgupta C, Sastry S. 2009. Proc. Natl. Acad. Sci. USA 106:3675–79 [Google Scholar]
  39. Biroli G, Bouchaud J-P, Miyazaki K, Reichman DR. 2006. Phys. Rev. Lett. 97:195701 [Google Scholar]
  40. Berthier L, Biroli G, Bouchaud J-P, Kob W, Miyazaki K, Reichman DR. 2007. J. Chem. Phys 126:184503 [Google Scholar]
  41. Götze W. 2008. Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory Oxford: Oxford Univ. Press [Google Scholar]
  42. Das SP. 2004. Rev. Mod. Phys. 76:785–851 [Google Scholar]
  43. Sengupta S, Karmakar S, Dasgupta C, Sastry S. 2013. J. Chem. Phys 138:12A548 [Google Scholar]
  44. Chong S-H, Kob W. 2009. Phys. Rev. Lett. 102:025702 [Google Scholar]
  45. Kirkpatrick TR, Wolynes PG. 1987. Phys. Rev. B 36:8552–64 [Google Scholar]
  46. Kirkpatrick TR, Wolynes PG. 1987. Phys. Rev. A 35:3072–80 [Google Scholar]
  47. Kirkpatrick TR, Thirumalai D. 1987. Phys. Rev. B 36:5388–97 [Google Scholar]
  48. Kirkpatrick TR, Thirumalai D. 1987. Phys. Rev. A 37:4439–48 [Google Scholar]
  49. Kirkpatrick TR, Thirumalai D. 1987. Phys. Rev. B 37:5342–50 [Google Scholar]
  50. Kirkpatrick TR, Thirumalai D. 1989. J. Phys. A 22:L149 [Google Scholar]
  51. Thirumalai D, Kirkpatrick TR. 1988. Phys. Rev. B 38:4881–92 [Google Scholar]
  52. Kirkpatrick TR, Thirumalai D, Wolynes PG. 1989. Phys. Rev. A 40:1045–54 [Google Scholar]
  53. Bouchaud J-P, Biroli G. 2004. J. Chem. Phys. 121:7347–54 [Google Scholar]
  54. Kim K. 2003. Europhys. Lett. 61:790–95 [Google Scholar]
  55. Kob W, Roldan-Vargas S, Berthier L. 2012. Nat. Phys. 8:164–67 [Google Scholar]
  56. Berthier L, Kob W. 2012. Phys. Rev. E 85:011102 [Google Scholar]
  57. Kawasaki T, Araki T, Tanaka H. 2007. Phys. Rev. Lett. 99:215701 [Google Scholar]
  58. Shintani H, Tanaka H. 2008. Nat. Mater. 7:870–77 [Google Scholar]
  59. Leocmach M, Tanaka H. 2012. Nat. Commun. 3:974 [Google Scholar]
  60. Tanaka H. 2012. Eur. Phys. J. E 35:113 [Google Scholar]
  61. Dzugutov M, Simdyankin SI, Zetterling FHM. 2002. Phys. Rev. Lett. 89:195701 [Google Scholar]
  62. Coslovich D. 2011. Phys. Rev. E 83:051505 [Google Scholar]
  63. Pedersen UR, Schroder TB, Dyre JC, Harrowell P. 2010. Phys. Rev. Lett. 104:105701 [Google Scholar]
  64. Steinhardt PJ, Nelson DR, Ronchetti M. 1983. Phys. Rev. B 28:784–805 [Google Scholar]
  65. Malins A, Eggers J, Royall CP, Williams SR, Tanaka H. 2013. J. Chem. Phys 138:12A535 [Google Scholar]
  66. Bruning R, St-Onge DA, Patterson S, Kob W. 2009. J. Phys. Condens. Matter 21:035117 [Google Scholar]
  67. Kivelson D, Kivelson SA, Zhao X-L, Nussinov Z, Tarjus G. 1995. Physica (Amst.) 219A:27–38 [Google Scholar]
  68. Tarjus G, Kivelson D. 1995. J. Chem. Phys. 103:3071–73 [Google Scholar]
  69. Chayes L, Emery VJ, Kivelson SA, Nussinov Z, Tarjus G. 1996. Physica (Amst.) 225A:129–53 [Google Scholar]
  70. Nussinov Z, Rudnick J, Kivelson SA, Chayes L. 1999. Phys. Rev. Lett. 83:472–75 [Google Scholar]
  71. Tarjus G, Kivelson SA, Nussinov Z, Viot P. 2005. J. Phys. Condens. Matter 17:R1143 [Google Scholar]
  72. Kurchan J, Levine D. 2009. J. Phys. A 44:035001 [Google Scholar]
  73. Karmakar S, Lerner E, Procaccia I. 2012. Physica A 391:1001 [Google Scholar]
  74. Philips WA. 1981. Amorphous Solids: Low Temperature Properties, Topics in Current Physics Vol. 24 Berlin: Springer-Verlag [Google Scholar]
  75. Öttinger HC. 2006. Phys. Rev. E 74:011113 [Google Scholar]
  76. Del Gado E, Ilg P, Kröger M, Öttinger HC. 2008. Phys. Rev. Lett. 101:095501 [Google Scholar]
  77. Mosayebi M, Del Gado E, Ilg P, Öttinger HC. 2010. Phys. Rev. Lett. 104:205704 [Google Scholar]
  78. Berthier L, Biroli G, Bouchaud J-P, Cipelletti L, El Masri D et al. 2005. Science 310:1797–1800 [Google Scholar]
  79. Dalle-Ferrier C, Thibierge C, Alba-Simionesco C, Berthier L, Biroli G et al. 2007. Phys. Rev. E 76:041510 [Google Scholar]
  80. Hurley MM, Harrowell P. 1995. Phys. Rev. E 52:1694–98 [Google Scholar]
  81. Yamamoto R, Onuki A. 1997. J. Phys. Soc. Jpn. 66:2545–48 [Google Scholar]
  82. Poole PH, Donati C, Glotzer SC. 1998. Physica A 261:51–59 [Google Scholar]
  83. Appignanesi GA, Rodriguez-Fris JA. 2009. J. Phys. Condens. Matter 21:203103 [Google Scholar]
  84. Berthier L. 2003. Phys. Rev. Lett. 91:055701 [Google Scholar]
  85. Binder K. 1981. Z. Phys. B 43:119–40 [Google Scholar]
  86. Kob W, Andersen HC. 1994. Phys. Rev. Lett. 73:1376–79 [Google Scholar]
  87. Stein RLS, Andersen HC. 2008. Phys. Rev. Lett. 101:267802 [Google Scholar]
  88. Karmakar S, Dasgupta C, Sastry S. 2010. Phys. Rev. Lett. 105:019801 [Google Scholar]
  89. Karmakar S, Dasgupta C, Sastry S. 2010. Phys. Rev. Lett. 105:015701 [Google Scholar]
  90. Flenner E, Szamel G. 2012. Nat. Phys. 8:696–97 [Google Scholar]
  91. Biroli G, Bouchaud J-P, Cavagna A, Grigera TS, Verrocchio P. 2008. Nat. Phys. 4:771–75 [Google Scholar]
  92. Grigera TS, Parisi G. 2001. Phys. Rev. E 63:45102 [Google Scholar]
  93. Hocky GM, Markland ME, Reichman DR. 2012. Phys. Rev. Lett. 108:225506 [Google Scholar]
  94. Charbonneau B, Charbonneau P, Tarjus G. 2012. Phys. Rev. Lett. 108:035701 [Google Scholar]
  95. Charbonneau P, Tarjus G. 2012. Phys. Rev. E 87:042305 [Google Scholar]
  96. Biroli G, Karmakar S, Procaccia I. 2013. Phys. Rev. Lett. 111:165701 [Google Scholar]
  97. Widmer-Cooper A, Perry H, Harrowell P, Reichman DR. 2008. Nat. Phys. 4:711–15 [Google Scholar]
  98. Widmer-Cooper A, Perry H, Harrowell P, Reichman DR. 2009. J. Chem. Phys. 131:194508 [Google Scholar]
  99. Brito C, Wyart M. 2007. J. Stat. Mech. 08:L08003 [Google Scholar]
  100. Chen K, Ellenbroek WG, Zhang Z, Chen DTN, Yunker PJ et al. 2010. Phys. Rev. Lett. 105:025501 [Google Scholar]
  101. Franz S, Montanari A. 2007. J. Phys. A 40:F251–57 [Google Scholar]
  102. Glotzer SC, Novikov VN, Schröder TB. 2000. J. Chem. Phys. 112:509–12 [Google Scholar]
  103. Glotzer SC. 2000. J. Non-Cryst. Solids 274:342–55 [Google Scholar]
  104. Hentschel HGE, Karmakar S, Lerner E, Procaccia I. 2011. Phys. Rev. E 83:061101 [Google Scholar]
  105. Karmakar S, Procaccia I. 2012. Phys. Rev. E 86:061502 [Google Scholar]
  106. Cammarota C, Cavagna A, Gradenigo G, Grigera TS, Verrocchio P. 2009. J. Chem. Phys. 131:194901 [Google Scholar]
  107. Cammarota C, Biroli G, Tarzia M, Tarjus G. 2011. Phys. Rev. Lett. 106:155705 [Google Scholar]
  108. Fisher DS, Huse DA. 1988. Phys. Rev. B 38:373–85 [Google Scholar]
  109. Sastry S. 2000. PhysChemComm 3:79–83 [Google Scholar]
  110. Brumer Y, Reichman DR. 2004. Phys. Rev. E 69:041402 [Google Scholar]
  111. Bhattacharyya SM, Bagchi B, Wolynes PG. 2008. Proc. Natl. Acad. Sci. USA 105:1607782 [Google Scholar]
  112. Berthier L, Biroli G, Bouchaud J-P, Cipelletti L, van Saarloos W. 2011. Dynamical Heterogeneities in Glasses, Colloids and Granular Media New York: Oxford Univ. Press [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031113-133848
Loading
/content/journals/10.1146/annurev-conmatphys-031113-133848
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error